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Abstract. We describe in this paper the optimization of the gains of a PID controller
to stabilize the inertia wheel pendulum (IWP) using bio-inspired and evolutionary meth-
ods. Particle swarm optimization and genetic algorithms are used to find the optimal
gain values of the PID controller. Computer simulations and experiments are presented
showing the control results using the optimal gain values to stabilize the inertia wheel
pendulum. Both particle swarm optimization (PSO) and genetic algorithms (GAs) are
shown to be effective tools for gain optimization of the inertia wheel.
Keywords: Genetic algorithms, Particle swarm optimization, Optimization methods,
Stabilization control

1. Introduction. Optimization is a term used to refer to a branch of computational
science concerned with finding the “best” solution to a problem. Here, “best” refers to an
acceptable (or satisfactory) solution, which may be the absolute best over a set of candi-
date solutions, or any of the candidate solutions. The characteristics and requirements of
the problem determine whether the overall best solution can be found [1]. Optimization
algorithms are search methods, where the goal is to find a solution to an optimization
problem, such that a given quantity is optimized, possibly subject to a set of constraints
[1]. Some optimization methods are based on populations of solutions. Unlike the classic
methods of improvement for trajectory tracking control, in this case each iteration of
the algorithm has a set of solutions. These methods are based on generating, selecting,
combining, and replacing a set of solutions. Since they maintain and manipulate a set,
instead of a unique solution throughout the entire search process, they require more com-
puter time than other metaheuristic methods. This fact can be aggravated because the
“convergence” of the population requires a great number of iterations. For this reason a
concerted effort has been dedicated to obtaining methods that are more aggressive and
manage to obtain solutions of quality in a nearer horizon.
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Related works. Up to date there are several research papers using genetic algorithms
and particle swarm optimization for different optimization problems, like vehicles rout-
ing problems [2], stabilization control [3], tuning of PID controllers [4-6] and algorithm
modifications for better improvements [7-10]. However, in this paper we used the GA
and PSO to help find optimal gain values to stabilize the inertia wheel pendulum. The
main goal of this research is to learn how the GA and PSO perform when applied to
the inertia wheel pendulum in simulation and physical experiments. The reason that we
consider the inertia wheel pendulum is that it has been used by several researchers [11]
as a benchmark to test the effectiveness of proposed control designs. The inertia wheel
pendulum is a flat underactuated mechanical system with two degrees of freedom and a
single actuator. The inertia wheel pendulum was first introduced by Spong et al. [11], and
consists of a pendulum with a rotating uniform inertia wheel at its end. The pendulum
is underactuated and the system has to be controlled via the rotating wheel. The task is
to stabilize the pendulum in its upright equilibrium point while the wheel stops rotating.
The specific angle of rotation of the wheel is not important in the present paper. The
inertia wheel pendulum has been used by many researchers as a case of study, in different
ways, such as in the control area [12-15]; like a model for other applications [16].
This paper is organized as follows. Section 2 presents the theoretical basis for this

work. Section 3 presents the inertia wheel pendulum as a case of study. Section 4
presents the parameter configuration of the optimization methods to find the optimal
gains. Section 5 presents the optimal gains obtained using a simulation and Section 6
presents the experimental results using the optimal gains obtained by the optimization
methods, where a genetic algorithm (GA) and particle swarm optimization (PSO) are used
to select the parameters for the stabilization of the inertia wheel pendulum described in
Section 3. Finally, Section 7 presents the conclusions.

2. Theoretical Basis and Problem Statement. In this section we present a brief
overview of the basic concepts needed for this work.

2.1. Particle swarm optimization. Particle swarm optimization is a population based
stochastic optimization technique developed by Eberhart and Kennedy in 1995, inspired
by social behavior of bird flocking or fish schooling [17]. PSO shares many similarities
with evolutionary computation techniques such as the GA [18].
The particle swarm optimization concept consists of, at each time step, changing the

velocity of (accelerating) each particle toward its pbest and lbest locations (local version
of PSO). Acceleration is weighted by a random term, with separate random numbers
being generated for acceleration toward the pbest and lbest locations [19,20,22]. In the
past several years, PSO has been successfully applied in many research and application
areas. It has been demonstrated that PSO gets better results in a faster, cheaper way
when compared with other methods [21,22]. Another reason that PSO is attractive is
that there are few parameters to adjust. One version, with slight variations, works well
in a wide variety of applications. Particle swarm optimization has been considered for
approaches that can be used across a wide range of applications, as well as for specific
applications focused on a specific requirement [22,23].
The basic PSO algorithm has the following nomenclature:
xi
k – Particle position, vik – Particle velocity, wij – Inertia weight, pik – Best “remem-

bered” individual particle position, pg
k – Best “remembered” swarm position, c1, c2 –

Cognitive and Social parameters, r1, r2 – Random numbers between 0 and 1.
The equation to calculate the velocity is:

vik+1 = wij v
i
k + c1 r1

(
pi
k −xi

k

)
+ c2 r2

(
pg
k −xi

k

)
(1)
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and the position of the individual particles is updated as follows:

xi
k+1 = xi

k + vik+1 (2)

The basic PSO algorithm is defined as follows:
1) Initialize

Set the constants zmax, c1, c2
Randomly initialize particle positions xi

0 ∈ D in Rn for i = 1, . . . , p
Randomly initialize particle velocities 0 ≤ vi0 ≤ vmax

0 for i = 1, . . . , p
Set z = 1

2) Optimize
Evaluate function value f i

k using the design space coordinates xi
k

If f i
k ≤ f i

best then f i
best = f i

k, p
i
k = xi

k.
If f i

k ≤ f g
best then f g

best = f i
k, p

g
k = xi

k.
If stopping condition is satisfied then go to 3.
Update all particle velocities vik for i = 1, . . . , p
Update al particle positions xi

k for i = 1, . . . , p
Increment z.
Go to 2(a).

3) Terminate

2.2. Genetic algorithms. Genetic Algorithms (GAs) are adaptive heuristic search al-
gorithms based on the evolutionary ideas of natural selection and genetic processes [24].
The basic principles of GAs were first proposed by John Holland in 1975, inspired by the
mechanism of natural selection where stronger individuals are likely to be the winners
in a competing environment [25-27]. The GA assumes that the potential solution to any
problem is an individual and can be represented by a set of parameters. These parameters
are regarded as the genes of a chromosome and can be structured by a string of values in
binary form. A positive value, generally known as a fitness value, is used to reflect the
degree of “goodness” of the chromosome for the problem, which would be highly related
with its objective value. The GA works as follows:

• Start with a randomly generated population of n chromosomes (candidate solutions
to a problem).

• Calculate the fitness of each chromosome in the population.
• Repeat the following steps until n offspring have been created:

– Select a pair of parent chromosomes from the current population, the probability
of selection being an increasing function of fitness. Selection is done with re-
placement, meaning that the same chromosome can be selected more than once
to become a parent.

– With a certain probability (crossover rate), perform crossover to the pair at a
randomly chosen point to a form two offspring.

– Mutate the two offspring at each locus with probability (mutation rate), and place
the resulting chromosomes in the new population.

• Replace the current population with the new population.
• Go to Step 2.

The simple procedure just described above is the basis for most applications of GAs.

3. Inertia Wheel Pendulum (IWP): A Case of Study. In this paper, we use an
inertial wheel pendulum to apply particle swarm optimization and genetic algorithms as
methods to find the optimal gain values of the controller.
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The dynamics of an inertia wheel pendulum can be described as follows [28]:[
J1 J2
J2 J2

] [
q̈1
q̈2

]
+

[
h sin q1
fs q̇2

]
=

[
0
k

]
u (3)

where q1 (t) ∈ R is the absolute angle of the pendulum, counted clockwise from the vertical
downward position; q2 (t) ∈ R is the absolute angle of the disk; fs (q̇2) represents the
viscous friction force affecting the actuator where fs > 0 is the viscous friction coefficient;

J1, J2 and h are positive physical parameters, that depend on the geometric dimensions
and the inertia-mass distribution; τ = ku is the scalar bounded applied torque. The
friction of the pendulum is quite small and for this reason will be ignored. It should be
noted that system (1) is nonlinear and underactuated.
Let us start by defining the following control law [28]

u = − k1 q1− k2 q̇1− k3 q̇2 (4)

where the k1, k2 and k3 are the gains.
The gain values will be accepted only if k1, k2 and k3 are positive values. The pendulum

is influenced by accelerating the wheel. Because of the physics of the motor, it will
saturate if the wheel velocity is too high. It is thus desirable to try to achieve the dual
goals of stabilizing the pendulum and to keep velocity small. To achieve this we propose
to use particle swarm optimization and genetic algorithms to find the best gain values

ki, i = 1, 2, 3 to obtain a fast stabilization time with a low steady state error state of the
x(q1).

3.1. Experimental test bed. The experimental results are based on the laboratory
inertia wheel pendulum from the Mechatronics Control Kit manufactured by Quanser
Inc., where J1 = 4.572×10−3, J2 = 2.495×10−5, h = 0.3544, k = 0.00494 and β = 10 (see
[28]). It consists of a physical pendulum (q1) with a motor/flywheel assembly attached
to the free end of the-pendulum (q2). The wheel is actuated by a 24 Volt, permanent
magnet DC-motor and the coupling torque between the wheel and the pendulum can be
used to control the motion of the system. The system is a non-minimum phase at the top.
The pendulum angle is measured by an encoder. The experimental setup includes a PC
equipped with a C6713 DSK Quanser interface/PWM amplifier board. The algorithm
was implemented using the C programming language. The sampling frequency for the
algorithm implementation was set to 400 Hz. The viscous coefficient fs = 8.80×10−5 was
identified by applying the procedure from [29].

4. Optimization Method Configuration. PSO and GA are the optimization meth-
ods that are used to find the optimal gain values for the inertia wheel pendulum. The
objective function of the optimization method is the average of the steady state error of
the pendulum; the goal of the objective function is to minimize the steady state error.

4.1. PSO configuration. For the PSO configuration, we change the parameter values
of the acceleration coefficients (c1 cognitive, c2 social parameters) situated between the
range of 0.001 – 1.0 with random values; for the inertia weight (wij), we use a range of
0.005 – 1.0 with random values, and a maximum number of iterations (zmax) to stop the
algorithm.

4.2. GA configuration. For the GA configuration, we change the parameter values of
the mutation rate and crossover rate with a simple point, using the roulette wheel method
of selection; to stop the algorithm we use the maximum number of generations. We used
a 3 gene chromosome with real values to represent the gains. Both methods are using the
same search range values (minimum and maximum) for each of the gains (k1, k2 and k3),
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and Table 1 shows these values that we used based on the physical conditions of the real
system.

Table 1. Search range of the gains values

Minimum Values Maximum Values

k1 50 250

k2 5 50

k3 0.001 0.1

5. Optimal Gains Obtained by GA and PSO. In this section, we present the optimal
gains obtained by the optimization methods using the mathematical model of the inertia
wheel pendulum in Matlab and Simulink.

5.1. Optimal gain values using particle swarm optimization. Table 2 shows the
parameters of the PSO that we used to obtain the optimal gain values, the average error
of the simulation model and the optimal k1, k2 and k3. The best gain values are the ones
shown in row 7.

Table 2. Optimization results for the gain values obtained by PSO

PSO Parameters Obtained Values

No. Swarm
Max

c1 c2 Inertia Time Exec.
Sim. Average

k1 k2 k3Iter. error
1 40 70 0.8149 0.9059 0.1706 12 : 17 : 32 0.000340 999.9949 24.2560 0.0685
2 40 70 0.0557 0.6927 0.0668 13 : 39 : 31 0.000300 798.4747 12.8768 0.0037
3 50 90 0.7779 0.6065 0.3444 19 : 41 : 35 0.000340 999.9994 29.1371 0.0946
4 30 50 0.4526 0.4887 0.7602 5 : 20 : 54 0.000340 999.9640 29.4740 0.0973
5 60 80 0.1618 0.6980 0.479 22 : 56 : 21 0.000250 997.6851 15.4593 0.0010
6 30 50 0.8149 0.9059 0.1706 6 : 41 : 44 0.000340 999.9185 27.4600 0.0856
7 55 70 0.2499 0.3757 0.4429 13:33:58 0.000470 499.9494 19.0849 0.0587
8 40 50 0.6845 0.5153 0.7706 6 : 04 : 14 0.000360 498.4005 10.5642 0.0010
9 30 60 0.0389 0.5842 0.2618 5 : 57 : 40 0.000500 435.6690 25.6338 0.0962
10 20 80 0.0407 0.9331 0.1686 4 : 53 : 25 0.000530 377.3395 24.7157 0.0936
11 35 40 0.1017 0.5240 0.9704 3 : 57 : 43 0.000470 498.5026 26.9477 0.0969
12 45 70 0.2699 0.8169 0.4454 9 : 14 : 12 0.000470 499.9918 19.7955 0.0624
13 60 40 0.6496 0.7987 0.5154 8 : 25 : 19 0.000470 499.9900 22.4885 0.0766

5.2. Optimal gain values using genetic algorithms. Table 3 shows the parameters of
the GA that we used to obtain the optimal gain values, the average error of the simulation
model and the optimal k1, k2 and k3.

6. Experimental Results. Once we found the optimal gain values using the mathe-
matical model implemented in Matlab and Simulink, we tested these optimal gains in
the physical experimental inertia wheel pendulum, and this produced different results
according to the steady state error obtained in the simulations.

The initial conditions for the inertial wheel pendulum are as follows:

q1 (0) = 3.1, q2 (0) = 0
q̇1 (0) = q̇2 (0) = 0

(5)
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Table 3. Optimization results for the gain values obtained by GA

GA Parameters Obtained Values

No. Popul. Max Gener. % Remp. Cross. Mut. Time Exec.
Sim. Average

k1 k2 k3error
1 35 40 0.7 0.7 0.3 10 : 14 : 04 0.000340 1000 29.09 0.0949
2 35 40 0.7 0.7 0.3 10 : 11 : 45 0.000320 1000 22.75 0.0070
3 30 70 0.7 0.7 0.2 15 : 27 : 31 0.000250 1000 15.24 0.0010
4 30 70 0.7 0.7 0.2 18 : 50 : 42 0.000250 1000 15.11 0.0010
5 60 45 0.7 0.7 0.2 2 : 41 : 21 0.000250 1000 15.02 0.0010
6 30 50 0.7 0.7 0.2 8 : 57 : 06 0.000470 500 25.75 0.0937
7 35 85 0.7 0.8 0.2 16:56:35 0.000470 500 26.45 0.0974
8 35 85 0.7 0.8 0.2 10 : 45 : 58 0.000570 250 5.00 0.0010
9 40 65 0.7 0.8 0.2 10 : 38 : 09 0.000530 250 7.14 0.0010
10 25 100 0.7 0.8 0.1 10 : 12 : 16 0.000630 250 21.85 0.0841
11 30 45 0.7 0.5 0.2 6 : 02 : 57 0.000530 250 7.09 0.0010
12 25 60 0.7 0.8 0.3 4 : 40 : 01 0.000530 250 7.13 0.0010
13 35 55 0.7 0.8 0.3 5 : 22 : 01 0.000530 250 7.12 0.0010

Table 4. Experimental results of the IWP with the optimal gain values
obtained by PSO

No.

Optimal Gain Values Experimental results

k1 k2 k3
Normal results Perturbed results

Aver. Error max tau Stabilization Time (S)Aver. Error max tau
1 999.9949 24.2560 0.068500 0.01487 ∞ ∞ ∞ ∞
2 798.4747 12.8768 0.003700 0.0161 ∞ ∞ ∞ ∞
3 999.9994 29.1371 0.094600 0.00849 ∞ ∞ ∞ ∞
4 999.9640 29.4740 0.097300 0.01477 ∞ ∞ ∞ ∞
5 997.6851 15.4593 0.001000 ∞ ∞ ∞ ∞ ∞
6 999.9185 27.4600 0.085600 ∞ ∞ ∞ 0.43641 46.39766
7 499.9494 19.0849 0.058700 0.00723 6.89240 4.40 0.41301 50.33051
8 498.4005 10.5642 0.001000 ∞ ∞ ∞ ∞ ∞
9 435.6690 25.6338 0.096200 0.33395 5.44329 18.00 0.24084 46.85690
10 377.3395 24.7157 0.093600 0.00825 8.63359 2.79 0.21013 35.98965
11 498.5026 26.9477 0.096900 0.39999 13.46410 6.50 0.29181 64.97928
12 499.9918 19.7955 0.062400 0.33406 10.96320 4.25 0.30616 29.95476
13 499.9900 22.4885 0.076600 0.29829 12.84360 2.69 0.25259 39.12946

6.1. Experimental results using the optimal gain values obtained by PSO. Table
4 shows the experimental results using the optimal gains obtained by PSO showing in the
seventh row the best stabilization time of the inertia wheel pendulum in the experiments.
Figure 1(a) shows the experimental results of the inertia wheel pendulum response

using the optimal gains: k1 = 499.94936, k2 = 19.08493 and k3 = 0.05867, obtained by
PSO resulting in an average error = 0.0072278 [rad], max τ = 6.8924 [Nm] and tss = 4.4
seconds to stabilize and Figure 1(b) shows the experimental results with the same gains
by randomly hitting the pendulum, in this case obtaining an average steady state error
= 0.41301 [rad] and max τ = 50.33051 [Nm].

6.2. Experimental results using the optimal gains obtained by GA. In Table 5,
we show the experimental results using the optimal gains obtained with the GA, showing in
the 10th row the best stabilization time of the inertia wheel pendulum in the experiments.
Figure 2(a) shows the experimental results of the inertia wheel pendulum response

using the optimal gains: k1 = 250, k2 = 21.849774 and k3 = 0.0841414, obtained with
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(a)

(b)

Figure 1. Experimental results of the IWP with PSO (a) normal and (b)
perturbed control

the GA resulting on an average error = 0.22061 [rad], max τ = 3.7613548 [Nm] and tss
= 4.5 seconds to stabilize and Figure 2(b) shows the experimental results with the same
gains under perturbation, in this case obtaining an average steady state error = 0.27417
[rad] and max τ = 13.12699 [Nm].
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(a)

(b)

Figure 2. Experimental results of the IWP with PSO (a) normal and (b)
perturbed control

We made a comparison of the experimental results using the optimal gains obtained by
particle swarm optimization and genetic algorithms. We can see that the experimental
result using the optimal gains obtained by particle swarm optimization produces a better
response in the stabilization than the experimental result with the optimal gains obtained
with the genetic algorithm. However, under perturbation the experimental results using
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Table 5. Experimental results of the GA for the gains of the IWP

No.

Experimental results
Normal results Perturbed results

Average Error max tau Stabilization Time (S) Average Error max tau
1 ∞ ∞ ∞ ∞ ∞
2 ∞ ∞ ∞ ∞ ∞
3 ∞ ∞ ∞ ∞ ∞
4 ∞ ∞ ∞ ∞ ∞
5 ∞ ∞ ∞ ∞ ∞
6 0.23737 17.83741 4 ∞ ∞
7 0.30960 13.77892 4 ∞ ∞
8 ∞ ∞ ∞ ∞ ∞
9 ∞ ∞ ∞ ∞ ∞
10 0.22061 3.76135 4.5 0.27417 13.12699
11 ∞ ∞ ∞ ∞ ∞
12 ∞ ∞ ∞ ∞ ∞
13 0.25126 3.96047 5 0.17291 23.48936

the optimal gains obtained by the genetic algorithm have a better stabilization response
than the experimental results using the gains obtained by particle swarm optimization.

7. Conclusions. We described in this paper the use of optimization methods to find the
optimal gains for the control of the inertia wheel pendulum. In particular we presented
experimental results with the optimal gains obtained by PSO and GA. The results show
that using the PSO algorithm we obtain the optimal gains for the inertia wheel pendulum
and it is less time consuming than the GA results. Testing the optimal gains in the
experimental system, we can verify which gain values stabilize the inertia wheel pendulum
with less average error and stabilization time; finding our best results using particle swarm
optimization.

We have achieved satisfactory results using the optimization methods to help us find
the optimal gains to stabilize the inertia wheel pendulum. The next step is to solve more
complex problems using fuzzy logic controllers and multiple objective optimizations, to
obtain better results. Moreover, we will extend the results to nonlinear systems, like
for autonomous mobile robots, and some other applications using different optimizations
methods that we will be used to compare our proposed optimization method.
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[26] J. Casillas, O. Cordon, M. J. del Jesús and F. Herrera, Genetic tuning of fuzzy rule deep structures
preserving interpretability and its interaction with fuzzy rule set reduction, IEEE Transactions on
Fuzzy Systems, vol.13, no.1, pp.13-29, 2005.

[27] O. Cordon, F. Gomide, F. Herrera, F. Hoffmann and L. Magdalena, Ten years of genetic fuzzy
systems: Current framework and new trends, Fuzzy Sets and Systems, vol.141, no.1, pp.5-31, 2004.

[28] K. Astrom, D. Block and M. Spong, The reaction wheel pendulum, Lecture Notes for the Reaction
Wheel Pendulum (Part of the Mechatronics Control Kit), Urbana-Champaigne, IL, USA, 2001.

[29] R, Kelly, J. Llamas and R. Campa, A measurement procedure for viscous and Coulomb friction,
IEEE Trans. on Instrumentation and Measurements, vol.49, no.4, pp.857-861, 2000.


