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Abstract. Arc-Consistency algorithms are the most commonly used filtering techniques
to prune the search space in Constraint Satisfaction Problems (CSPs). 2-consistency is
a similar technique that guarantees that any instantiation of a value to a variable can be
consistently extended to any second variable. Thus, 2-consistency can be stronger than
arc-consistency in binary CSPs. In this work we present a new algorithm to achieve 2-
consistency called 2-C4. This algorithm is a reformulation of AC4 algorithm that is able
to reduce unnecessary checking and prune more search space than AC4. The experimental
results show that 2-C4 was able to prune more search space than arc-consistency algo-
rithms in non-normalized instances. Furthermore, 2-C4 was more efficient than other
2-consistency algorithms presented in the literature.
Keywords: Constraint satisfaction problems, Consistency techniques, 2-consistency

1. Introduction. Over the last years, many real problems have been modeled and solved
using several complete and heuristic techniques: genetic algorithms, fuzzy logic, simulated
annealing, evolutionary algorithms, constraint programming, etc. [14,19,22-24]. Large,
complex and combinatorial problems can be modeled as Constraint Satisfaction Problems
(CSPs) and solved using constraint programming techniques. Much effort has been spent
to increase the efficiency of the constraint satisfaction algorithms: filtering, learning and
distributed techniques, improved backtracking, use of efficient representations and heuris-
tics, etc. This effort resulted in the design of constraint reasoning tools which were used
to solve numerous real problems. Constraint filtering is based on the idea of using the
constraints actively to prune the search space. By integrating systematic search algo-
rithms with consistency techniques, it is possible to get more efficient algorithms such as
forward checking and look-ahead algorithms.

The consistency-enforcing algorithm performs any partial solution of a small sub-
network that is extensible to a surrounding network. The number of possible combinations
can be huge, while only very few are consistent. By eliminating redundant values from the
problem definition, the size of the solution space decreases. If any domain becomes empty
as a result of reduction, then it is immediately known that the problem has no solution
[29]. There exist several levels of consistency [6,14] depending on the number of involved
variables: node-consistency involves only one variable; arc-consistency involves two vari-
ables; path-consistency involves three variables; and k-consistency involves k variables.
However, arc-consistency is the most commonly used consistency technique.

Proposing efficient algorithms for enforcing arc-consistency has always been considered
as a central question in the constraint reasoning community [11]. It is well-known that
the arc-consistency process consumes a large portion of the search time required to solve
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the CSP [30]. Therefore, there are many arc-consistency algorithms such as: AC1, AC2,
and AC3 [25]; AC4 [26]; AC5 [18,27]; AC6 [8]; AC7 [9]; AC8 [13]; AC2001, AC3.1 [31].
The concept of consistency was generalized to k -consistency by [16]. Thus, 2-consistency

is related to constraints that involve two variables. Furthermore, many works on arc-
consistency make the simplified assumptions that CSPs are binary and normalized (two
different constraints do not involve exactly the same variables), because these notations
are simpler and new concepts are easier to present. However, there is a strange effect of
associating arc-consistency with binary and normalized CSPs [28]. It is related to the
confusion between the notions of arc-consistency and 2-consistency. On binary CSPs, 2-
consistency is at least as strong as arc-consistency. Only in binary and normalized CSPs,
both arc-consistency and 2-consistency perform the same pruning.

Figure 1. Example of binary and non-normalized CSP [28]

Figure 1 left shows a binary CSP with two variablesX1 andX2, D1 = D2 = {1, 2, 3} and
two constraints R12(X1 ≤ X2), R

′
12(X1 6= X2). It can be observed that this CSP is arc-

consistent due to the fact that every value of every variable has a support for constraints
R12 and R′

12. In this case, arc-consistency does not prune any value of the domain of
variables X1 and X2. However, (as authors say in [28]) this CSP is not 2-consistent
because the instantiation X1 = 3 cannot be extended to X2 and the instantiation X2 = 1
cannot be extended to X1. Thus, Figure 1 right presents the resultant CSP filtered by
arc-consistency and 2-consistency. It can be observed that 2-consistency is stronger than
arc-consistency.
Our aim is focused on binary and non-normalized constraints. It is well-known that a

non-normalized CSP can be transformed into a normalized one by using the intersection
of valid tuples [3]. However, it is a time-consuming task mainly in problems with large
domains [1]. Thus, our goal is to develop consistency techniques to reduce the search
space in non-normalized CSPs in such a way the solution can be efficiently found.
In this work, we propose 2-C4, an algorithm, that reaches 2-consistency in binary

and non-normalized CSPs. 2-C4 uses the structures of AC4, the constraints set of 2-C3
algorithm [1] and bidirectionally when it searches for supports. Thus, 2-C4 performs 2-
consistency in an efficient way by saving the number of constraint checking and running
time. It can obtain more prunes than other arc-consistency algorithms and it avoids the
detected inefficiencies when the data structures of AC4 are updated. Thus, 2-C4 is more
efficient than other 2-consistency algorithms mainly in inconsistent instances.
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The rest of the work is organized as follows: Section 2 briefly summarizes the main
definitions used to understand the rest of the paper and the main consistency algorithms
as well. Section 3 explains the proposed 2-C4 algorithm. In Section 4, we evaluate
empirically our approach in both random and benchmark instances. The evaluation was
done in two different phases: (a) in a pre-process step, in which we show that 2-C4
outperforms other arc-consistency and 2-consistency algorithms and (b) in the search
process, in which we show that 2-C4+Forward checking outperforms other consistency
algorithms by using the same search technique. Finally, we present our conclusions.

2. CSP Preliminaries. The basic idea of a CSP is to model the problem as a set of
variables with finite domains and a set of constraints that impose a limitation on the
values that a variable, or a combination of variables, may be assigned. The task is to find
an assignment of values to the variables that satisfying all the constraints. In general,
this tasks is NP-Complete so filtering techniques are necessary to reduce the complexity
in the search process.

2.1. Notations and definitions. Following we present the standard notations and def-
initions presented in the literature.

Definition 2.1. A Constraint Satisfaction Problem (CSP) is a triple P = 〈X,D,R〉
where: X is the finite set of variables {X1, X2, . . . , Xn}; D is a set of domains D =
D1, D2, . . . , Dn such that for each variable Xi ∈ X there is a finite set of values that the
variable can take; R is a finite set of constraints R = {R1, R2, . . . , Rm} which restrict the
values that the variables can simultaneously take.

Definition 2.2. A constraint is binary if it only involves two variables. In this work the
binary constraints are encoded by using intensional representation (by a function). We
denote Rij ≡ (Rij, 1) ∨ (Rij, 3) as the direct constraint defined over the variables Xi and
Xj and R′

ji ≡ (Rij, 2) is the same constraint in the inverse direction over the variables Xi

and Xj (inverse constraint).

Definition 2.3. An arithmetic constraint is a constraint in the form Xi ± a op Xj ± b,
where Xi, Xj ∈ X; a, b ∈ Z and the operator op ∈ {<,≤,=, 6=,≥, >}.

Definition 2.4. A block of constraints Cij is a set of binary constraints that involve
the same variables Xi and Xj. Thus, we denote (Cij, t) : t = {1, 3} as the block of
direct constraints defined over the variables Xi and Xj and (C ′

ji, 2) as the same block
of constraints in the inverse direction over the variables Xi and Xj (block of inverse
constraints).

Definition 2.5. An instantiation is a pair 〈Xi, a〉 that represents the assignment of the
value a to the variable Xi, if a is in the domain of Xi.

Definition 2.6. A constraint Rij is satisfied if the instantiation of 〈Xi, a〉 and 〈Xj, b〉 is
legal for this constraint (〈Xi, a〉, 〈Xj, b〉) ∈ Rij.

Definition 2.7. The number constraint checks of a constraint Rij is the number of times
a constraint Rij ∈ R is checked to reach arc-consistency.

Definition 2.8. Symmetry of the support: If a value b ∈ Dj supports a value a ∈ Di,
then a supports b as well.

Definition 2.9. A CSP is normalized iff two different constraints do not involve exactly
the same variables.

Definition 2.10. A CSP is binary iff all constraints Rij ∈ R are binary.
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Definition 2.11. A value a ∈ Di is arc-consistent relative to Xj, iff there is a
value b ∈ Dj such that 〈Xi, a〉 and 〈Xj, b〉 satisfy the constraint Rij. A variable Xi

is arc-consistent relative to Xj iff all values in Di are arc-consistent. A CSP is arc-
consistent iff all variables are arc-consistent, e.g., all the constraints Rij and R′

ji are
arc-consistent. (Note: here we are talking about full arc-consistency). A variable Xi is
arc-inconsistent if its domain Di does not contain any consistent value. If one (or more)
variables is not arc-consistent then the CSP is called arc-inconsistent.

Definition 2.12. A value a ∈ Di is 2-consistent relative to Xj, iff there is a value b ∈ Dj

such that 〈Xi, a〉 and 〈Xj, b〉 satisfy all the constraints Rk
ij (∀k : (〈Xi = a〉, 〈Xj = b〉) ∈

Rk
ij). A variable Xi is 2-consistent relative to Xj iff all values in Di are 2-consistent. A

CSP is 2-consistent iff all variables are 2-consistent, e.g., any instantiation of a value to
a variable can be consistently extended to a second variable.

2.2. Consistency algorithms. Arc-consistency algorithms are a major component of
many industrial and academic CSP solvers. Arc-consistency algorithms are based on the
notion of a support proposed by [15]. These algorithms ensure that each value in the
domain of each variable is supported by some value in the domain of a variable by which
it is constrained.
We will conduct a brief description of some arc-consistency algorithms, presented in

the literature:

• AC1 [25] repeatedly revises all the domains and all constraints in order to remove
unsupported values until no change occurs. Its inefficiency lies that in some prune
causes a revision of all arcs (meanwhile only some of them will probably be affected).

• AC2 [25] carries out the arc-consistency on a single loop through the nodes.
• AC3 [25] repeatedly revises the domains in order to remove unsupported values.
To avoid many useless calls to the Revise procedure, AC3 keeps all the constraints
that do not guarantee arc-consistency in a queue. However, AC3 performs many
ineffective checks.

• AC4 [26] is the only algorithm that confirms the existence of a support by not
identifying it throughout search. However, it stores all supports for each value in
auxiliary data structures. It is an optimal algorithm. Its inefficiency lies in its spatial
complexity and the necessity of maintaining huge data structures.

• AC5 [18,27] allows a specialized arc-consistency for functional, anti-functional and
monotonic classes of constraints. AC5 can be implemented on AC3 or AC4.

• AC6 [8] maintains a data structure lighter than AC4. In fact, the idea in AC6 is
not to count all supports that a value has on a constraint, but just to ensure that it
has at least one.

• AC6++ [11] improves AC6 by adding new structures and performing constraint
check bidirectionally.

• AC7 [9] improves on the idea of value support applied in AC4, AC6 and AC6++.
The idea is that a value a ∈ Di supports a value b ∈ Dj if and only if b also supports
a. AC7 does not performs useless constraint checks.

• AC8 [13] is based on supports but without recording any of them (it is like AC3 but
propagations are made over values). AC8 records the references of the variables in
a list and it maintains their status in an array.

• AC2001/3.1 [10,31] follows the same framework than AC3, but it stores the smallest
support for each value on each constraint.

• AC3.2 and AC3.3 [20] add partial and full bidirectionality, respectively. They are
based on both AC2001/3.1 and AC7, respectively.
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• AC3r andAC3rm [21] use the residues1 of arc-consistency by verifying their validity
before searching for a support. AC3rm exploits the multi-directionality (bidirection-
ality, for binary constraints).

Algorithms that perform arc-consistency have focused their improvements on time-
complexity and space-complexity (see Table 1). The main improvements have been
achieved by: changing the way of propagation: from arcs to values, (i.e., changing the
granularity: from coarse-grained to fine-grained); appending new structures (storing more
information that is useful); performing bidirectional searches (AC6++, AC7, AC3.3);
changing the support search: searching for all supports (AC4) or searching for only the
necessary supports (AC3, AC6, AC7, AC8 and AC2001); improving the constraint check-
ing (AC7 and AC2001); storing the first support found (AC3, AC3.2, AC3.3), the smallest
support found (AC20013.1) or the residual support found (AC3r and AC3rm), etc.

Table 1. Spatial and temporal complexity of arc-consistency algorithms

Algorithm Spatial Complexity Temporal Complexity
AC1 O(n3d3) O(ned3)
AC2 O(e) O(ed3)
AC3 O(e) O(ed3)
AC4 O(ed2) O(ed2)
AC5∗ O(ed) O(ed)
AC6 O(ed) O(ed2)

AC6++ O(ed) O(ed2)
AC7 O(ed2) O(ed2)
AC8 O(n) O(ed3)

AC2000 O(ed) O(ed3)
AC2001/3.1 O(ed) O(ed2)

AC3.2 O(ed) O(ed2)
AC3.3 O(ed) O(ed2)
AC3r O(ed) O(ed3)
AC3rm O(ed) O(ed3)

Key: e = edges; d = size of largest domain; n = variables;
∗ for functional and monotonic constraints

2.3. Search techniques. Many search algorithms have been developed to solve CSPs
[7,14]. They are classified in look-back algorithms or look-ahead algorithms, according
to the approach that they implement. In the first case, they check for inconsistencies
of the current variable taking into account the variables previously instantiated. In the
second case, they check for inconsistencies of the future variables involved besides the
current and past variables. In this work we focus on three well-known search techniques:
Backtracking [12], Forward Checking [17] and Real Full Look Ahead.

Backtracking (BT) [12] is a look-back algorithm. It is the most common algorithm
to perform systematic search and it is the fundamental basis of the search algorithms.
BT algorithm requires a static order among the variables and among their values. BT
algorithm expands incrementally a partial assignment, which specifies consistent values
with previously assigned variables, toward an entire assignment. This process chooses
a first variable. Then it chooses a value of its domain until it finds a value that is

1A residue is a support, not necessary the smallest, that has been stored during a previous execution
of the procedure which determines if a value is supported by a constraint.
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consistent with respect the values of previously assigned variables. If no value is found,
the assignment of the previous variable should be undone and a new value of its domain
is chosen.
Forward Checking (FC) [17] is one of the more common look-ahead algorithms. At each

stage of the search, FC verifies the current mapping forward against all future values of the
variables which are restricted to the current one. The values of future variables that are
inconsistent with the current assignment are temporarily removed from their domains. If
the domain of a future variable becomes empty, the instantiation of the current variable is
undone and a new value is chosen. If no value is consistent, then a backtrack is performed.
FC ensures that at each stage the partial solution is consistent with each future value of
each variable. Thus, by checking forward, a dead-end can be identified before continuing
with a branch of the search, that finally will be pruned. Thus, it is possible to prune at
an earlier stage.

3. The 2-C4 Algorithm. By analyzing AC4, it can be observed the following items:

1. whenever Initialization phase of AC4 evaluates each constraint, it stores the infor-
mation about the values of variables in M and the supports in S and Counter (see
below);

2. the direct constraint Rij and inverse constraint R′
ij share the same set of variables

(Xi and Xj).
3. the definition of support is bidirectional (see Definition 2.8),
4. whenever a value a ∈ Di is removed, a propagation phase must be carried out 〈Xi, a〉.
5. in non-normalized problems there are probably several constraints Rij between the

same pair of variables Xi and Xj.

Due to 1 and 2, an inefficiency in AC4 is detected because some values for M , S and
Counter might be updated for 〈Xj, b〉 once a direct constraint Rij is evaluated. At this
point, only the values that might be pruned in Xj (if any) are lost because the internal
loop is executed for several times (e.g., once for each value a ∈ Di). If there is a support,
an upgrade of S is performed. However, AC4 only upgrades this structure to the variable
Xi and the the variable Xj is ignored (item 3). As item 4 indicates, if there is no support
for the tuple 〈Xi, a〉 because (total = 0), a propagation in queue Q is performed for this
tuple. However, the propagation is only carried out if the pruned value a may affect the
consistency of one or more previously assessed variables. This information is stored in S.
If S is empty due to the fact that the pruned value a ∈ Di does not support any other
value, then AC4 ignores it and it generates an inefficient propagation. Finally, as item 5
indicates, different constraints Rij can generate different number of supports.
To take into account all the above items, we have developed 2-C4. It is a fine grained

algorithm that achieves 2-consistency in binary and non-normalized CSPs (see Algorithm
2). This algorithm deals with block of constraints as 2-C3 [1] and 2-C3OP [2] but it only
requires to keep half of the block of constraints in the queue Q (as 2-C3OP). Furthermore,
each block of constraints Cij ∈ C is evaluated only once (in the same way that AC4
evaluates each individual constraint Rij ∈ R).
Thus, the general improvement of 2-C4 is focused on the bidirectional check; it bidi-

rectionally stores the support values for each block of constraints Cij; and it performs
inference to avoid unnecessary checks. However, inference is done by using a new array
called suppInv which is shared by all the constraints.
In order to perform one constraint checking in C and to identify the relevant values

needed to be re-examined, 2-C4 uses the same structures than AC4, but it adds suppInv
to store the supports of each value of variable. Thus, once the values a ∈ Di are updated
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Counter[Xi, a,Xj], values b ∈ Dj can be pruned if suppInv[b] = 0. Thus, the inverse
constraint R′

ji is not needed to evaluated.
The data structures required by 2-C4 are the following:

• S is a matrix S[Xj, b] that contains a list of pairs 〈Xi, a〉 such that 〈Xj, b〉 supports
them. It must be taken into account that the same pair 〈Xi, a〉 could appear more
than once in S.

• Counters is a matrix Counter[Xi, a,Xj] that contains the number of supports for
the value a ∈ Di in the variable Xj.

• M is a matrix M [Xi, a] that stores 1 if value a ∈ Di or stores 0 if value a /∈ Di

(indicating that 〈Xi, a〉 has been deleted).
• Q is a queue that stores pairs 〈Xi, a〉 (rejected values) awaiting further processing.
• suppInv is a vector whose size is the maximum size of all domains (maxD). It
stores a value greater or equal to 1 when the value of Xj is supported.

The main 2-C4 algorithm has two phases: initialization of the data structures and
propagation. The initialization phase is used to remember pairs of consistent variable
values (matrix S); to count “supporting” values from variable domain (matrix Counter)
and to remove those values that have not any support or to remember those values (matrix
M and queue Q).

The Initialize2C4 procedure initializes the required structures Q, S, M , Counter and
suppInv. Then, four loops are performed to select and revise the block of constraints
Rij ∈ Cij for each value a ∈ Di and for each value b ∈ Dj.

Due to the fact that the same pair of variables Xi, Xj may be involved in more than
one constraint Rij (non-normalized CSPs), the support counters may have previous stored
values from previous constraint checking. Pruning is carried out according to the counters
in each constraint. The supports counter of variable Xi (total) is initialized to 0 for each
value a ∈ Di. However, the support counter of variable Xj (inverse supports) must be
split in two different counters: Counter[Xj, b,Xi] and suppInv[b]. The array suppInv
stores the number of supports for each value of Xj. This array is initialized to zero (see
Algorithm 1, step 5). When the value b ∈ Dj supports the value a ∈ Di, suppInv[b] is
increased (see Algorithm 1, step 21). During the loop of steps 7-29, the array is updated
in order to be analyzed in step 32. Once all values of Di have been processed, if a value
b of Dj has no support (suppInv[b] = 0) then this value is pruned from the domain Dj.
If suppInv[b] > 0 then b is supported and it is initialized to 0 (see Algorithm 1, step 31
to 37) for further use of the array.

To achieve 2-consistency, 2-C4 only computes a support if the instantiations 〈Xi, a〉 and
〈Xj, b〉 hold with all Rij constraints in Cij. This is completed by initializing the variable
supported to 1 (as a flag). 2-C4 stops the revision of the set Cij if the instantiations
〈Xi, a〉 and 〈Xj, b〉 do not hold a Rij; changing the supported variable to 0 (see Algorithm
1, steps 13 to 16).

Furthermore, 2-C4 only propagates those tuples that are supported by another tuple
(see steps 26-27 and 35-36 of Algorithm 1, and steps 11-12 of Algorithm 2). Thus, 2-C4
avoids inefficient propagations of tuples for Q, and it avoids inefficient checking for those
tuples. The process is stopped if a domain remain empty (Algorithm 1, steps 30 and 38
and Algorithm 2, step 9) or 2-C4 returns a 2-consistent CSP’.

3.1. Soundness and complexity of 2-C4.

1. The algorithm 2-C4 is sound.
Proof: By contradiction, let us suppose that a value c ∈ Di is removed for Xi but

it has a support with all values of variables which Xi are restricted with. The value
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c ∈ Di could have been removed in the Inizialize2C4 phase or in step 8 of 2-C4. Let’s
study both cases:
• If the value c ∈ Di was removed in the Inizialize2C4 phase, then it is removed
in step 24 or in step 33.
If it is removed in step 24 then a direct constraint is being analyzed and total=0
so that no value in Xj is supported of c ∈ Di. #contradiction
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If it is removed in step 33 then an inverse constraint is being analyzed suppInv[c] =
0 so that b is not a support of any value of a variable. #contradiction

• If the value c ∈ Di is removed in step 8 of 2-C4, then this is due to the fact that
Counter[Xi, c,Xj] = 0, so that 〈Xi = c〉 has no supports for the variable Xj.
#contradiction

So, every value c ∈ Di removed for Xi by 2-C4 has not support with all values of
variables which Xi are restricted with, so this value will not take part of any solution.

2. The complexity of 2-C4 is O(fd2), where f is the number of blocks of constraints,
e is the number of binary constraints store in the blocks (e > f), and d the domain
size in the problem.

Proof: The Inizialize2C4 phase has a temporal cost of O(fd2). Step 6 analyzes
each block (O(f)). For each block, every value a ∈ Di is analyzed (step 7). Therefore,
for each value a ∈ Di, every value b ∈ Dj is again analyzed (step 9). Thus, the current
cost is O(fdd) = O(fd2). Furthermore 2-C4 has a loop in Q which is a queue that
stores rejected values waiting further processing. The cardinality of Q is |Q| = nd
where n is the number of variables. If we assume that n < fd then the complexity
of 2-C4 is O(fd2 + nd) < O(fd2 + fd2) ≡ O(fd2).

4. Experimental Results. In this section, we evaluate the behavior of 2-C4 with well-
known arc-consistency algorithms used in the CSP community: AC3 [25], AC2001/3.1
[10,31]; AC4 [26]2; AC6 [8], AC7 [9] and 2-consistency algorithms: 2-C3OPL [4] and
AC3NH [3].

The algorithms AC4-NN and 2-C4 look for all the supports of each value, while other
algorithms (AC3, AC2001/3.1, AC6, AC7, AC3NH and 2-C3OPL.) merely seek for a sin-
gle support. For this reason it is not appropriate to compare the efficiency of consistency

2We use the non-normalized version of AC4 named AC4-NN in [5]
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techniques with different scopes. However, it is important to determine that the pro-
posed algorithm achieves the same number of prunes in consistent instances with other
2-consistency algorithms.
Determining which algorithms are superior to others remains difficult. Algorithms often

are compared by observing its performance on benchmark problems or on suites of random
instances generated from a simple or uniform distribution.
On the one hand, the advantage of using benchmark problems is that if they are an

interesting problem (to someone), then information about which algorithm works well
on these problems is also interesting. However, although an algorithm outperforms to
any other algorithm in its application to a concrete benchmark problem, it is difficult to
extrapolate this feature to general problems. On the other hand, an advantage of using
random problems is that there are many of them, and researchers can design carefully
controlled experiments and report averages and other statistics. However, a drawback of
random problems is that they may not reflect real life situations.
For consistency algorithms, in pre-process step (before search), the measures of effi-

ciency are: the running time, the number of prunes and the number of constraint checks.
For search algorithms the measure of efficiency was the running time. All algorithms were
written in C. The experiments were conducted on a PC Intel Core 2 Quad (2.83 GHz
processor and 3 GB RAM).

4.1. Random instances. The experiments performed on random and non-normalized
instances were characterized by the 5-tuple 〈n, d,m, c, p〉, where n was the number of
variables, d the domain size, m the number of binary constraints, c the maximum number
of constraints in each block, and p the percentage of non-normalized constraints. All
domains are ordered in ascendent form. The constraints are in the form b±Xi op c±Xj,
where Xi, Xj ∈ X, op ∈ {<,≤, 6=, >,≥} and b, c ∈ N . The problems were randomly
generated by modifying these parameters. Due to the fact that we are working on 100%
of non-normalized instances, we assume that any pair of variables can be restricted to no
less than two constraints.
We generated two classes of random and non-normalized instances: consistent and

inconsistent instances. In both types of instances, all the variables maintained the same
size domain. We evaluated 50 test cases for each type of problem. Thus, in all instances,
we set four of the parameters and varied the other one in order to assess the algorithm’s
performance when this parameter is increased. Performance was measured in terms of
running time (time), the number of constraint checks (checks), the number of support
found and the number of prunes. The running time include both inizialization time and
propagation time for the algorithms: AC6, AC7, AC4-NN y 2-C4.
Table 2 shows the number of constraint checks, running time, prunes and the number

of found supports in random, consistent and non-normalized instances, where the number
of constraints was increased from 100 to 800; the number of variables, the domain size,
the number of constraints in each block and the percentage of non-normalized constraint
were set at 50,20,4,100, respectively: 〈50, 20,m, 4, 100〉. Considering algorithms that find
all supports, the results show that the number of constraint checks and running time were
lower in 2-C4 than AC4-NN. The number of prunes obtained by 2-C4 was greater than
AC4-NN (about 85% more). This is due to the fact that AC4-NN analyzed each constraint
individually meanwhile 2-C4 studied the block of constraints (see Example of Figure 1).
Furthermore, the number of found supports was lower in 2-C4 than in AC4-NN because
2-C4 reached 2-consistency and it pruned all supports that did not reach 2-consistency.
Considering the algorithms that only find one support, 2-C4 was more efficient because it
carried out more pruning than other algorithms of arc-consistency (AC3, AC6 and AC7).



A FILTERING TECHNIQUE TO ACHIEVE 2-CONSISTENCY 3901

Table 2. Results of consistency techniques on random, consistent and non-
normalized instances: 〈50, 20,m, 4, 100〉

arc-consistency 2-consistency

m AC3 AC6 AC7 AC4-NN AC3NH 2-C3OPL 2-C4

100

checks 7.82× 1009 7.82× 1003 4.25× 1003 7.59× 1004 8.99× 1010 7.18× 1009 1.75× 1004

time (ms) 0.1 0.1 47 8 31 0.1 0.1
Prunes 3 3 0 3 36 36 36

SuppFound 1 1 1 5.94× 1010 1 1 5.50× 1009

200

checks 1.59× 1010 1.56× 1004 8.05× 1003 1.52× 1005 1.82× 1011 1.43× 1010 3.50× 1004

time (ms) 0.1 0.1 195 31 62 0.1 0.1

Prunes 6 6 0 6 70 70 70
SuppFound 1 1 1 1.18× 1011 1 1 1.09× 1010

300

checks 2.36× 1010 2.34× 1004 1.21× 1004 2.27× 1005 2.72× 1011 2.08× 1010 5.19× 1004

time (ms) 0.1 0.1 439 56 100 0.1 8

Prunes 6 6 0 6 70 70 70
SuppFound 1 1 1 1.78× 1011 1 1 1.64× 1010

400

checks 3.19× 1010 3.12× 1004 1.61× 1004 3.03× 1005 3.65× 1011 2.77× 1010 6.91× 1004

time (ms) 0.1 0.1 776 86 145 0.1 16

Prunes 9 9 0 9 80 80 80
SuppFound 1 1 1 2.37× 1011 1 1 2.18× 1010

500

checks 3.96× 1010 3.90× 1004 2.01× 1004 3.79× 1005 4.55× 1011 3.42× 1010 8.59× 1004

time (ms) 0.1 15 1207 108 184 16 16
Prunes 9 9 0 9 80 80 80

SuppFound 1 1 1 2.96× 1011 1 1 2.72× 1010

600

checks 4.81× 1010 4.68× 1004 2.42× 1004 4.55× 1005 5.51× 1011 4.11× 1010 1.03× 1005

time (ms) 0.1 16 1722 122 220 16 23
Prunes 12 12 0 12 90 90 90

SuppFound 1 1 1 3.54× 1011 1 1 3.23× 1010

700

checks 5.59× 1010 5.45× 1004 2.82× 1004 5.30× 1005 6.41× 1011 4.76× 1010 1.20× 1005

time (ms) 15 18 2328 120 245 15 16
Prunes 12 12 0 12 90 90 90

SuppFound 1 1 1 4.14× 1011 1 1 3.79× 1010

800

checks 6.46× 1010 6.24× 1004 3.22× 1004 6.06× 1005 7.39× 1011 5.44× 1010 1.37× 1005

time (ms) 15 20 3033 140 282 16 18
Prunes 15 15 0 15 100 100 100

SuppFound 1 1 1 4.72× 1011 1 1 4.29× 1010

Note that AC7 performed fewer constraint checks than the other algorithms, its running
time was higher but its pruning was lower. This is due to the fact that its Last matrix
is wrong in non-normalized instances. Also, when 2-C4 was compared with the other 2-
consistency algorithms AC3NH and 2-C3OPL, it kept a good performance because 2-C4
found much more supports than both AC3NH and 2-C3OPL in an efficient way.

Table 3 shows the number of constraint checks, running time, prunes and number of
found supports in random, consistent and non-normalized instances, where the number
of variables was increased from 50 to 190 and the number of constraints, the domain size,
the number of constraints in each block and the percentage of non-normalized constraint
were set at 20, 700, 4 and 100, respectively: 〈n, 20, 700, 4, 100〉. Again, those algorithms
that reach 2-consistency performed more pruning that arc-consistency algorithms. The
2-C4 made fewer checks than 2-C3OPL but 2-C3OPL was faster than 2-C4. It is due to
that 2-C4 founded all support and 2-C3OPL only found one support, and these instances
had few propagations. Also AC6 spent less time, but made less pruning than 2-C4.

Table 4 shows the number of constraint checks and running time in inconsistent in-
stances, where the number of constraints was increased from 100 to 800; the number
of variables; the domain size, the number of non-normalized constraint and the per-
centage of non-normalized constraints were set at 100, 100, 4 and 100 respectively:
〈100, 100,m, 4, 100〉. The tightness of the problems is 60% in average. The results show
that 2-C4 was able to detect inconsistency in a more efficient way that the 2-consistency
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Table 3. Results of consistency techniques on random, consistent and non-
normalized instances: 〈n, 20, 700, 4, 100〉

arc-consistency 2-consistency

n AC3 AC6 AC7 AC4-NN AC3NH 2-C3OPL 2-C4

50 checks 5.59× 1010 5.45× 104 2.82× 104 5.30× 105 6.41× 1011 4.76× 1010 1.20× 105

time (ms) 15 0.1 2437 151 249 12 16
Prunes 12 12 0 12 90 90 90

SuppFound 1 1 1 4.14× 1011 1 1 3.78× 1010

70 checks 5.51× 1010 5.45× 104 2.82× 104 5.30× 105 6.35× 1011 4.74× 1010 1.20× 105

time (ms) 0.1 0.1 2465 161 247 0.1 16

Prunes 9 9 0 9 100 100 100
SuppFound 1 1 1 4.15× 1011 1 1 3.82× 1010

90 checks 5.46× 1010 5.43× 104 2.82× 104 5.30× 105 6.31× 1011 4.73× 1010 1.20× 105

time (ms) 0.1 0.1 2480 172 249 0.1 16

Prunes 6 6 0 6 110 110 110
SuppFound 1 1 1 4.15× 1011 1 1 3.84× 1010

110 checks 5.46× 1010 5.44× 104 2.82× 104 5.30× 105 6.31× 1011 4.75× 1010 1.20× 105

time (ms) 0.1 0.1 2428 127 241 14 30

Prunes 6 6 0 6 130 130 130
SuppFound 1 1 1 4.15× 1011 1 1 3.84× 1010

130 checks 5.46× 1010 5.44× 104 2.82× 104 5.30× 105 6.31× 1011 4.77× 1010 1.20× 105

time (ms) 0.1 0.1 2500 139 248 16 31
Prunes 6 6 0 6 150 150 150

SuppFound 1 1 1 4.15× 1011 1 1 3.84× 1010

150 checks 5.46× 1010 5.44× 104 2.82× 104 5.30× 105 6.31× 1011 4.79× 1010 1.20× 105

time (ms) 0.1 3 2547 158 247 16 31
Prunes 6 6 0 6 170 170 170

SuppFound 1 1 1 4.15× 1011 1 1 3.84× 1010

170 checks 5.46× 1010 5.44× 104 2.82× 104 5.30× 105 6.31× 1011 4.81× 1010 1.21× 105

time (ms) 0.1 8 2603 195 248 24 32
Prunes 6 6 0 6 190 190 190

SuppFound 1 1 1 4.15× 1011 1 1 3.84× 1010

190 checks 5.43× 1010 5.43× 104 2.82× 104 5.30× 105 6.29× 1011 4.78× 1010 1.20× 105

time (ms) 0.1 15 2642 244 250 31 47
Prunes 3 3 0 3 186 186 186

SuppFound 1 1 1 4.16× 1011 1 1 3.85× 1010

Table 4. Results of consistency techniques on random, inconsistent and
non-normalized instances: 〈50, 20,m, 4, 100〉

arc-consistency 2-consistency

m AC3 AC6 AC7 AC4-NN 2-C3OPL 2-C4

100 checks 4.84× 1010 3.00× 104 1.45× 104 7.06× 105 2.65× 1010 3.54× 104

time (ms) 0.1 26 27 0.1 0.1 4

200 checks 4.98× 1010 4.17× 104 1.41× 104 1.05× 105 3.20× 1010 5.26× 104

time (ms) 0.1 22 27 10 0.1 16

300 checks 4.49× 1010 4.46× 104 1.42× 104 1.15× 105 3.41× 1010 5.75× 104

time (ms) 0.1 4 36 16 16 16

400 checks 4.35× 1010 4.35× 104 1.41× 104 1.11× 105 3.34× 1010 5.57× 104

time (ms) 12 0.1 41 16 16 16

500 checks 4.29× 1010 4.29× 104 1.39× 104 1.10× 105 3.30× 1010 5.50× 104

time (ms) 16 0.1 48 16 16 16

600 checks 4.29× 1010 4.29× 104 1.40× 104 1.10× 105 3.29× 1010 5.51× 104

time (ms) 16 16 52 16 30 18

700 checks 4.48× 1010 4.48× 104 1.40× 104 1.15× 105 3.45× 1010 5.77× 104

time (ms) 28 15 62 16 31 15

800 checks 4.30× 1010 4.30× 104 1.38× 104 1.10× 105 3.31× 1010 5.53× 104

time (ms) 16 0.1 48 0.3 30 16
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algorithm 2-C3OPL, mainly in large instances. The number of constraint checks was bet-
ter in 2-C4 that AC3 and AC4-NN, but it maintained a similar behavior with the rest of
algorithms.

4.2. Benchmark problems: The pigeon problem. The pigeon problem3 is a well-
known insoluble problem. The problem is to put n pigeons into n − 1 holes. However,
every hole admits only a single pigeon. The problem can be formulated as a CSP with n
variables corresponding to the n pigeons, and every variable has n−1 values corresponding
to the holes. Each variable is constrained with the rest of variables of the problem. Thus,
all constraints are binary and all variables have the same domain size. There are two
types of pigeon problems: normalized and no-normalized, so we choose the latter one.
The original no-normalized instances of these benchmarks have two constraints between
each pair of variables: ∀ i < j : Xi ≤ Xj and Xi 6= Xj. (See Table 5)

Table 5. Data of Pigeon problems benchmarks

Instance Variables Domains Constraints Predicates
% of No-
normalized

10 10 0..8 90
20 20 0..18 380

P1 : X ≤ Y
30 30 0..28 870

P1 : X 6= Y
100%

40 40 0..38 1560
50 50 0..48 2450

Table 6. Constraint checks, number of prunes and time in benchmarks
instances of the Pigeon problem

inst. AC3 AC2001/3.1 AC6 AC7 AC4-NN AC3NH 2-C3OPL 2-C4

Checks 3.33× 103 9.00× 102 3.33× 103 1.39× 103 1.45× 104 1.85× 104 2.06× 103 4.20× 101

10 Time(ms) 0.1 0.1 0.1 31 0.1 0.1 0.1 0.1

Prunes 0 0 0 0 0 53 53 53

Checks 4.73× 104 7.60× 103 4.73× 104 1.34× 104 2.74× 105 5.77× 105 3.62× 104 1.87× 102

20 Time(ms) 0.1 0.1 15 797 46 109 15 15
Prunes 0 0 0 0 0 208 208 208

Checks 2.27× 105 2.61× 104 2.27× 105 4.82× 104 1.46× 106 4.29× 106 1.89× 105 4.32× 102

30 Time(ms) 15 0.1 16 6861 203 1281 47 78
Prunes 0 0 0 0 0 463 463 463

Checks 7.01× 105 6.24× 104 7.01× 105 1.17× 105 4.74× 106 1.78× 107 6.09× 105 7.77× 102

40 Time(ms) 16 15 62 34731 656 7640 172 219

Prunes 0 0 0 0 0 818 818 818

Checks 1.68× 106 1.22× 105 1.68× 106 2.33× 105 1.17× 107 5.41× 107 1.50× 106 1.22× 103

50 Time(ms) 31 16 140 123740 1609 30563 578 547
Prunes 0 0 0 0 0 1273 1273 1273

Table 6 shows the results of arc-consistency and 2-consistency techniques on different
instances of the Pigeon problem. The combinations of variables, domains and constraints
used in this evaluation are presented in Table 5. Thus, arc-consistency was achieved
out by using AC3, AC2001/3.1, AC6, AC7 and AC4-NN, meanwhile 2-consistency was
achieved by using AC3NH, 2-C3OPL and 2-C4. It must be taken into account that all
these instances have no solution, but arc-consistency techniques did not detected the
inconsistency. However, 2-consistency algorithms detect the inconsistency in all by per-
forming prunes. None of the arc-consistency algorithms carried out prunes and only some
of them performed propagations (AC7 and AC4-NN). These last algorithms were more

3Pigeon Problem Benchmarks are available in http://www.cril.univ-artois.fr/CPAI08/
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inefficient than 2-C4. In all these instances 2-C4 performed fewer checks than the other
2-consistency algorithms, although 2-C3OPL was faster than 2-C4 in 50% of the instances.

Table 7. Instances for the pigeon problems extended

Instance Variables Domains Constraints Predicates
% of no-

normalized
30 30 0..40 870
40 40 0..45 1560
50 50 0..55 2450
60 60 0..65 3540 P1 : X ≤ Y 100%
70 70 0..75 4830 P1 : X 6= Y
80 80 0..85 6320
90 90 0..95 8010
100 100 0..120 9900

We extended the number of holes (the domain size) to these benchmarks in order to gen-
erate consistent instances with at least one solution (see Table 7). On these new instances,
we carried out a consistency technique and a search technique (Forward-Checking) [17]
for finding a solution to the resultant CSPs. The results are showed in Figure 2. The
algorithms AC4-NN and AC3NH could only handle up to 80 instance. Again, all arc-
consistency algorithms could not made any pruning meanwhile 2-consistency algorithms
could prune more values (over 3 orders of magnitude, in average). Thus 2-C4 was more
efficient than the other arc-consistency and 2-consistency techniques mainly in waslarger
instances. On average, 2-C4 was 30% faster than 2-C3OPL. Summarizing, 2-C4 is an
efficient technique for solving large instances. The fact that 2-C4 founds all support was
useful during the search process.

Figure 2. Forward checking plus consistency techniques for finding a so-
lution in different instances of the pigeon problem showed in Table 7
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5. Conclusions. In this paper, we propose an filtering technique to reduce the solution
space in a constraint satisfaction problem. To this end, we have presented a 2-consistency
algorithm called 2-C4. It deals with binary and non-normalized constraints. 2-C4 is
an optimized and reformulated version of AC4 that improves the efficiency of previous
versions by reducing the number of propagations, the number of constraint checks and
the running time. Furthermore, the number of supports generated by 2-C4 was smaller
than AC4 due to the fact that it improves the pruning process. In the evaluation section,
2-C4 and other consistency techniques were evaluated and compared in both random and
benchmark instances. The results show that 2-C4 was more efficient in both consistent and
inconsistent instances, despite it carried out a full search process for finding all supports.
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