
International Journal of Innovative
Computing, Information and Control ICIC International c©2012 ISSN 1349-4198
Volume 8, Number 5(A), May 2012 pp. 3061–3069

NEW APPROACH TO NONLINEAR GUIDANCE LAW DESIGN

Mohammad Hossein Shafiei and Tahereh Binazadeh

School of Electrical and Electronic Engineering
Shiraz University of Technology
Modares Blvd., Shiraz, Iran

{ shafiei; binazadeh }@sutech.ac.ir

Received January 2011; revised May 2011

Abstract. This paper presents a new approach in nonlinear guidance law design. The
new guidance law is developed based on partial stability theorem and enables the missile to
intercept highly maneuvering targets with zero-miss-distance within a finite interception
time. The approach is advantageous from practical view-points since it leads to classi-
fication of state variables of the guidance system dynamic with respect to their required
stability properties and tries to adapt with practical situations. Effectiveness of the pro-
posed guidance law in achieving zero-miss-distance within a finite interception time is
demonstrated analytically and through computer simulations.
Keywords: Nonlinear guidance law, Partial stability, Interception time

1. Introduction. The Proportional Navigation (PN) guidance law and its generaliza-
tions have been used widely in tactical missiles because of their simplicity and ease of
implementation [1,2]. However, increased maneuvering ability of new generation of tar-
gets had a huge adverse effect on the performance of these guidance laws.

For highly maneuvering targets, the optimal guidance laws (OGL), derived based on
optimal control theory [3] or differential game theory [4], can theoretically result in a
significant performance improvement. However, these laws lead to a two point boundary
value problem, which is too complicated for real-time implementation. Moreover, the
performance of OGL depends on estimation of interception time, which is commonly
approximated [3,4]. In practice, especially for unpredictable maneuvering targets, the
accurate approximation is impossible.

Recently, nonlinear control theories have been used in design of robust guidance laws.
Methods, such as Lyapunov-based nonlinear guidance laws [5,6], first-order sliding mode
guidance laws [7-9] and nonlinearH∞ guidance laws [10,11], were considered in this regard.
All these guidance laws were designed based on asymptotic or exponential stability of all
states, which is shown in this paper that, in practical situation, such a behavior is not
realistic for all states of guidance system.

In this paper, it is shown that, in a practical approach to guidance problem, each state
must have a specific behavior and there is no need for asymptotic convergence of all
states. It is in contrast to conventional methods in nonlinear control theory that try to
force all states to asymptotically converge to the origin (equilibrium point). The proposed
guidance law is based on the principle of partial stability, which is stability with respect
to a part of state variables [12].

In this method, the states vector of the guidance system, i.e., (x), is separated into
two parts: x1 and x2, where x1 consists of states whose asymptotic stability behavior
is desirable. For components of x2, stability behavior is not desirable; however, they
should satisfy some constraints. Moreover, target acceleration vector is assumed as an

3061



3062 M. H. SHAFIEI AND T. BINAZADEH

external bounded disturbance and only its bound is required in design of guidance law and
the accurate measurement of target acceleration, during maneuvering, is not necessary.
Effectiveness of the proposed guidance law in achieving zero-miss distance and adjustable
finite interception time against highly maneuvering targets is demonstrated analytically
and through computer simulations.
The remainder of this paper is organized as follows. In the next section, the nonlinear

kinematics of guidance problem is presented. Also, the desirable behavior of each state
variable is derived. In Section 3, the partial stability theory is briefly summarized. In
Section 4, the new nonlinear guidance law based on partial stability theorem is derived.
Numerical simulation results are shown in Section 5. Finally, conclusions are presented
in Section 6.

2. Plant Modeling and Design Objective.

2.1. Missile/target kinematics model. The kinematics model of missile-target is as
follows [7]: 

r̈ − rφ̇2 − rθ̇2 cos2 φ = wr − ur

rθ̈ cosφ+ 2ṙθ̇ cosφ− 2rφ̇θ̇ sinφ = wθ − uθ

rφ̈+ 2ṙφ̇+ rθ̇2 cosφ sinφ = wφ − uφ

(1)

where r is the relative distance between the missile and the target, θ and φ are yaw
and pitch line of sight (LOS) angles and w = [wr, wθ, wφ]

T and u = [ur, uθ, uφ]
T are the

acceleration vectors of target and missile, respectively.
The kinematics (1) known as engagement equations and can be rewritten in the follow-

ing nonlinear state-space equation:

ẋ(t) = F (x(t)) +Bu(t) +Dw(t) (2)

where the state vector, the vector field and constant matrixes are defined as:

x =


r
Vr

θ
Vθ

φ
Vφ

F (x) =



Vr

V 2
θ + V 2

φ

r
Vθ

r cosφ

−VrVθ

r
+

VθVφ tanφ

r
Vφ

r

−VrVφ

r
− V 2

θ tanφ

r


B =


0 0 0
−1 0 0
0 0 0
0 −1 0
0 0 0
0 0 −1

D =


0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1



(3)

where Vr = ṙ is the radial velocity and Vθ = rθ̇ cosφ and Vφ = rφ̇ are tangential relative

velocities. The reason of choosing Vθ and Vφ instead of θ̇ and φ̇ as state variables is that
it avoids appearance of the term 1/r in the control and disturbance coefficient matrix.
Note: Initial conditions of terminal phase are usually in a way that r0 > 0 and Vr0 < 0.

It means that the target is in front of the missile and the missile is approaching it.

2.2. Desirable behaviors for each state variable. For the interception, it is sufficient
that r(t) becomes zero in an instance (r(tf ) = 0, where tf is interception time) and there
is no need for r(t) to asymptotically converge to zero. In other words, the asymptotic
convergence is not an ideal behavior for it. It should be noted that asymptotic convergence
behavior means that the missile initially approaches the target very fast; however, near
the target, the relative distance reduces slowly and the missile touches the target in an
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infinite time. It is evident that such a behavior is not a desirable behavior. For this
purpose, it is sufficient that the relative radial speed between the missile and the target
satisfy the following Proposition.

Proposition 2.1. In order to intercept the target within a finite time interval, it is suf-
ficient that the relative radial speed between the missile and the target (Vr) satisfies the
following condition:

∃t1 ∈ [t0, tf ) s.t. Vr(t) ≤ −ζ < 0 ∀t ∈ [t1 tf ] (4)

Proof: See [18].

Remark 2.1. A common approach in relevant papers is to regulate Vr to a negative
constant c, which is not efficient for interception of highly maneuvering targets in an
acceptable interception time. In such a case, to improve performance, c should be time
varying and its accurate determination depends on the knowledge of the model of target
maneuver while it is not always known in practice [6].

Regarding the other state variables, i.e., θ, Vθ, φ, Vφ, in contrast to two first states,
i.e., r and Vr, asymptotic convergence behavior is desirable. An appropriate guidance law
in addition to decreasing of relative distance must keep the pitch and yaw LOS-angular
rates as small as possible [13]. It means that it is desirable to have Vθ, Vφ → 0, θ → c1
and φ → c2, where c1 and c2 may be free or pre-specified constants.

3. Partial Stability Analysis. For many of engineering problems application of Lya-
punov stability theory is required [14-16]. However, there are other physical systems where
partial stability is necessary [17]. Partial stability is defined as stability of a dynamical
system with respect to only a part of the state variables. This approach is essential in
many of engineering fields.

Consider the following nonlinear dynamical system:

ẋ = f(x), x(t0) = x0 (5)

where x ∈ Rn is the state vector. Let vectors x1 and x2 denote the partitions of the state
vector. Therefore, x = (xT

1 , x
T
2 )

T where x1 ∈ Rn1 , x2 ∈ Rn2 and n1 + n2 = n. As a result,
the nonlinear system (5) can be divided into two subsystems;

ẋ1(t) = F1(x1(t), x2(t)), x1(t0) = x10

ẋ2(t) = F2(x1(t), x2(t)), x2(t0) = x20 (6)

where x1 ∈ D ⊆ Rn1 , D is an open set including the origin, x2 ∈ Rn2 and F1 : D×Rn2 →
Rn1 is such that for every x2 ∈ Rn2 , F1(0, x2) = 0 and F1(., x2) is locally Lipschitz in x1.
Also, F2 : D × Rn2 → Rn2 is such that for every x1 ∈ D, F2(x1, .) is locally Lipschitz
in x2, and Ix0 = [0, τx0) , 0 < τx0 ≤ ∞ is the maximal interval of existence of solution
(x1(t), x2(t)) of (10) ∀t ∈ Ix0 . Under the above constraints, the existence and uniqueness
of solution can be ensured. Moreover the main advantage of considering the condition
F1(0, x2) = 0 for every x2, is that it makes the possibility of investigating the partial
stability even if a part of system’s states (i.e., x2) goes to infinity. In order to analyse
partial stability, the following theorem and its corollary are taken from [17].

Theorem 3.1. Consider dynamical system (6). If there exist a continuously differentiable
function V : D ×Rn2 → R and a class K functions α (.) such that:

V (0, x2) = 0, x2 ∈ Rn2 (7)

α(‖x1‖) ≤ V (x1, x2), (x1, x2) ∈ D ×Rn2 (8)

V̇ (x1, x2) ≤ 0, (x1, x2) ∈ D ×Rn2 (9)
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then, the dynamical system (6) is stable with respect to x1.

Proof: See [17].

Corollary 3.1. Consider dynamical system (6). If there exists a continuously differen-
tiable, positive definite function V : D → R such that:

V ′(x1)F1(x1, x2) ≤ 0 (x1, x2) ∈ D ×Rn2 (10)

then dynamical system (6) is stable with respect to x1.

Now, consider the state Equation (2). The state vector may be separated into x1 =[
θ Vθ φ Vφ

]T
and x2 =

[
r Vr

]T
where stable behavior only for x1 is desirable. By

modeling the guidance system in x1 − x2 coordinates, the following can be obtained:

ẋ1 =



Vθ

r cosφ

−VrVθ

r
+

VθVφ tanφ

r
− uθ − wθ

Vφ

r

−VrVφ

r
− V 2

θ tanφ

r
− uφ − wφ


, ẋ2 =

 Vr

V 2
θ + V 2

φ

r
− ur − wr

 (11)

4. Guidance Law Design. In this section, partial stability principle is used to derive the
nonlinear guidance law. In design procedure first, a guidance law is derived against non-
maneuvering targets and then by using Lyapunov redesign method, additional feedback
control terms are designed so that the overall guidance law have a robust manner against
maneuvering targets and lead to target interception.

4.1. Non-maneuvering target. A non-maneuvering target means that in engagement
equations wr = wθ = wφ = 0. Now, consider a Lyapunov function candidate V (x1) in the
form:

V (x1) =
1

2

(
θ2 + φ2 + V 2

θ + V 2
φ

)
(12)

The time derivative of V (x1) in the line of system’s trajectory is;

V̇ = θ
Vθ

r cosφ
+ φ

Vφ

r
+ Vθ

(
−VrVθ + VθVφ tanφ

r
− uθ

)
+ Vφ

(
−VrVφ + V 2

θ tanφ

r
− uφ

)
(13)

In order to satisfy partial stability, we consider:

uθ =
−VrVθ + VθVφ tanφ

r
+

θ

r cosφ
+N1Vθ

uφ = −VrVφ + V 2
θ tanφ

r
+

φ

r
+N2Vφ (14)

where N1 and N2 are positive real numbers. As a result,

V̇ (x1) = −N1V
2
θ −N2V

2
φ (15)

Therefore, according to Corollary 3.1 the asymptotically stable behavior for x1 is
achieved. Now, the appropriate behavior for x2 could be obtained by ur. By choosing

ur =
V 2
θ + V 2

φ

r
− σVr; σ > 0 (16)

one has Vr(t) = Vr0e
σt; Vr0 < 0, which means Vr(t) ≤ Vr0 < 0. Therefore, Proposition

2.1 is satisfied and the relative distance will turn into zero within a finite time. Clearly,
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higher values of σ make a shorter time of interception but its adjustment should be done
with respect to physical limitations.

Consequently, the missile guidance law against non-maneuvering target is:
ur =

V 2
θ + V 2

φ

r
− σVr

uθ =
−VrVθ + VθVφ tanφ

r
+

θ

r cosφ
+N1Vθ

uφ = −VrVφ + V 2
θ tanφ

r
+

φ

r
+N2Vφ

(17)

4.2. Maneuvering target. In this case, the acceleration vector of target (i.e., w) is
nonzero. The additional control components, (υθ, υφ, υr) will design such that the guid-
ance law meets the design specifications in the presence of target’s maneuvers. Therefore,
by taking,

uθnew(x) = uθ(x) + υθ(x)

=
−VrVθ + VθVφ tanφ

r
+

θ

r cosφ
+N1Vθ + υθ(x) (18)

uφnew(x) = uφ(x) + υφ(x)

= −VrVφ + V 2
θ tanφ

r
+

φ

r
+N2Vφ + υφ(x) (19)

one has:
V̇ (x1) = −N1V

2
θ −N2V

2
φ − Vθ(υθ − wθ)− Vφ(υφ − wφ) (20)

where the last two terms, i.e., −Vθ(υθ − wθ)− Vφ(υφ − wφ), are the effects of the control
components υθ and υφ, and disturbance terms wθ and wφ. Assume |wθ| ≤ ηθ, |wφ| ≤ ηφ,
therefore,

−Vθ(υθ − wθ) ≤ −Vθυθ + ηθ |Vθ| (21)

By choosing υθ = ηθsgn (Vθ), one has:

−Vθ(υθ − wθ) ≤ −ηθ |Vθ|+ ηθ |Vθ| = 0 (22)

Similarly, this is the case for −Vφ(υφ − wφ) by taking υφ = ηφsgn (Vφ). Now, the
additional term υr could be designed in such a way that the control law, urnew(x) =
ur(x) + υr(x), guarantees the specified behavior for x2 in the presence of wr. In this way,
we have:

urnew(x) =
V 2
θ + V 2

φ

r
− σVr + υr (23)

Assume |wr| ≤ ηr and take υr = −ηrsgn(Vr). Since Vr is supposed to be negative,
hence υr = ηr. By substituting urnew in ẋ2-subsystem in Equation (11), one has:

V̇r = σVr − ηr + wr (24)

Thus,
Vr(t) = Vr0e

σt +
∫ t

0
(−ηr + wr)e

σ(t−τ)dτ

≤ Vr0e
σt −

∫ t

0
ηre

σ(t−τ)dτ +
∫ t

0
ηre

σ(t−τ)dτ
≤ Vr0e

σt

(25)

Choosing −ζ = Vr0 < 0, result in Vr(t) ≤ −ζ < 0 for t ∈ [0 tf ]. In this way, Proposition
2.1 is satisfied for the maneuvering targets.

Since discontinuous controllers suffer from chattering, one way to alleviate this problem
is to consider an approximation of the sign function by a saturation function with a high
slope (1/ε). Consequently, it was shown that the following guidance law guarantees
interception of the maneuvering target within a finite interception time and zero-miss
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distance. Furthermore, the convergence rate of Vθ and Vφ and the interception time may
be adjusted by N1, N2 and σ, respectively.

urnew(x) =
V 2
θ + V 2

φ

r
− σVr + ηr, σ, ηr > 0

uθnew(x) =
−VrVθ + VθVφ tanφ

r
+ θ

r cosφ
+N1Vθ + ηθsat(

Vθ

ε
), N2, ηθ > 0

uφnew(x) = −VrVφ + V 2
θ tanφ

r
+

φ

r
+N2Vφ + ηφsat(

Vφ

ε
), N2, ηφ > 0

(26)

5. Computer Simulations. Numerical Simulations are performed to illustrate the ef-
fectiveness of the proposed nonlinear guidance law. It is assumed that the guidance
command is not constrained. At the first stage, a non-maneuvering target is considered
and then, a highly maneuvering target is assumed.

5.1. Engagement case 1: Non-maneuvering target. In this part, the performance
of the nonlinear guidance law (17) is investigated. The initial state values are chosen as
r0 = 5 km, θ0 = π/3, φ0 = π/3, Vr0 = −300 m/s, Vθ0 = 200 m/s and Vφ0 = 300 m/s.
Also, N1, N2 and σ are selected as 1, 1 and 0.01, respectively.
The initial values of missile speed components can be obtained based on the initial

relative speed components (Vr0 , Vθ0 , Vφ0) and the initial value of target speed. Figure
1 displays the time responses of the system states for the non-maneuvering case. As
expected, each state has its desirable behavior mentioned in Section 2.2. The intercep-
tion time is 9.81 sec (r(9.81) = 0). As shown in Figure 1, r and Vr do not have an
asymptotically stable behavior, but other states have such a behavior.

Figure 1. Time response of system states (case 1)

5.2. Engagement case 2: Maneuvering target. In this case, the target is maneuver-
ing at the following trajectory:

w(t) = 70 sin(0.5t)~er + 70 sin(0.5t+ π/4)~eθ + 70 cos(0.5t)~eφ (27)
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The initial conditions and value of parameters are the same as case 1. In addition, ε = 1
and ηr = ηθ = ηφ = 70 are selected. The designed guidance law (26) is compared with
the sliding mode guidance law presented in [7]. The interception time for the proposed
guidance law was 9.86 sec while for the sliding mode guidance law this time was 12.34
sec. Moreover, the control effort for the proposed law was less than the sliding mode
control effort. The trajectories of the missile and the target are illustrated in Figure 2,
where C1 and C2 are the collision points for the proposed guidance law and the sliding
mode guidance law, respectively. Figure 3(a) shows the time response of the relative

Figure 2. Trajectories of the missile and the target (case 2)

distance between the missile and the target. It indicates that the interception time for
the proposed guidance law is less than that for the sliding mode law. At last, the time
response of radial and tangential components of relative speed vector, are illustrated in
Figures 3(b), 3(c) and 3(d), respectively.

6. Conclusions. This paper has presented a new viewpoint to the three-dimensional
missile guidance problem based on partial stabilization. It has become clear that in
a successful missile guidance scenario, which leads to target interception, the desirable
behavior of state variables is different with respect to each other and the asymptotic
convergence behavior is not ideal for all state variables. Therefore, based on partial
stability theorem, a new robust guidance law was developed. The proposed guidance law
guarantees interception of highly maneuvering targets with zero miss distance within a
finite interception time. Moreover, it is also possible to adjust the time of interception by
adjustment of some coefficients. Numerical simulations have showed effectiveness of the
proposed guidance law.
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