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ABSTRACT. In radio frequency identification (RFID) systems, the anti-collision proto-
col is a key topic that has attracted a great research interest. Those protocols can be
divided into two categories: ALOHA-based and binary query tree (QT) based algorithms.
The ALOHA-based protocols avoid collisions by distributing tags into different stochastic
timeslots. In contrast, the QT-based protocols utilize prefix matching techniques, in the
meanwhile, achieving the reliable identification throughput. This paper proposes a kind
of QT protocol, called enhanced BQT (EBQT), which is based on our previous BQT (Bit
collision detection based Query Tree) [19]. In addition to the employments of individual
bit collision detection mechanism, the new protocol also uses the correlated information
between two sequential identification to accelerate its process. Analysis and simulation
show that EBQT reduces tag collisions, which accelerates the tag identification process
for mobile tag identification.
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1. Introduction. Recently, the application of radio frequency identification (RFID) has
become very popular in many areas, such as service industries, procurement and distribu-
tion logistics, and manufacturing industry. The RFID technology provides the automatic
identification of people, animal, goods, and products in transit [1]. With the success of
this technology, intensive researches [2-5] have been aspired to resolve the issues from the
actual application.

An RFID system typically consists of three basic components: tags, a reader, and
a data processing server. The reader collects data at a certain radio frequency (RF)
and identifies all tags within its range. For tag identification, one-to-one communication
between tag and reader can completely avoid collisions in theory. However, this obvi-
ously increases time needed for identification. Therefore, the reader capacity to process
many tags at a time is crucial for fast data collection. The tag processing efficiency can
be improved as more and more tags are identified simultaneously. However, concurrent
messages from multiple tags would lead to collisions, resulting in the failure of tag identi-
fication. Furthermore, retransmission message from those tags may experience collisions
again, leading to the remarkable increase of tag identification latency and RFID system
performance degradation.

In order to address this challenge, various anti-collision algorithms [2-21] have been
proposed recently. While developing a practical RFID system, we devised an efficient tag
identification protocol for the retail warehouse. In our target logistics environment, we are
supposed to track all items by a mobile reader as shown in Figure 1. Moving straightly, the
reader identifies tags within its communication range. The practical application requests
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our system to meet two main requirements: 1) small size and low-cost tags; and 2) a fast
and reliable identification algorithm to recognize tags.
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FIGURE 1. Mobile reader for tag identification

RFID tags fall into two categories: active and passive (memoryless). An active tag is
equipped with a battery and relatively expensive circuit. Thus it can perform complicated
processing, but its size is large. On the other hand, a passive tag is cheap, small, and
powered by the radio from reader, but it has no storage for processing history, except for
the ID and some embedded basic information. In usual, active tags are used for large
goods such as containers in a port or cars in a parking area, while passive tags for small
items such as goods in a retail warehouse.

Besides the hardware features of an RFID system, a tag identification algorithm is also
critical. Existing algorithms can be divided into two categories: ALOHA-based proba-
bilistic algorithms and binary query tree (QT) based algorithms. The main idea of both
the algorithms is to split numerous tags into smaller subsets with different transmission
times to reduce or avoid collisions. In the ALOHA-based algorithms, each tag experi-
encing collision is delayed for retransmission with a stochastic timeslot, which reduces
a collision probability during the retransmission [6-8]. However, the high throughput
cannot be guaranteed in such schemes. This throughput problem has been addressed
by many binary tree search algorithms [9-17]. These algorithms split collided tags into
smaller subsets by extending tag ID prefixes until only one tag remains in each round of
the tag-reader communication.

The goal of this paper is to develop a binary QT protocol for memoryless tags for logis-
tics in retail warehouses. Considering the communication overhead, this paper proposes
a new tag identification protocol called EBQT (enhanced BQT). This is based on our
previous work, BQT (Bit collision detection based Query Tree), which adopts a hybrid
Manchester coding to accelerate identification process.

This paper has three main contributions:

(1) Although many query tree based protocols have been proposed to improve the per-
formance of an RFID system, only MQT considers mobile tag identification. Our
research could enrich the improvement in this field.

(2) Compared with the previous query tree based protocols, EBQT has shorter iden-
tification time delay and lower communication overhead in both static and mobile
identification scenarios. Also it decreases the cost in other aspects as well, such as
computing complexity and spatial complexity.
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(3) Compared with the previous works employing the Manchester coding, EBQT resolves
the existing problems addressed in Section 2 to make itself applicable to our practical
application.

The rest of this paper is organized as follows: Section 2 reviews related works. Sections
3 and 4 describe the implementation of our previous BQT and new proposed EBQT
protocol. Section 5 gives the mathematical performance analyses. Section 6 compares the
performance of the proposed algorithm with previous improvements of the QT protocols.
Sections 7 and 8 conclude this paper and address some future works.

2. Related Work. Binary query tree (QT) protocol [11] is considered as a milestone in
the development of binary tree-based algorithms for passive tags. Although the QT proto-
col can guarantee reliable performance, it needs a long time to complete the identification
process. In order to shorten the processing time, several enhanced QT protocols have
been proposed: adaptive memoryless QT (MQT) [13], anticipative inquiry scheme (AIS)
[14], prefix-randomized QT (RQT) [15], hybrid QT (HQT) [16] and QT-based reservation
(QTR) protocol [17]. Among them, RQT, HQT, and QTR employ some features of active
tags, and thus are not applicable to memoryless tags any more.

In addition to aforementioned protocols, other enhanced algorithms in [1,18-20] try to
achieve higher performance by adopting the Manchester coding [1]. However, in [1,18], the
authors assumed that the tags identified already would not give a response even if their
IDs accord with the prefix in the current query. Because they used stored information on
the previous processes, they can be implemented in active tags only. On the other hand,
Liu et al. [19] aims at passive tags, but its scheme suffers from significant performance
degradation. In this scheme, based on tag responses received during a communication
round, a reader generates all possible IDs for consequential queries. For instance, if the
string “1**” is detected from all tag responses, the reader generates the candidate IDs
“100”, “101”, “110”, and “111”. It works well in case of a small number of bit collisions.
However, the number of candidate IDs to be generated increases along with the number
of collided bits. Thus if collisions happen at many successive bits, the performance may
be aggravated seriously. Finally, the proposal in [20] employs extra bits to reconstruct
tag ID and adopts the Manchester coding scheme to accelerate the identification process.
However, ID structures of all our tags are pre-assigned by the vendor in accordance with
the global standard, so it is impossible for us to reconstruct them. Meanwhile, a kind of
masking code “x” is used in this proposal, but it does not suggest how to implement this
code practically.

Based on the above description, only MQT and AIS are selected as benchmarks to be
compared with our research.

2.1. Adaptive memoryless QT (MQT) protocol. Myung et al. [13] enhance the
QT protocol with a new practical assumption; they aimed to accelerate identification by
making use of the information from the previous process.

The MQT also conducts the same rounds of queries and responses as the QT protocol,
except that in the MQT initial process, a reader establishes a queue () for extended
prefixes and a candidate queue C'(Q to shorten the execution time of the next process.
All prefixes causing collisions are pushed into (Q, but prefixes receiving no or one reply
are pushed into C'Q). () maintains queries for the current identification process, while C'()
compiles queries for the next process. During the first process, MQT works the same as
the QT protocol does. From the next process, the reader updates ) by C'QQ, and dequeues
a query from () one by one before transmitting it. The tag identification process continues
until @) is empty.
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After the first non-initial process, abnormal prefixes have to be deleted in each process.
This is to traverse the tree and find the least and shortest prefixes for re-identifying current
set of tags.

2.2. Anticipative inquiry scheme (AIS) protocol. Hsu et al. [14] propose another
type of QT protocol called Anticipative Inquiry Scheme (AIS). All tag IDs appear at leaf
nodes of a binary ID tree, and the IDs are randomly and uniformly distributed between
the left sub-tree and right sub-tree. As a result, the left and right sub-trees have the
similar number of leaf nodes, and the information achieved during the process in the left
sub-tree to accelerate the identification process in the right sub-tree.

According to the principle of AIS, it keeps tracking the identification process and records
the number of collisions of each level in the left sub-tree. Then, prior to identifying the
tags in the right sub-tree, a threshold on the number of collision is set to move the
identification process to the deeper level directly, instead of scanning the right sub-tree
level by level from the root node (‘1’). In other words, when identifying the IDs of the
right sub-tree, AIS sends longer prefixes, such as “100” and “110” to query the tags
according to the threshold, not starting from a shorter prefix, “1”. However, the author
does not give the academic way to set the collision threshold optimally. AIS is hard to
be applied in practical application.

3. Proposed BQT Protocol. As mentioned earlier, this paper proposes an enhanced
protocol based on our previous BQT [21]. This section introduces the previous BQT
before describing the enhanced version in the next section.

3.1. Network model. Assume that there are numerous passive (memoryless) tags to be
identified.

(1) Each tag has a unique ID consisting of “0” and “1”, and the ID length is K bits.

(2) From when a reader starts work until all tags are identified, is called one “process”.
The reader has to be stationary until one process is over.

(3) Each tag in a reader’s range can communicate with the reader directly without
communication errors.

(4) Receiving a query, all tags send their responses simultaneously. Because of the very
short communication range (3-5 m in our study) and the ultra-high radio transmission
speed, the difference between the arrival times at the reader from all tags to the reader
can be ignored.

3.2. Network model. In our proposed algorithm, the bit collision detection is used to
achieve fast identification process. As shown in Figure 2, two tags collide with each other
at the first and fourth bits, but the second and third bits can be successfully received.

FIGURE 2. Bit collision detection

In order to achieve individual bit collision detection, we adopt the Manchester coding
system [1]. If two (or more) transponders simultaneously transmit bits of opposite values,
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then the positive and negative transitions cancel out each other. As a result, an invalid
combined signal appears as shown in Figure 3, being recognized as a bit error. On the
other hand, a valid combined signal is created if transponders transmit the same bit.
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FIGURE 3. Integrated signal of Manchester code [1]
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In the proposed algorithm, a reader has to send masking code “**...*” in the first round
and also mark the collided bits by the masking code “*”. Thus, we designed a hybrid
coding to integrate the code “*” into Manchester coding system without extending the
current coding length. In our hybrid coding, there are three different situations, as shown

in Figure 4.
(1) The masking code “*” that does not appear at the first bit. The voltage stays at

the same level as the end of the last bit code.
(2) The masking code “*” that appears at the first bit. The voltage level continues,

which is low in our system.
(3) All bits are the masking code “*”. The voltage stays at the low level.
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3.3. Protocol of BQT. The previous BQT [21] works well in a situation where all tags
are static, consisting of the following steps.
(1) The reader initializes a query string by * * *...x (note that each “*” is one-bit wild

k
masking for the value “0” or “1”) and an empty queue ) to track the identification

process. Then it pushes an initialized query string into ).

(2) At the beginning, the reader fetches a query string from @ and broadcasts it to
all tags, and each tag sends back a response to the reader. All tags give responses
simultaneously, and collisions occur.

(3) When collisions occur, the reader detects the individual bit collisions through our
new hybrid coding scheme and updates the query string. There are two different cases of
individual bit detections as shown in Figure 5.
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FIGURE 5. Individual bit collision detection

i. At a specific bit position, if the values in all responses are “0” or “1”, no collision
occurs at this bit and this bit of the query string can be respectively updated by the
corresponding value, “0” or “1”.

ii. At a specific bit position, if the values in some responses are “0” but others are “1”,
a collision occurs, and this bit of the query string remains “*”.

(4) After the query string is updated, there exist the following three situations:

a. Multiple “*” exist in the updated query string. The reader replaces the first “*” with
“0” and “1” respectively to create two new strings, then pushes them into the queue.

b. Single “*” exists in the updated query string. The reader replaces this “*” with “0”
and “1” respectively, and marks them as two successfully identified tags without
extra queries. Obviously, the one bit collision means there must be two tags with
IDs differentiated at this bit.

c. No “*” exists in the updated query string. Once the updated query string does not
include any masking code, it is an identified ID.

Ezxample:

Wk

a. More than one
Wk

exist. An example of an updated query string is “1**0”; the first

is replaced with “0” and “1” respectively, resulting in two new query strings,
“10*0” and “11*0”. Then, they are pushed them into the queue.

b. Only one “*” exists. If the updated query string is “10*1”, tags 1001 and 1011 are
identified without an extra query string. It saves two times of query transmissions.
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c. No “*” exists. If the updated query string is 1100, that means tag 1100 has been
identified.

(5) Queue status is checked.

a. Queue is not empty. If the queue is not empty, continue to step (6).
b. Queue is empty. If the queue is empty, the identification process is terminated.

(6) The reader gets the next query string from the queue and sends it to all tags.

(7) In order to minimize communication overhead, in our solution, all tags matching
the query string only respond with the bit values at the position corresponding to “*” in
the query string.

Ezxample:

In Figure 6, the reader sends query string “1*0*” to all tags. Then tags whose first bit
is “1” and third bit is “0” send a response with their own values for the unknown two
bits.

Responses from tags

- - -
Query string from reader nm

Second bit and fourth bit

F1GURE 6. Corresponding bits response

(8) After receiving responses, the reader restores the received bits to their corresponding
position or detects individual bit collision. After that the query string is updated. The
multiple replies and single reply update case is illustrated in Figures 7 and 8.

a. Multiple replies. More than one tag give responses, leading to collisions. The reader
detects bit collisions and updates the query string, as shown in Figure 7, then con-
tinues to step (4).

b. Single reply. Only one tag gives a response, the reader replaces in the query
string with the received bits and regards it as an identified tag, as shown in Figure
8. Then go to step (6).

¢k

4. Enhanced BQT Protocol. As mentioned earlier, our system targets tag identifica-
tion using a mobile reader in a retail warehouse. Thus between two consecutive identifi-
cation processes, some tags may newly arrive in and some existing tags may leave out of
a reader’s range. The tag movement is considered in BQT also, but EBQT enhances it to
get a better performance by using the information of one process for the quick completion
of the next process.

4.1. Protocol of EBQT. MQT [13] also takes advantage of the current information for
the next process. In MQT, the prefixes getting no replies (Idle prefix) are reserved to
identify newly arriving tags. Also, the prefixes getting one reply (Identified prefix) are
separately reserved to identify the remaining tags. These subdivided prefixes speed up
the identification process, because it does not have to start from the root of the ID binary
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tree any more. However, the performance of MQT significantly depends on how much
two consecutive processes are different from each other. Large difference may not shorten
time delay for identification process at all.

Actually, the number of tags in the initial process itself can be used to shorten future
processes in condition that the number of tags does not fluctuate in every process. If the
rough number of tags is known to a reader, it can expand in advance the ID prefixes in
query messages to an enough level to reduce collisions. For example, if 5 tags are expected,
the prefix in the first query may start from the second level like 00*...*, 01*...* 10*...*,
and 11*...* instead of the root level ***.  *.

Based on this observation, this paper proposes an enhanced BQT protocol called EBQT
to achieve the lower and consistent time delay for tags identification in mobile scenarios.

The difference of EBQT from the BQT protocol can be seen in detail in the following
steps:

(1) Firstly, an ID counter is setup to count the number of identified tags. Whenever a
tag ID is identified, the counter increases by 1.

(2) After the initial identification, a reader begins to generate prefixes for next processes.
The prefixes can be generated by the following steps:

a. The starting level is computed according to the following equation:
L = |log, IC|

where, IC' is the number of identified tags in the previous process.
b. The reader generates the prefixes from 00...0%...% to 11...1L*...% and pushes them
—— ——

L L
into Q.
c. IC is reset to 0.

(3) BQT steps (2) ~ (8) are performed for the next process.
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4.2. Working example of MQT and EBQT. In order to understand and compare
MQT and our EBQT, we walk through the initial and non initial process of both the
algorithms in Tables 1-4.

4.2.1. Initial identification process. Assume that there are four tags to be identified and
that their IDs are 0100, 0110, 1000 and 1001.

TABLE 1. Initial identification process of MQT

Rounds | prefix | Response Result Q CQ
0100,0110, ..

1 # 1000.1001 Collision 0,1
2 0 0100,0110 | Collision 1,00,01
3 1 1000,1001 | Collision 00,01,10,11
4 00 Idle 01,10,11 00
5 01 0100,0110 | Collision 10,11,010,011 00
6 10 1000,1001 | Collision | 11,010,011,100,101 00
7 11 Idle 010,011,100,101 00,11
8 010 0100 Identified 011,100,101 00,11,010
9 011 0110 Identified 100,101 00,11,010,011
10 100 | 1000,1001 | Collision 101,1000,1001 00,11,010,011
11 101 Idle 1000,1001 00,11,010,011,101

. 00,11,010,
12 1000 1000 Identified 1001 011.101,1000

. 00,11,010,011,
13 1001 1001 Identified 101,1000,1001

TABLE 2. Initial identification process of EBQT protocol
Rounds Query string | Response | Updated string Q Identified tags
Initialization oAk
1 sokokok 0100,0110 sokokok (F** KKk
1000,1001 '
*kk *k ) )

2 0 100,110 01 011*
3 ok 000,001 100%* 010*,011* 1000,1001
4 010%* 0 0100 011%* 0100
5 011%* 1 0110 0110

Tables 1 and 2 demonstrate the difference of MQT and EBQT in the initial identification
process. From both the tables, we can see that EBQT outperforms MQT. The reasons are:
(1) Bit collision detection is adopted in EBQT, so it can avoid idle responses. As shown
in the tables, MQT meets four idle responses (Rounds 4, 7, 8, 11 in Table 1), but there
is no idle response in EBQT. (2) MQT expands the prefix bit by bit whenever a collision
occurs, but EBQT can expand several bits at once to the collided bit position to avoid
repeated collisions. For example, to identify tag 1000 and 1001, MQT expands the prefix
three times (Rounds 3, 6, 10 in Table 1) while EBQT extends just once (Round 3 in Table
2). (3) Due to the bit collision detection, EBQT can identify two tags simultaneously if
there is only one bit collision. For example, in Round 3 in Table 2, 1000 and 1001 make
only one bit collision, so they can be identified directly without extra queries.
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4.2.2. Non-initial identification process. After the initial process, we assume that tags
0100 and 1001 move out of the reader’s communication range and that tags 1100 and
1101 move into the reader’s range. The new tag ID set contains 0110, 1000, 1100 and
1101.

TABLE 3. Non-initial identification process of MQT

Rounds | prefix | Response | Result Q CQ
00,11,010,011,
101,1000,1001
11,010,011,
L 00 Idle 101,1000,1001 00
.. 010,011,101,1000,
2 11| 1100,1101 | Collision | = o "0
011,101,1000,
3 010 Idle 1001,110,111 00,11,010
. 101,1000, 00,11,
4 011 0110 Identified 1001,110,111 010,011
1000,1001, 00,11,010,
g 101 ldle 110,111 011,101
. 00,11,010,
6 1000 | 1000 |Identified | 1001,110,111 0111011000
00,11,010,011,
7 1001 | TIdle 110,111 101.1000.1001
00,11,010,011,
8 110 |1100,1101 | Collision 111,1100,1101 101,1000,1001,
1100,1101
00,11,010,011,
9 111 Tdle 1100,1101 101,1000,1001,
1100,1101,111
00,11,010,011,101,
10 1100 1100 Identified 1101 1000,1001,1100,
1101,111,1100
00,11,010,011,101,
11 | 1101 | 1101 | Identified 1000,1001,1100,1101,
111,1100,1101

TABLE 4. Non-initial identification process of EBQT protocol

Rotnds ngry Response Updgted Q Identified
string string tags
Initialization 00,01 10%*, 11**
1 00** Idle 01** 10%F 11%*
2 O1°** 10 0110 10**,11%* 0110
3 10** 00 1000 11%* 1000
4 11%* 110* 0101 1100,1101

Tables 3 and 4 compare MQT and EBQT in the non-initial process. From both the
tables, we can see that EBQT outperforms MQT as well. The reasons are: (1) In MQT,
when any tag leaves, the associated prefix makes an idle response (such as Round 7 in
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Table 3) in the next process. Meanwhile, new arriving tags make new collisions (such as
Round 8 in Table 3). However, in EBQT, the performance is related to only the number
of tags, not relevant to the leaving and new arriving tags. Thus the performance is stable.
(2) Each prefix can be regarded as a sub-tree. As aforementioned, EBQT not only avoids
the idle responses, but also expands the prefix to the position of collided bits at once.
Moreover, it automatically identifies two tags with only one bit collision, resulting in the
quick identification with each prefix.

Beside the number of queries, EBQT requires the smaller number of bits (communica-
tion overhead) sent by tags and the smaller memory storage for prefixes (query strings).
From Tables 1-4, we can get the following tables:

TABLE 5. Communication overhead of MQT and EBQT

Initial process | Non-initial process
MQT 60 bits 24 bits
EBQT 30 bits 12 bits

TABLE 6. Memory requirement of MQT and EBQT

Initial process | Non-initial process
MQT |21 bits (Q + CQ) | 40 bits (Q + CQ)
EBQT 12 bits 16 bits

5. Mathematical Analysis. We present some mathematical analyses for the perfor-
mance of MQT and EBQT.

5.1. Queries of identification.

5.1.1. MQT protocol.

A. Initial identification process.

Lemma 5.1. All tags to be identified by query strings are referred to the leaf nodes in a
binary tree [13].

Theorem 5.1. Each non-leaf node represents a collision and requires two more queries
to check its two child nodes.

Proof: If a collision occurs when a reader sends query string bb, ...b,, the reader
expands the query to biby...b,0... or biby...b,1... to avoid collisions. This expansion
continues until a single reply is received. There are three kinds of non-leaf nodes, as
shown in Figure 9: three-degree (black nodes), two-degree (white nodes, such as node 1),
and the root node. Note that the root node is separately handled from other two-degree
nodes. The three-degree and root nodes need two queries to check their children. For any
two-degree node, in addition to one query for its own child node, there is one zero reply
problem (node 2), so it also needs two queries. Hence, in a binary tree, all non-leaf nodes
represent collisions and each requires two queries to resolve the collision.

Lemma 5.2. When N is the number of tags to be identified and C'(N) is the number of
collisions in the query tree protocol, the number of queries that should be sent, Qn(N),
can be calculated as follows:
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FiGURrE 9. Tag identification process of query tree

0 =d =log,"-1

FiGUure 10. MQT protocol with the maximum collisions

Proof: By the proof of Theorem 5.1, all non-leaf node except the root node need two
queries. The root node needs three queries, including the first default query.

Lemma 5.3. For any set of N tags in the MQT protocol:
2N —1<Qn(N) < N(K+2—log, N) —1

Proof: From Lemma 5.2, the worst-case for MQT is that the number of collisions is
maximal. If each tag has a unique K bit ID, the number of collisions between two tags is
maximally K — 1, which is when the first K — 1 bits of their IDs are the same. Thus, any
two tags produce at most K — 1 collisions. The maximum number of collisions in a tree
with N tags and depth d, C(N,d) can be acquired in the tree in Figure 10, where every
two leaf nodes in dotted boxes experience K — 1 collisions:

(a) When 0 < d < log, N — 1, the number of non-leaf nodes at the dth level is 2¢. This
means that the maximum number of collisions C'(N, d) is 2¢.

(b) When log, N — 1 < d < K, the number of non-leaf nodes at the dth level is N/2.
This means that the maximum number of collisions C'(N, d) is N/2.

Based on (a) and (b), the number of collisions of the first K — 1 bits is:

K-1

N
C(Nwax = Y C(N,d) < (225 — 1) + (K — log))—
d—=0 T #

(b)

| 2

(K +2—1log)) —1
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Thus the maximum number of queries:
Qn(N)max =2C(N)yax +1=N(K +2—log, N) — 1

Meanwhile, the best case performance for MQT can be achieved when the number of
the collisions is minimal. Given N tags, the optimal binary tree is shown in Figure 11.
All non-leaf nodes are confined within the first d levels and a collision happens at each
node. Therefore, C(N )y = N — 1, and the number of queries in the best-case is:

r Q.

FIGURE 11. MQT protocol with minimum collisions

B. Non-initial identification process. In non-initial processes, let @n(P;) be the set
of tags recognized in the ith process and a and S be the number of arriving and leaving
tags respectively. Qn(P;1|P;) denotes the number of queries transmitted by MQT to
recognize tags in the (i + 1)th process. This substantially depends on the information
taken from the ¢th process. Additionally, let N be the number of tags in the last process.
Then we can obtain the following lemma:

Lemma 5.4. When a =0 and 8 =0, Qn(P;41|P;) can be calculated as follows:
N < @n(Pin|P) < N(K +2—log, N)/2

Proof: « = 0 and = 0 mean that no tags leaving or arriving or no change in the set
of tags. In the MQT protocol, the (i + 1)th process makes use of prefixes in C'QQ) stored
in the ith process. All the prefixes in C'() are either the ones which got one reply or idle
prefixes in the previous process. As reported in [13], the maximum number of queries for
identification is:

Qn(Pi1|P)wax = N(K +2 —log, N)/2

If all of the leaf nodes represent tags not idle prefixes, each tag can be identified by one
query. This is the best case for the number of queries for identification:

Qn(Pi+1|Pi)MIN =N
Lemma 5.5. When a > 0 and 8 = 0, the number of queries is:

N+a <Qn(Pi|P) < N(K +2-logy N) = (N —a+1)
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Proof: a > 0 and 8 = 0 indicate that some tags newly arrive without leaving tags. In
the MQT protocol, idle prefixes in the previous process are used to identify the new tags
in the next process [13]. If each new tag can be identified by an idle prefix, no collision
occurs. In this case, the number of the identified and idle prefixes should be N + «; hence,
the best performance for identification is:

Qn(Pis1|P) iy = N + «

However, if any two tags share the same idle prefix, it results in a new collision. As
mentioned in [13], the worst case for identification is:

Qn(Pi1|P)pax = N(K +2 —logy N) = (N —a+1)
Lemma 5.6. When a =0, > 0, the number of queries for identification is:
Qn(Pi|P;) = N(K +2 —log, N)/2

Proof: « =0 and > 0 imply that some tags leave without arriving tags. Because no
tags arrive, no collision occurs. Some valid prefixes in the previous process become idle
prefixes. Therefore, the number of queries for identification is fixed, being equal to the
number of leaf nodes in the tree.

Lemma 5.7. When o > 0 and 8 > 0, the performance of time for identification is:
N +a <Qn(Pia|P) S N(K+2—-1log, N) — (N —a+1)

Proof: a > 0, § > 0 mean that some tags arrive while others leave. As mentioned in
Lemma 5.6, the leaving tag does not increase the processing time for tag identification
but the time is increased only by arriving tags. Instead, the leaving tags cause « idle
prefixes.

Qn(Pi1|P) iy = N + o

The worst case is that all the arriving tags result in collisions, as analyzed in Lemma

5.5. The performance is:

(P P)yax = N(K +2 —logy N) = (N —a+1)
5.1.2. EBQT protocol.

A. Initial identification process. Unlike the existing QT protocols, the proposed
EBQT knows at which bits collisions happen in each round. In next rounds, one of
the collided bits of a query is replaced by ‘0" and ‘1’ in order and sent again to indentify
tags. The same value at the same bit does not cause a collision. Therefore, EBQT makes
a full binary tree with minimum non-leaf nodes, as shown in Figure 12.

- TO

Ficure 12. EBQT protocol with maximum collisions
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Meanwhile, when only one “*’ remains in a query string, two tags can be identified

simultaneously without sending an extra query, resulting in time saving and communica-
tion overhead reducing. In this case, the leaf nodes in the last level can be pruned away,
as shown in Figure 13.

T O,

Ficure 13. EBQT protocol with minimum collisions

Lemma 5.8. For any set of N tags in EBQT protocol:
N—-1Z2@n(N)<2N -1
Proof: Given N tags with K-bits IDs, the performance can be analyzed in two different
situations:
(1) When N = 2% the binary tree is a complete binary tree, and the number of collisions
is equal to the number of the non-leaf nodes.
Qn(N)=2" —1=N -1
(2) When N < 2% the best case is that all N tags are leaf nodes in a complete tree.
The number of collisions is equal to the number of leaf nodes.
Qn(N)=2" —1=N -1

Meanwhile, in the worst case, each of N tags is divided into a different subset,
thus the prefix has log, NV bits difference. It is equivalent to a complete tree with
logy, N + 1 level:

Qu(N) =298+ —1=2N —1
Conclusively, we can get:
N—-1Z2@n(N)<2N -1

B. Non-initial identification process. In non-initial processes, let @n(P;) be the set
of tags identified in the ith process and a and 8 be the number of arriving and leaving
tags respectively. Qn(P,;1|P;) denotes the number of queries transmitted by the EBQT
in the (i 4 1)th process. When N is the number of identified tags in the previous process,
we can obtain the following lemma:

Lemma 5.9. When o =0 and 3 = 0, the number of queries for identification is:
N/2 <Qn(Pi1|P) < N
Proof: o = 0 and f = 0 mean no change of tags as compared with the previous process.
For the best case performance, N tags should be accurately divided into N/2 pairs. Then

they can be identified with N/2 query messages. The worst performance is when each
node needs an individual query, resulting in a total of N query messages.
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Lemma 5.10. When a > 0 and 8 = 0, the number of queries for identification is:
N/2+ (a—1) £ Qn(Pija|P) <2(N +a) -2

Proof: a > 0 and 8 = 0 imply that some tags arrive without tags leaving. The number
of queries for new tags depends on the number of them and total time for identification
is confined in [N — 1,2N — 1] according to Lemma 5.8.

Lemma 5.11. When o =0 and 8 > 0, the number of queries for identification is:
N/2 < Qu(Py|P) < N

Proof: @« = 0 and # > 0 present that some tags leaving without tags arriving. The
leaving tags do not make collisions and not increase the delay for identification. So the
performance is the same as the situation o = 0 and 5 = 0.

Lemma 5.12. When a > 0 and 8 > 0, the number of queries for identification is:
N/2 4+ (a—=1) <Qn(P|P) <2(N +a) —2

Proof: o > 0 and S > 0 mean that some tags arrive while others leave. This is derived
from Lemmas 5.10 and 5.11.

5.2. Computing complexity. The work of MQT and EBQT is composed of three op-
erations in common:

TABLE 7. Operations in MQT and EBQT

Operations Remark
Q Query-Response
IS Prefix insertion into queue
DFE Prefix deletion from queue

In the initial process, MQT needs the querying operation, Qviqr, and prefixes inserting
operations, ISyqr. Note that ISyqr > N because the prefixes to be inserted into CQ
include N identified prefixes at least. Thus:

3N —1 S QMQT+[SMQT S N(K+3—10g2N) —1
On the other hand, EBQT needs only the querying operation Qrgqr, thus:
N —1<Qupqr <2N -1

Compared with MQT, EBQT obviously has lower computing complexity in the initial
processes.

In non-initial processes, MQT needs the complexity for not only Qumqr and ISuqr,
but also DEygr. The maximum complexity for the prefixes deletion operation D Eyiqr
is 2N — 1, then we can get:

4N+a—1SQMQT+ISMQT+DEMQTSN(K+4—IOg2N)+CY—2

On the other hand, in EBQT, it directly generates 21! (2! < N and L is the
starting level which mentioned in Section 4.1.b) prefixes and starts the querying operations
ISgpqr. The complexity for prefix generation is 247!, According to the analysis above,
we can get:

2N — 1 < Qggqr + ISeBqT <3N —1

Thus, we can see that EBQT has lower computing complexity in both initial and non-
initial process.
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5.3. Spatial complexity. The memory requirement M to store ID prefixes is compared
in this section.

In MQT, memory is demanded for two types of prefixes. One is temporary prefixes
to track the identification process and the other is identified or idle prefixes. Thus the
memory is needed as much as:

Myqr = [N(K +2—1log, N) — 1]K + (N + Xiqie) K

here, X;qi. is the number of idle prefixes.
On the other hand, EBQT only needs the memory to track the identification process,
thus the maximum memory demand is:

MEBQT - (2N - ].)K

As Myqr — Mepqr = K[N(K + 1 —logy, N) + Xjaie] > 0, we can see that EBQT
outperforms MQT in respect of spatial complexity.

6. Performance Evaluation. In this study, the tag ID is 32 bits long and randomly
generated. Like all the previous works, the time delay to identify all tags is assumed to be
proportional to the number of queries sent by the reader. The communication overhead is
measured by the number of bits transmitted by tags. Performance of EBQT is compared
with AIS, MQT, and BQT. Note that, in the static scenario, EBQT is the same as BQT.

6.1. Static identification scenario. In the static scenario, there is no leaving or arriv-
ing tag, and the performance was evaluated with different number of tags that are evenly
deployed in the target area.

2500
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—6— MQT protocol
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g
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The time delay

1000 [--------rdomnooeoe I bommenees :

500 --- g
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FIGURE 14. Time delay in static scenario

Figures 14 and 15 compare the time delay for identification and communication over-
head against different numbers of tags in the static scenario (initial process). Figure 14
shows that EBQT outperforms the AIS and MQT protocols in respect of time delay. This
is because the individual bit collision detection was introduced to reduce collisions. It
does not only avoid the idle responses, but also accelerate the prefix expansion to reduce
collisions. Unlikely, AIS makes use of only collision information in a left sub-tree to ac-
celerate the identification process in a right sub-tree. Meanwhile, MQT has totally the
same process as QT, thus it suffers from the worst performance.
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FIGURE 15. Communication overhead in static scenario

Due to the reduction of queries on tag identification, EBQT and AIS achieve better
performance than MQT in respect of the communication overhead, as shown in Figure
15.

6.2. Mobile identification scenario.

6.2.1. The impact of different number of tags. First, performance was evaluated with the
different numbers of tags that are evenly deployed in the target area under the same
moving speed of a reader. Based on our observation on practical situations, the moving
speed of a mobile reader keeps consistent and the changing rate of tags between two
consecutive processes is fixed to 20%, as illustrated in Figure 16. (d = 20% means that
in each process, there are 20% identified tags move out and 20% new tags move in).

(@) (@) (o) ()

-~ (=== -

&  d=20% d=20% d=20%

B Reader @ Tag

FI1GURE 16. The scenario of fixed moving speed

Figures 17 and 18 compare the time delay for identification and communication over-
head against different numbers of tags in a mobile scenario (non-initial process). Figure
17 shows that the EBQT protocol outperforms the others in respect of the number of
queries. MQT merely employs relevant information between two consecutive processes to
reduce the number of queries while BQT only adopts bit collision detection to expand



BIT COLLISION DETECTION BASED QUERY TREE PROTOCOL 3099

2500

T T T T T T
—8— AlS protocol : : : :
—6— MQT protocol
=g BQT protocol
—b— EBQT protocol

2000

g
o

The time delay

1000 [---------dnnnnooos R TaEie Beees

0
100 200 300 400 500 600 700 200
The number of tags

FIGURE 17. Time delay in mobile scenario (fixed moving speed)
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FIGURE 18. Communication overhead in mobile scenario (fixed moving speed)

prefix for collision reduction. AIS does not have any consideration of mobile identifica-
tion. On the other hand, EBQT protocol does not only adopt the individual bit collision
detection but also uses the relevant information to directly expand the prefixes to shorten
identification process.

The decreased number of queries also reduces the communication overhead as shown
in Figure 18.

6.2.2. The impact of different speeds of mobile reader. So far, we have assumed that a
reader speed is fixed all the time, but the moving speed of a reader can be changed at any
time, which means that the arrival and departure rates of tags may be different in each
process. This is illustrated in Figure 19.

Figures 20 and 21 compare the time delay and communication overhead for identifica-
tion against different moving speeds of a reader. The speeds are set up so that the rates
of arriving and leaving tags may range from 10% to 100% in steps of 10 and the number
of tags of each process is fixed to 800.
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Figure 20 shows the EBQT protocol outperforms BQT, AIS and MQT all the time in
respect of the number of queries. We can come to the following conclusions: (1) EBQT
not only employs the collision reduction technology (bit collision detection) of BQT but
also utilizes the relevant information like MQT to speed up the next identification process,
thus BQT and MQT become the lower bound of the performance of EBQT. (2) Both MQT
and EBQT utilize the relevant information to speed up the next identification process,
but the performances under different moving speed are different. EBQT has very stable
performance. The difference comes from the fact that MQT uses the prefixes generated in
the previous identification process, but this information is useless when a lot of tags are
changed between two consecutive processes. On the other hand, in EBQT, it generates
the prefixes depending on the number of the tags achieved in the previous process. Thus
its performance has nothing to do with the changing rate of tags. If the number of tags
between two consecutive processes is similar, the performance keeps stable.

Due to the same reasons, in Figure 21, we also can see that EBQT has the best perfor-
mance in respect of communication overhead, because of the decreased number of queries.

Meanwhile, thanks to the stable performance, it is easy to evaluate the identification
latency and control the movement of the reader in our practical application. Moreover,
with the moving speed increasing, the advantage of EBQT becomes more obvious. Thus
we can shorten the whole identification time delay by increasing the moving speed, if
there is no other potential problem.

7. Conclusion. In this paper, we improved our previous work BQT by employing the
temporal and spatial correlation between two consecutive identifications. Due to the
new improvement, our proposed EBQT achieve shorter identification time delay in both
static and mobile identification scenario, and also makes the identification process be a
very stable. Moreover, it does not increase the cost in other aspects. The analysis and
simulation results show that EBQT can achieve a significant reduction in processing time
and communication overhead for tag identification.

8. Future Work. As explained in Section 3, our EBQT adopts the Manchester code
for individual bit collision detection. Thus the critical foundation of our protocols is the
requirement of accurate time synchronization between all tags. A large time difference
may degrade the performance of individual bit collision detection. In order to solve this
problem, we are working on developing hardware and testing different modules to find an
applicable way for individual bit collision detection with the tolerance for time differences.
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