International Journal of Innovative
Computing, Information and Control ICIC International ©)2012 ISSN 1349-4198
Volume 8, Number 5(A), May 2012 pp. 3049-3060

A NOVEL DIFFERENTIAL EVOLUTION USING MULTIPLE-DEME
BASED MUTATION

DoNG-HYuN Lim!, HoaNG N. LuoNGg? AND CHANG WOOK AHN'*

!Department of Computer Engineering
Sungkyunkwan University
No. 300, Cheonchoen-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746, Korea
*Corresponding author: cwan@skku.edu

2Centrum Wiskunde & Informatica (CWT)
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Received January 2011; revised June 2011

ABSTRACT. Mutation strategy has been acknowledged to significantly influence the per-
formance of differential evolution (DE). The popular DE/rand/1 can relatively maintain
the diversity of population, but the algorithm often distributes its search effort widely
among search space without any focus. On the other hand, greedy strategies, such as
DE/best/1 or DE/current-to-best/1, have faster convergence speed, but they are likely to
fall into local optima due to insufficient population diversity. In this paper, we propose a
novel DE variant which is able to sustain the balance between exploration and exploita-
tion. We introduce the concept of parallel computing into DE and design a multiple-deme
based mutation operator (MDM) to enable information exchange among processing units.
Ezperimental results over a number of numerical optimization problems prove that our
proposed differential evolution, DE-MDM, outperforms the traditional DE approach in
terms of the quality of the final achieved solutions.

Keywords: Differential evolution, Evolutionary algorithm, Numerical optimization,
Population diversity, Parallel processing, Multiple-deme based mutation

1. Introduction. Differential Evolution (DE) [1, 2] achieves its popularity in the realm
of evolutionary algorithms (EAs) due to its efficiency and efficacy in solving continuous
parameter optimization. Growing beyond theoretical research, where DE outperforms its
direct competitors (e.g., genetic algorithms [3, 4] and particle swarm optimization [5])
over a number of test benchmarks [6], DE is shown to have a wide applicability to various
problem domains from academia to industry [7-13]. Employing typical genetic operators
(i.e., selection, crossover, and mutation), DE variants have simpler implementations when
compared with advanced EAs, such as Estimation of Distribution Algorithms (EDAs) [14],
but are still competent in tackling difficult optimization tasks. Furthermore, the variants
of DE have also been proposed to solve many discrete optimization problems [15]. Since its
early days when proposed by Storn and Price [1, 2], DE has a thriving research community
with continuous developments in terms of both theory and practice.

A robust DE variant would be able to sustain an appropriate balance between explo-
ration and exploitation during the optimization progress [16]. In fact, all evolutionary
computation practitioners need to take such requirement into consideration for designing
their optimizers [17]. Exploration is defined as the enhancement of population diversity
to discover larger regions of search space. On the contrary, exploitation is the reduction
of population diversity to make the algorithm quickly converge to an optimum [16, 17].
While exploration guides DE through different areas of the search space, exploitation
ensures that DE population be evolved toward promising regions (based on the fitness

3049

3050 D.-H. LIM, H. N. LUONG AND C. W. AHN

values of current candidate solutions). Solely excessive usage of any of these two proce-
dures would prevent DE from achieving the global optimal solution. Greedy exploitation is
ineffective because it would result in premature convergence, where DE population, losing
its necessary diversity, is trapped into some misleading local optima. On the other hand,
overly eztensive exploration would compromise on the efficiency of resource consumption
when unnecessarily searching over immense landscapes. In addition, DE is also reported
to suffer from occasional stagnation [18], i.e., the algorithm hardly progresses even though
the population has not converged yet. Therefore, various researches have been conducted
into efficiency enhancement for DE by taking full advantage of both global and local
information. Noman and Iba [19] proposed a memetic variant of DE coupled with the
Fittest Individual Refinement, a crossover-based local search, capable of exploring the
neighborhood of the best solutions through successive generations. The algorithm ob-
tained acceptable solutions with fewer numbers of evaluations. Yang et al. [20] proposed
a neighborhood search DE (NSDE), a hybridization of DE with a neighborhood search,
whose mutation operator would randomly add some amounts of perturbation, normally
distributed, to solution vectors. Rahnamayan et al. [21] presented an opposition-based DE
(ODE) employing opposition-based learning for population initialization and generation
jumping. Das et al. [22] defined a ring topology of neighborhood in DE, where a hybrid
model would linearly combine the local mutation component with the global mutation
component by a weight factor. A succinct review of previous works on improving DE
could also be found in Das et al. [22].

In this paper, inspired by the parallel processing mechanism [23-25], we propose a new
DE variant employing a mutation operation which is based on the multiple-deme topology,
termed multiple-deme based mutation (MDM). Evolutionary algorithms tend to evolve to-
ward elite individuals (i.e., vectors with high fitness values), and in this paper, we refer to
the best individual as the attractor of the population. While traditional DE might pre-
maturely converge into a local optimum due to its single attractor in the population, our
proposed DE variant, referred to as DE-MDM, effectively preserves its population diver-
sity. We run several instances of DE separately to create and maintain multiple attractors
in the population; the algorithm can, thus, operate in different promising regions over the
search space. Furthermore, independently operating DEs would periodically share their
own exploration results with each other to generate new mutant vectors. In other words,
the MDM operator helps local information be globally consulted during the optimization
progress.

The rest of this paper is organized as follows. The conventional DE is briefly described
in Section 2. Section 3 presents our DE-MDM. Section 4 simulates the proposed algorithm
and shows the experimental results. Finally, Section 5 concludes the paper.

2. Differential Evolution. Generally, DE has the same fundamental mechanism and
genetic operators as other evolutionary algorithms. First, an initial population is ran-
domly generated according to a uniform distribution. Variation operators, such as mu-
tation and crossover, generate new offspring vectors from the current population. There
exist various mutation strategies which define the behaviors and characteristics of DE.
Selection operator then obtains a set of promising individuals (i.e., candidate solutions
having better fitness values) from the previous population and newly created offspring.
Unlike traditional genetic algorithms, however, DE performs the mutation operator first,
and then the crossover operator, with the selection phase coming last. Next, we describe
briefly the essential operators of DE.

An initial population {z;0 = (%10, %20, * ,Tps0) | # = 1,2,--+, Np} is uniformly

generated over the search space, in which z;,;0 € [xé-ow,x;-“gh] for j = 1,2,--+, D, where

A NOVEL DIFFERENTIAL EVOLUTION USING MULTIPLE-DEME BASED MUTATION 3051

Np is the population size, D is the dimension of the problem, and [xé-"“’,x?igh] is the
feasible domain of the jth parameter. After the initialization of the population, the
genetic operators, such as Mutation, Crossover and Selection, are run iteratively. The

population X, consisting of Np candidate solutions, at the generation g is represented as
Xg:{xi,9|i:1727"'7Np} (1)

2.1. Mutation. At each generation, the mutation operator constructs the mutant vec-
tors from the current population. There exist various mutation strategies used to create
mutant vectors. Some popular mutation strategies are formulated as follows:

1. DE/rand/1

Vig = Trog + F (219 — Trayg) (2)
2. DE/current-to-best /1
Vig = Tig + F(Tuestyg — Tiyg) + F(Tr1,g — Trayg) (3)
3. DE/best/1
Vig = Tpestyg + F(Tr1,9 — Trag) (4)

Three mutation strategies above are the most widely used in implementing DE. We
have v;, as the mutant vector; z,9,4, 7y1,4 and x,0, are distinct individuals randomly
chosen from the current population Xg; Zpes 4 is the best individual in Xy, and F' is the
scaling factor that controls the difference vectors. A visual representation on the above
notations can be found in an illustrative example of DE/best/1 as shown in Figure 1.

FIGURE 1. An example of the mutation strategy DE/best/1

2.2. Crossover. After mutant vectors are generated, DE reproduced new offspring vec-
tors ;g = (U1,ig, U2,ig, - " - » UD,i,g) Dy the binomial crossover operations as follows:

o ifrand;(0,1) < C
uz{ Hrand; 0, 1) < Cr 5

Tj;g Otherwise

3052 D.-H. LIM, H. N. LUONG AND C. W. AHN

where rand;(0,1) generates a random number between 0 and 1 for every ¢ and j. The
crossover operator tries to exchange the value of each variable in the target vector z; , with
the mutant vector v; , in the same manner as the uniform crossover of genetic algorithm
with the crossover probability Cg € [0, 1].

2.3. Selection. The selection operator compares the fitness values of each target vector
x;4 With its corresponding offspring vector u; 4, which is generated by the crossover op-
erator as described above. The vector having better fitness value is then selected as a
promising individual for the next generation. The following rule is used in the task of
minimization.

- {u i (i) < J(01) ©

z;, otherwise

3. Proposed DE Algorithm. DE mutation operation is usually implemented as equa-
tions (2), (3) or (4). DE/rand/1 is considered as the norm in implementing mutation
strategy for DE because it can operate relatively well in various problem types. However,
DE/rand/1 spends most of the computational resources on exploring the search space
without focusing on any particular promising points. Such extensively explorative strat-
egy, thus, would have slow convergence speed and would take a considerable amount of
resources to reach an acceptable solution. On the other hand, intensively exploitative
mutation strategies, such as DE/current-to-best/1 and DE/best/1, are shown to be faster
in obtaining a final result. However, both of current-to-best/1 and best/1 share common
drawbacks: premature convergence and low-quality solution. These are due to the rapid
loss of population diversity as new solutions are generated mainly by mutating the best
individual currently available in the population. Since these exploitative strategies carry
out their exploration towards only a single attractor (i.e., the single best individual),
they miss the opportunity to discover other potential promising regions. For problems
with simple landscape, DE/best/1 or DE/current-to-best/1 can quickly locate around
the global optimal point. However, when running on rugged landscapes, they easily fall
into some misleading local optima due to their inherent greedy search-like characteristic.
Also, it is most unlikely that they would be able to escape from a local optimum because
the population diversity is not maintained wide enough to generate any better solutions
lying in a different region. In this regard, we would like to combine the advantages of
both explorative strategies and exploitative strategies: wide population diversity and fast
convergence speed. In order to achieve these two goals, we maintain multiple attractors in
the population by incorporating the multiple-deme parallel processing concept into DE.
The idea is to separately operate several DEs at the same time, and then allow them to
exchange information about their best individual vectors at certain intervals.

On the basis of the above structure, we develop the multiple-deme based mutation oper-
ator (MDM) to overcome the drawbacks of DE. Especially, we consider the fully-connected
demes topology as shown in Figure 2. At first, the whole population is divided into M
demes (i.e., groups or sub-populations). At each deme, a DE is executed independently;
then, after every certain number of generations, each deme would consult other groups
to share information about their attractors. In this paper, we employ the term attractor
to refer to the best individual of a group. A local attractor would be the best individual
of a sub-population, while the global attractor would be the best individual of the whole
population. Here, instead of using its own best individual, at a certain interval, a deme
would use attractors of other different demes to construct its mutant vectors. Our MDM

A NOVEL DIFFERENTIAL EVOLUTION USING MULTIPLE-DEME BASED MUTATION 3053

modifies the DE/best/1 mutation strategy as follows.

k

Uik,g = xZést{g + F(xl;:l,g - 1'1:2,9), (7)
rand(1, M) ¢ k if mod (¢,{) =0

v(k) = .
k otherwise

where the superscript of each vector is the deme index number, rand(1, M) generates
a random integer from [1, V], and ¢ denotes the interval, in terms of the number of
generations, at which a deme would exchange information with other demes to create its
mutant vectors.

By incorporating the MDM into the DE framework, the proposed algorithm, called
DE-MDM, is outlined as follows:

1. Initialize a population with the size of Np.

2. Partition the population into M demes (i.e., group). Each deme consists of Np/M

individuals.

. Run the traditional DE independently on each deme.

4. After every (-generation interval, each deme evolves by referring to the attractors of
different demes randomly selected from M —1 demes. (See Equation (7) and Figure
2).

5. Tterate from Step 3 to Step 4 until the termination criteria are met (e.g., the
allowable number of generations or function evaluations is reached).

w

A tgeneration g, forthe individual i,
Deme?2 random Iy referstoDem e 4,
and the m utatdion is perform ed as

2 4 2 2
Vig = Reag TF &g =X,

FIGURE 2. An example of the mutation strategy DE/best/1

The operating mechanism of DE-MDM can be explained as follows. First, the whole
population is partitioned into several demes (i.e., sub-populations). Each deme then runs
an independent DE separately. After every (-generation interval, the multiple deme-based
mutation is performed by allowing each deme to consult the best individuals of other ran-
domly selected demes. In other words, instead of evolving toward its own local attractor,
each sub-population uses different local attractors of other demes to generate new off-
spring. Our MDM strategy has dual effects: 1) fast convergence speed and 2) diversity

3054

D.-H. LIM, H. N. LUONG AND C. W. AHN

preservation. The DE/best/1 greedy nature of our MDM helps the algorithm converge
fast, while the parallel-like operating mechanism assures a diversified population. Run-
ning DE simultaneously on different demes will suggest more potential search directions
for succeeding exploration. It is also more effective than the traditional mutation strate-
gies DE/current-to-best/1 and DE/best/1 because it is able to explore a wider region of
search space. Furthermore, the quality of the optimal solution returned by our approach
has higher quality than the results of existing methods. The following section presents
experimental results that support our claims.

4. Experiments and Results. We employed 10 benchmark optimization functions (as
described in [26, 27]) for empirically verifying the effectiveness of our approach.

4.1.

1.

Test functions.
Sphere function

Range : —100 < z; < 100, min(f;) = f1(0,---,0)=0

. Rotated Hyper-ellipsoid function

=3 (3

Range : —100 < z; < 100, min(fs) = f2(0,---,0) =0

. Step function

D

i) =3 (Lo +05])

i=1

Range : —100 < z; < 100, min(f3) = f3(0,---,0)=0

. Noisy Quartic function

D
fa(z) = Z iz} 4+ rand|0,1)

=1

Range : —1.28 < 2; < 1.28, min(fy) = f4(0,---,0) =0

. Rosenbrock’s function

f5(z)

D—-1

= 2(100($i+1 - «T?)Z + («Tz - 1)2)

i=1

Range : —30 < z; < 30, min(fs) = f5(1,---,1)=0
6. Generalized Schwefel’s problem 2.26

o) =3 (—avsn (V)

=1

Range : —500 < z; < 500, min(fg) = f6(420.9687,--- ,420.9687) = —12569.5

(10)

(11)

(12)

(13)

A NOVEL DIFFERENTIAL EVOLUTION USING MULTIPLE-DEME BASED MUTATION 3055

7. Penalized function

D—1
f7(x) :%{10 sin®(7y;) + Z [1+ 10sin*(myis1)] + (yp — 1)2}
=1

D
+ 3 u(x,10,100, 4)

i=1

k(z;—a)™ x;>a
where y; = 1+ 1(z; + 1) and u(z;,a,k,m)) =< 0 —a<z;<a
k(—z; —a)™ x; < —a

Range : —50 < z; <50, min(f;) = f7(1,---,1) =0

8. Griewank’s function

~ 2000 Z H oos () (15)

Range : —600 < z; < 600, min(fg) = fs(0,---,0)=0

9. Rastrigin’s function
D

fo(z) = Z (z7 — 10 cos(27z;) + 10) (16)

i=1
Range : —5.12 < z; < 5.12, min(fy) = f9(0,---,0) =0
10. Shifted Rotated Ackley’s function

flg(l') = —206Xp —0.2

(% Z cos(27rxi)> +20+e (17)

Range : —32 < z; < 32, min(fi) = fi0(0, ,0)=0

The descriptions of the above set of benchmark functions are taken from Zhang et
al. [26] and Yao et al. [27]. All functions fi-fio are high dimensional problems. Functions
fi-f3 are unimodal functions, in which f; and f5 are continous while f3 is a step function
with a discontinous landscape having plateaus. Function f; is a noisy quartic function,
where rand|0, 1) would randomly generate the noise uniformly distributed in the interval
[0,1). Rosenbrock function f5 is a unimodal function when D = 2 or D = 3; for D > 4,
the function f5 has multiple minima. Functions fg-fo are difficult optimization problems
because they are multimodal functions with many local minima [26, 27].

4.2. Experimental results. For experiments, we set up the parameter D (Dimension)
to be 30, the total number of evaluations to be 100,000, the maximal population size to
be 200, the minimal population size to be 20, and the number of demes (i.e., M) to be
5. Finally, F' and Cy are fixed as 0.95 and 0.5, respectively. Population size setting is a
crucial parameter of DE, and different settings may produce various results. Therefore, we
conduct experiments with a wide ranges of population sizes (from 20 to 200) to prove that
our DE-MDM has better performance than the conventional DE regardless of population
size settings. The interval (for each deme consulting other demes is another parameter
that needs to be configured. We also test DE-MDM with different to investigate its
effects on the performance of the algorithm (¢ = 10, 20, 30, 40 or 50).

3056 D.-H. LIM, H. N. LUONG AND C. W. AHN

3 5x10" 5
10 B=P=B-A-R—A-_R—8 n 5 u_
:3:: -\..-a-_-;_‘c_“r l .a -m) "
w:)
1073 m
w';— .
@ 107 3 3x10"
% 10°" E > -
> 107 >
g 1079 . g i = DE
£ 107 - DE § 2107 | —x— DE-MDM 10
5 io':: - DE-MDM 10| = DE-MDM 20 -
e 4~ DE-MDM 20| * —o— DE-MDM 30
<] | —o— DE-MDM30| 1x10°< | —*— DE-MDM 40 !
10° 3 #— DE-MDM 40 | —o— DE-MDM 50
1w*3d |—o—DE-MDM50|))
:g;- 04 A—A—A—A—A—A—A—A—A A AP A=Y
T T T T T T T T T T T T T T T T T T
200 180 160 140 120 100 8O 60 200 180 160 140 120 100 80 60 40 20
Population Sizes Population Sizes
. FiGURE 4. Rotated hy-
FIGURE 3. Sphere function 2 ‘ Y
per ellipsoid function
1000 - - - 0.45
—n—DE ;—---DE
« DE-MDM 10 o404 A «— DE-MDM 10
800+ —a— DE-MDM 20 sl o Ny —a— DE-MDM 20
o— DE-MDM 30 =], ® DE-MDM 30
\ —=— DE-MDM 40 0.304 \ #— DE-MDM 40
b 600 o | —o— DE-MDM 50 0 4 \ | —c— DE-MDM 50
3 @ 0.25 4 L |
= . 2 0
g 8]
S 400 g 020
E -"‘. § 0.15:
= b =
o200 = “ 010l
By 5 i i "
Ny . 0.05 - TR, Ty
04 et o 0 BR=R—0—0-0-0-0-0—0 1 s S e B
0.00
T T T T T T T T T T T T | SR | T T | T | T T
200 180 160 140 120 100 80 B0 40 20 200 180 160 140 120 100 B0 B0 40 20
Population Sizes Population Sizes
FIGURE 5. Step function FI1GURE 6. Noisy quartic function
10° 5 7000 <
A —=—DE
R *— DE-MDM 10|
s) o - . I
0 8000 N —a— DE-MDM 20
. o DE-MDM 30
10*- 9000 4 #— DE-MDM 40
9 g L >— DE-MDM 50
2 2 ~)
g 10" 4 g -10000
[=4 [
S =]
8 B
c {|—=—DE S .11000 4
& |~ DE-MDM 10 e
—&— DE-MDM 20
10'4|—=— DE-MDM 30 -12000
| —=— DE-MDM 40 2
|~o— DE-MDM 50
10° T T T T T T T T T T -13000 T T T T T T T T T T
200 180 160 140 120 100 80 B0 40 20 200 180 160 140 120 100 B8O 60 40 20
Population Sizes Population Sizes

FIGURE 8. Schwefel’s

FIGURE 7. Rosenbrock’s function
problem 2.26

Figures 3-12 present the function values obtained after running DE and five variants
of DE-MDM (with different ¢ values) on 10 benchmark functions fi-f1o with varying
population sizes (from 20 to 200). Excluding a few exceptions (e.g., Figure 4), all five
DE-MDM variants have similar performance and show the same tendencies in final results
with respect to the population size settings. Therefore, we can refer to our approach as
DE-MDM regardless of the (setting to discuss experimental results.

Figures 3-12 exhibit significant gaps of differences in performance of algorithms when
changing the population size settings. DE and DE-MDM with small population sizes

A NOVEL DIFFERENTIAL EVOLUTION USING MULTIPLE-DEME BASED MUTATION 3057

105wy
‘D‘)_ LE - ‘- -8 .- DE
L] 84 m
wd - \ *— DE-MDM 10
4 - . A— DE-MDM 20
o' < iy
: R - \ 5~ DE-MDM 30
10° 4 o \ : | \ 5 :
: ' " 6 . DE-MDM 40
w 10 Mg -, P DE-MDM 50
3 10° s “u s "
™ N AN]
£ 10" T = 44 .
§ 10° 5 %
S 4p'{ —®=-DE \ g N [N
frad 10° 4 «— DE-MDM 10 T 24 “5-}_&-3; .
.| |—2—DE-MDM 20 \ B —
1079 | _o— DE-MDM 30 7 S Ay
1079 | —=— DE-MDM 40 il . T
107 4 o— DE-MDM 50 O—0—0—0—=0—0—0—0
o=

T T T T T T T T T T
200 180 160 140 120 100 &0 60 40 20

! R I | T B T
200 180 160 140 120 100

Population Sizes Population Sizes
FIGURE 9. Penalized function FIGURE 10. Griewank’s function
1000 5 1
3 81 = DE
" *— DE-MDM 10
P T % 4~ DE-MDM 20
1004 O—Cmipuy LR g LN ©— DE-MDM 30
e . 1 a #— DE-MDM 40
@ % @ 5] x Ny DE-MDM 50|
2 2 k-_q? Ll
g 1o 2] ¥
§ _ 5] -
g =—DE £
2 14 |—*— DE-MDM 10 b S
3| —4— DE-MDM 20 24 .
-~ DE-MDM 30 . : \
«— DE-MDM 40 f 1 A = /e
0.4 |—o— DE-MDM 50 : 0 TSo—s—o-o Beo—o-o - n
T b T ¥ T ¥ T ¥ T ¥ T ¥ T ‘ T ¥ T ¥ T T T T T T T T T T T
200 180 160 140 120 100 80 B0 40 20 200 180 160 140 120 100 80 B0 40 20

Population Sizes Population Sizes

Ficure 12. Shifted ro-

FIGURE 11. Rastrigin’s function)
tated Ackley’s function

obtain better results. It can be concluded from the graphs that small population sizes
(from 20 to 60) is preferable in solving this set of benchmark functions (all with D = 30).
Another observable remark is that under same population size settings our DE-MDM can
outperform the conventional DE in terms of final function values.

For unimodal functions f; and fs, it is apparent that DE-MDM surpasses DE with all
different population size settings. A population of 20 individuals yields the best perfor-
mance for all algorithms when solving the simple sphere function f;, and five DE-MDM
variants achieve significantly better final results than the conventional DE (Figure 3).
Similar remarks can be found when solving the rotated hyper ellipsoid function fy (Fig-
ure 4). The variant DE-MDM with ¢ = 20, however, shows an exceptional case, in which
its performance is superior to DE and all other DE-MDM variants regardless of population
sizes.

For the step function f3 and the noisy quartic function f4 (Figure 5 and Figure 6, respec-
tively), DE-MDM performs considerably better than DE with population sizes ranging
from 80 to 200. Also, for smaller settings (20 < N, < 80), our DE-MDM still performs
slightly better than DE. We note that the gap between the worst function values (returned
by large populations) and the best function values (returned by small populations) of our
DE-MDM is much narrower than that of the conventional DE. It implies that the con-
ventional DE is sensitive to population sizes, and thus requires an appropriate setting to
obtain acceptable results; our DE-MDM, on the contrary, is more robust and stable.

Multimodal functions f5-fip (see Figures 7-12) have been acknowledged to be more
difficult than unimodal functions because the optimization algorithms would be challenged

3058 D.-H. LIM, H. N. LUONG AND C. W. AHN

by many misleading local optima before locating the global optimum [27]. A robust
algorithm should maintain enough population diversity to escape local optima and good
exploitation to achieve the best result within its allowable computational resources. In
this regard, our DE-MDM is shown to be superior to the conventional DE on most test
cases. In general, with the same population size settings (regardless of their values), DE-
MDM obtains better final results when compared to DE. The only few exceptions are the
cases of Penalized function f; (with population size of 20 or 30) and Ackley’s function fig
(with population size of 20), in which DE can locate better solutions than our DE-MDM.
However, for any larger populations, DE-MDM still proves its superiority.

Table 1 reports the best function values obtained by DE and DE-MDM when optimizing
the above set of 10 benchmark functions. The best final results of each algorithm are
presented with their corresponding population sizes and the interval (. The experiments,
thus, clearly support the superiority of DE-MDM over the conventional DE.

TABLE 1. Experimental results

DE DE-MDM

function | Np Value Np ¢ Value
fi 20 |2.25586E-27] 20 10 |3.55395E-54
f 20 666439.4 20 20 | 1.27233E-46

T 30-70 0.0 30-120 | 10-50 0.0
1 30 0.022422 20 10 [0.011015619
fs 30 23.03484 20 20 | 1.97633998
o 60 —12557.9 | 50-90 [10-50 | —12569.5
fr 20-30 | 2.66575E-08 | 40-60 | 10-50 | 2.66575E-08
fs 40 | 6.4133E-06 | 30-40 | 10-50 | 5.42101E-20
o 40 4.201033 70 10 |0.100012759

J10 20 0.0 30-40 | 10-50 0.0

5. Conclusion. Controlling the budget of computational resource on exploration and
exploitation is a fundamental research topic in differential evolution and in other evolu-
tionary algorithms as well. Population diversity preservation and fast convergence speed
are two conflicting criteria of a robust optimization algorithm. Insisting on a criterion
would require compromising on the other one. In this paper, our DE-MDM was proposed
to address the above problem of balancing exploration and exploitation. We designed a
parallel processing-inspired DE variant, and incorporated it with a novel multiple-deme
based mutation strategy (MDM). The whole population is partitioned into different demes
(i.e., sub-populations), and at each deme, an independent DE is run separately in the scope
of that deme. This parallel computing-like model can preserve the population diversity
due to various DEs operating on different regions of the search space. DE/best/1 is im-
plemented as the mutation strategy so that each DE could converge quickly toward its
local best individual. At regular intervals, each deme would consult the best individuals
of other demes to construct its mutant vectors. In this way, all demes can propagate their
own explorative knowledge and can take advantage of the information obtained from other
demes as well.

We performed the experiments on 10 numerical optimization tasks. The performance
of our DE-MDM was compared with the conventional DE. Experimental results proved
that DE-MDM could outperform the traditional DE, in terms of the quality of the ob-
tained solutions, with a wide range of population size settings. The results supported our

A NOVEL DIFFERENTIAL EVOLUTION USING MULTIPLE-DEME BASED MUTATION 3059

assertion that DE-MDM could effectively and efficiently balance its exploration (i.e., var-
ious promising regions are discovered) with its exploitation (i.e., making use of exchanged
information to obtain better solutions within the limit of computational resouces).
Lastly, we emphasize that our DE-MDM has potentials for being applied to complicated
real-world problems. Industrial tasks which consume considerable amounts of computa-
tion resources would demand that the optimization algorithm be implemented in a true
parallel processing framework. Having a multiple-deme based operating mechanism, our
DE-MDM, thus, can be straightforwardly scaled to operate effectively in such system.

Acknowledgment. This research was supported by MKE, Korea under ITRC NIPA-
2012-(C1090-1221-0008).

REFERENCES

[1] R. Storn and K. Price, Differential evolution a simple and efficient heuristic for global optimization
over continuous spaces, J. Global Optimization, vol.11, no.4, pp.341-359, 1997.

[2] K. V. Price, R. M. Storn and J. A. Lampinen, Differential Evolution: A Practical Approach to Global
Optimization, 1st Edition, Springer-Verlag, New York, NY, 2005.

[3] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA, 1996.

[4] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning Reading, Add-
sion Wesley, MA, 1989.

[5] J. Kennedy and R. Eberhart, Particle swarm optimization, Proc. of IEEE Int. Conf. Neural Netw.,
pp.1942-1948, 1995.

[6] J. Vesterstrom and R. Thomsen, A comparative study of differential evolution, particle swarm op-
timization, and evolutionary algorithms on numerical benchmark problems, Proc. of the 6th Congr.
Evol. Comput., pp.1980-1987, 2004.

[7] M. Omran, A. P. Engelbrecht and A. Salman, Differential evolution methods for unsupervised image
classification, Proc. of the 7th Congr. Evol. Comput., pp.966-973, 2005.

[8] S. Das, A. Abraham and A. Konar, Adaptive clustering using improved differential evolution algo-
rithm, IEEE Trans. Syst., Man, Cybern. A, vol.38, no.1, pp.218-237, 2008.

[9] T. Rrogalsky, R. W. Derksen and S. Kocabiyik, Differential evolution in aerodynamic optimization,
Proc. of the 46th Annu. Conf. Can. Aeronautics Space Inst., pp.29-36, 1999.

[10] F. S. Wang and H. J. Jang, Parameter estimation of a bio-reaction model by hybrid differential
evolution, Proc. of the 2nd IEEE Congr. Evol. Comput., pp.410-417, 2000.

[11] R. Joshi and A. C. Sanderson, Minimal representation multi-sensor fusion using differential evolution,
IEEE Trans. Syst., Man, Cybern., Part A, vol.29, no.1, pp.63-76, 1999.

[12] C.-J. Lin, C.-F. Wu and C.-Y. Lee, Design of a recurrent functional neural fuzzy network using
modified differential evolution, International Journal of Innovative Computing, Information and
Control, vol.7, no.2, pp.669-683, 2011.

[13] F. T. Lin, Application of differential evolution for fuzzy linear programming, ICIC Ezpress Letters,
vol.5, no.6, pp.1851-1856, 2011.

[14] M. Pelikan, D. E. Goldberg and F. G. Lobo, A survey of optimization by building and using proba-
bilistic model, Comput. Optim. Appl., vol.21, no.5, pp.5-20, 2002.

[15] V. Vegh, G. K. Pierens and Q. M. Tieng, A variant of differential evolution for discrete optimiza-
tion problems requiring mutually distinct variables, International Journal of Innovative Computing,
Information and Control, vol.7, no.2, pp.897-914, 2011.

[16] M. G. Epitropakis, V. P. Plagianakos and M. N. Vrahatis, Balancing the exploration and exploitation
capabilities of the differential evolution algorithm, Proc. of the 10th IEEE Congr. Evol. Comput.,
pp.2686-2693, 2008.

[17] L. Hanshen and K. Lishan, Balance between exploration and exploitation in genetic search, Wuhan
University Journal of Natural Sciences, vol.4, no.1, pp.28-32, 1999.

[18] J. Lampinen and I. Zelinka, On stagnation of the differential evolution algorithm, Proc. of the 6th
Int. Mendel Conf. Soft Computing, Brno, Czech Republic, pp.76-83, 2000.

[19] N. Noman and H. Iba, Enhancing differential evolution performance with local search for high
dimensional function optimization, Proc. of the Genetic Evol. Comput. Conf., pp.967-974, 2005.

[20] Z. Yang, J. He and X. Yao, Making a difference to differential evolution, Advances in Metaheuristics
for Hard Optimization, pp.415-432, 2007.

3060 D.-H. LIM, H. N. LUONG AND C. W. AHN

[21] S. Rahnamayan, H. R. Tizhoosh and M. M. A. Salama, Opposition-based differential evolution
algorithms, IEEE Trans. Fvol. Comput., vol.12, no.1, pp.64-79, 2008.

[22] S. Das, A. Abraham, U. K. Chakraborty and A. Konar, Differential evolution using a neighborhood-
based mutation operator, IEEE Trans. Evol. Comput., vol.13, no.3, pp.526-553, 2009.

[23] D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos and M. N. Vrahatis, Parallel differential evolution,
Proc. of the 6th IEEE Congr. Evol. Comput., 2004.

[24] V. P. Plagianakos and M. N. Vrahatis, Parallel evolutionary training algorithms for ‘hardware
friendly’ neural networks, Natural Computing, vol.1, pp.307-322, 2002.

[25] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam, PVM: Parallel Virtual
Machine — A User’s Guide and Tutorial for Networked Parallel Computing, MIT Press, Cambridge,
1994.

[26] J. Zhang and A. C. Sanderson, Adaptive Differential Evolution — A Robust Approach to Multimodel
Problem Optimization, Springer-Verlag, New York, NY, 2009.

[27] X. Yao, Y. Liu, K. H. Liang and G. Lin, Fast evolutionary algorithms, in Advances in Evolutionary
Computing: Theory and Applications, G. Rozenberg, T. Back and A. Eiben (eds.), New York, NY,
Springer, 2003.

