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ABSTRACT. Currently, Direct Methanol Fuel Cell (DMFC) technology suffers from the
low power density caused by slow reaction rate and undesired “methanol crossover”, which
limits its commercialization application. At this study, Adaptive Neuro-Fuzzy Inference
System (ANFIS) can predict the needed amount of methanol fuel from the relationship
of current and voltage curve of DMFC under different operational conditions and keep
high power density. The ANFIS is a collaborative data bank from repeated experiments
results under different amount of methanol fuel liqguid. The model is a control scheme
for predicting of supply to a fuel cell system under dynamic loading conditions, with a
high accuracy in an easy, rapid and cost effective way to regulate the concentration of
a liquid feed fuel cell without any fuel concentration sensor. The control scheme uses
operating characteristics of fuel cell, such as potential, current and temperature. Our
previous study has presented a fuel sensorless control algorithm (IR-DTFI) to calculate
the quantity of fuel liquid required at each monitoring cycle. Furthermore, we develop
ANFIS to strengthen the concentration regulating process. The ANFIS had been verified
by systematic experiments, and the experimental results proved that the scheme can ef-
fectively control the fuel supply of a liquid feed fuel cell with reduced response time, even
while the Membrane Electrolyte Assembly (MEA) deteriorates gradually.
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1. Introduction. Fuel cells are green power source of energy due to their high efficiencies
and quiet operation. They convert chemical energy into electricity via an electrochem-
ical reaction. The direct methanol fuel cell offers special benefits as a power source for
transportation, such as potential high energy density, no need for a fuel reformer and a
quick response. The operating characteristics of a DMFC, such as methanol concentra-
tion, reactant flow rates, and temperatures of the stack and environment, all considerably
influence the behaviors of the DMFC system. Among those operating characteristics,
methanol concentration is one key factor that significantly affects the performance and
fuel utilization of the DMFC.
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Methanol crossover from anode to cathode through a Nafion membrane, which causes
a mixed potential on the cathode and reduces the overall cell voltage, is a well-known
problem that hinders the development of DMFC [1,2]. Due to methanol crossover, practi-
cal operation of a DMFC requires accurate control of the methanol concentration within
a predetermined range. The conventional approach is to use a methanol concentration
sensor in a closed loop of fuel circulation. However, many requirements exist for methanol
concentration sensors for DMFC [3]. Existing affordable products that meet all desirable
criteria are not yet readily available. Furthermore, methanol sensors that have been de-
veloped using electrochemical methods [4] have issues, such as performance degradation
of the MEA, which result in poor stability and durability. Methanol sensors based on
physical properties, such as sound speed, density, or refractometry, are also sensitive to
carbon dioxide bubbles and the pulse wave of the circulation pump in the fuel loop. In
addition, methanol concentration sensors, regardless of whether they are designed us-
ing physical or electrochemical principles, exhibit a marked dependency on temperature.
Measurement efforts and data sets will be large, complicated, and costly for development.
Furthermore, when a methanol sensor is used, experimental tasks, such as calibration for
each sensor, are necessary. Although the fuel sensor approach can be used to control fuel
concentration, it nevertheless has the shortcomings of increased weight, size, complexity,
and cost of the liquid feed fuel cell. Accordingly, the development of fuel sensorless control
of liquid feed fuel cells has received much more attention in recent years.

Our previous papers [4] have presented a fuel sensorless control algorithm (IR-DTFT)
with a fixed injection quantity at each cycle, while the specific monitoring period was mod-
ulated to regulate the concentration such that the fuel concentration and power output
were controlled within an acceptable range. The specific monitoring periods were equal to
or longer than 40 s; namely, the IR-DTFT control algorithm controlled the DMFC system
behavior through the system responses of the last cycle of 40 s. The specific monitoring
periods depend on the total number of methanol solution in the mixing tank and the
anode compartment of the fuel cell system. We have successfully demonstrated a 40 W
DMFC power pack for power sources in notebooks and DVD players that are embedded
with the IR-DTFT control scheme for control of fuel supply.

Control computing techniques, including Artificial Neural Networks (ANN), Fuzzy
Logic, neuro-fuzzy systems, on the other hand, can be used as an alternative to a physical
model especially for complex nonlinear systems. ANNs are able to learn and generalize
from examples and experience to produce meaningful solutions to problems [5]. Fuzzy
Logic provides inference mechanisms that enable approximate reasoning and model hu-
man reasoning capabilities to be applied to knowledge-based systems [6]. A number of
applications of both ANN and Fuzzy Logic can be found in the fuel cell literature, e.g.,
[7-10]. The neuro-fuzzy techniques, such as the Adaptive Neuro-Fuzzy Inference System
(ANFIS) is the combination of the Fuzzy Logic and ANN and captures the advantages of
both in the sense that the membership functions and rules of the fuzzy systems is defined
and optimized by ANN so that unknowledge of the system is required. Sun et al. [11]
applied ANFIS in order to build temperature model for PEMFC fuel cells. Entchev and
Yang [12] have applied both ANN and ANFIS model in order to predict the performance
of a solid oxide fuel cell in the microgeneration instillation.

In this paper, a modified control method based on the ANFIS model is presented. The
ANFIS model is used to predict the performance of the DMFC for multi-input variables,
shortened monitoring period is explored for faster system response and greater stability,
and the model is used to predict control for the methanol fuel supply under various
conditions to verify the model at dynamical load operating conditions. The paper has
been organized as follows. At first, we analyze methanol crossover, then describe the
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ANFIS model by method and application in the methanol fuel supply situation. The
results and discussion section present and discuss the results of the ANFIS model and
the effect of the operational conditions on the cell performance, for calculating the fuel
injection quantity is proposed and validated, which is then successfully combined with the
ANFIS control algorithm to control the fuel supply in DMFCs for low power automotive
applications such as E-Wheel chairs and handicap cars.

2. DMFC Methanol Crossover Analysis. DMFC consists of an anode at which
methanol is electro-oxidized to COy through the reaction and a cathode, at which oxygen
(usually as air) is reduced to water or steam. Each electrochemical reaction on the anode
(1) and the cathode (2) sides of a cell is:

CH3 + HQO — C02 + 6H™ + 6e~ (1)
3/205 + 6H' + 6e~ — 3H,0 (2)
Total cell reaction:

The thermodynamic efficiency of the process is given by the ratio between the Gibbs
free energy, that is, the maximum value of electrical work (AG®) that can be obtained, and
the total available energy for the process, that is, the enthalpy (AH®) and temperature
(T). Under standard conditions:

AG° = AH® — (T x AS°) (4)
The total electrochemical reaction is related to the ideal cell potential by
AG®° = —nF X AFE,, (5)

where FE,., is the reversible standard potential under thermodynamic equilibrium, n is
the number of electrons involved in the reaction, and F' is the Faraday’s constant (96,487
coulombs per mole of electron). At 25°C, 1 atm and with pure oxygen feed, the reversible
potential for methanol oxidation is 1.18 V [13,14]. It does not vary significantly in the
operating range 40 ~ 130°C and 1 ~ 3 bar abs pressure. Usually, the open circuit voltage
of a polymer electrolyte DMFC is significantly lower than the thermodynamic or reversible
potential for the overall process, the terminal voltage (E..;) of the cell is deconvoluted
into the anode and cathode polarizations:

Ecell - Ecathode - Eanode (6)

This is mainly due to methanol crossover that causes a mixed potential at the cathode
and to the irreversible adsorption of intermediate species at electrode potentials close to
the reversible potential [6-19]. The over cell voltage can be written as

‘/cell - Ecell — Tlanode — TJcathode — Tlohmic — Tcrossover (7)

where Nanode and Neathoqe are the anode and cathode overpotentials, Monmic is the overpo-
tential due to the ohmic drop in the system and 7crossover 1S the overpotential due to de
methanol crossover through the membrane.

The methanol concentration on the anode side has a decisive influence on the cur-
rent/voltage characteristic of a DMFC. Too high a methanol concentration leads to high
methanol permeation so that methanol is oxidized at the cathode. The methanol perme-
ation does not only reduce the mass efficiency but is furthermore also responsible for the
formation of a mixed potential at the cathode, which reduces the cell voltage and thus
decreases the voltage efficiency [15,16].

Methanol crossover occurs when methanol solution permeates from the anode to the
cathode through the electrolyte membrane. Most of the permeated methanol is reacted
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at the cathode creating a “mixed potential”, which reduces the cathode potential and
consumes some of the oxidant. Therefore, this methanol crossover phenomenon signifi-
cantly reduces the cell’s performance. The crossover of methanol is also a major cause
of inefficiency as it is essentially wasted and the cathode catalysts are poisoned by the
carbon atoms in the methanol [17-20]. Figure 1 shows an illustration of the methanol
crossover phenomenon in a DMFC.
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FIGURE 1. An methanol crossover in a DMFC

Methanol permeation causes losses due to additional methanol consumption and due
to the formation of a mixed potential at the cathode decreasing the cell power [21].
The overall methanol consumption is:

A]\/[GOEI(Total) = A]\IGOIJ(electric) + A]\/[60E[(permean;ion) (8)

where AMeOH 7 is total molar flow of methanol (mol/s), AMeOHeeeiric) is molar
flow of methanol due to electric current (mol/s), and AMeOH permeation) is molar flow of
methanol due to permeation (mol/s). According to Faraday’s law, the AMeOH ciectric)
can be expressed as:

[e ectric
A‘]\4601—-[(electric) = 16}; (9)

where Ijeciric is electric current, the methanol permeation AMeO H permeation) can be write
as a corresponding parasitic current Ihermeation low Faraday’s law:

I .
AM H ermeation) = permeation 1
60 (p 1 ) - 6F ( 0)
The mass efficiency nMeOH defines the ratio of the methanol
AMeOH, electric AMeOH electric
NMeOH = —— O (electric) 7 electric) (11)
AMeOH(Toml) AM@OH(TOMZ) + AMeOH(permeation)

The methanol permeation in DMFCs decreases the voltage and fuel efficiency of the
cell. When the methanol reaches the cathode catalytic layer, it is potentially reacted
with the oxidant creating a mixed potential that decreases the cell potential. In addition,
this reaction masks the cathodic catalytic sites that are needed for the oxygen reduction
half-reaction. As stated previously, the diffusion contribution to methanol crossover limits
the practical (i.e., allowable) fuel concentration, thus limiting the energy density metrics
actually achievable by DMFC system:s.
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The diffusion increases at lower current densities due to smaller electro-oxidation rates
that allow a greater reactant presence at the fuel side of the MEA; hence, a larger diffu-
sional driving force. Thus, it is expected that the maximum crossover occurs at OCV when
there is no current density drawn. Another factor that affects the amount of methanol
crossover due to diffusion is the fuel mixture concentration, too low a methanol concen-
tration prevents methanol losses and the formation of a mixed potential, however, on the
other hand, it is associated with a rise in anodic diffusion overvoltage [22]. Figure 2 is
shows the power density characteristics of a DMFC where the methanol concentration
is varied. The lowest methanol concentration of 1 wt.% shown leads to overvoltage in
the high current load (> 2 A) which reduce the cell voltage. At the same time, due to
reduced mixed potential formation, the cell voltage is greatest in the low current den-
sity range (< 500 mA). The concentration must, therefore, be adjusted to an optimum
value representing the best possible compromise with respect to the anodic and cathodic
overvoltage.
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FiGURE 2. Polarization and power density curves at different methanol solution

3. Control Strategies of Method and Application DMFC System.

3.1. ANFIS control concept. ANFIS uses a hybrid learning algorithm to identify the
membership function parameters of single-output. A combination of least-squares and
backpropagation gradient descent methods are used for training FIS membership func-
tion parameters to model a given set of input/output data. For simplicity, it is assumed
that the fuzzy inference system under consideration has two inputs and and one out-
put. The system is an adaptive network functionally equivalent to a first-order Sugeno
fuzzy inference system [23-27]. The ANFIS uses a hybrid-learning rule combining back-
propagation, gradient-descent and a least-squares algorithm to identify and optimize the
Sugeno system’s signals. The equivalent ANFIS architecture of a first-order Sugeno fuzzy
model with two rules is shown in Figure 3. The model has five layers and every node in
a given layer has a similar function. The fuzzy IF-THEN rule set, in which the outputs
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are linear combinations of their inputs, is:

Rule 1: if z is Al and y is B1 then fi = pix + q1x + 1y

Rule 2: if z is A2 and y is B2 then fo = pox + qox + 1 (12)

Layer]  Layer2 Layer3  Layerd  Layer$
X Y
4 !y
X
A
B,

FIGURE 3. A typical structure of ANFIS

The layer 1 consists of adaptive nodes that generate membership grades of linguistic
labels based upon premise parameters, using any appropriate parameterized membership
function such as the generalized bell function

1

Tr — G

O = pa,(x) = (13)

1+

2b;

a;

where Oy; output is the output of the ith node in the first layer, = is the input to node 7, A;,
is a linguistic label (“small”, “large”, etc.) from fuzzy set A={A, A1, -+, Aig, - ,Aum1,
.-+, Apyg} associated with the node, and {a;, b;, ¢;} is the premise parameter set used to
adjust the shape of the membership function.

The nodes in layer 2 are fixed nodes designated II, which represent the firing strength
of each rule. The output of each node is the fuzzy AND (product, or MIN) of all the
input signals

OQj:wj:/'LAlj(x) XMAQj(x)X"‘XMAMj(l‘)7 j:1727---7N (14)

The outputs of layer 3 are the normalized firing strengths. Each node is a fixed rule
labeled N. The output of the jth node is the ratio of the jth rule’s firing strength to the
sum of all the rules’ firing strengths
w .
Os3; =w; = 4 =1,2,...,N 15
VT S unt L rwy T T (15)

The adaptive nodes in layer 4 calculate the rule outputs based upon consequent parameters
using the function:

O4j =W, fi = Wi(pix + qiy + 14) (16)

where ; is a normalized firing strength from layer 3, and (p;x, ¢;y, ;) is the consequent
parameter set of the node. The single node in layer 5, labeled ¥ calculates the overall
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ANFIS output from the sum of the node inputs

N sz‘fl
Oz =y =Y Wifi =~ Cl=1,2,...,r (17)
S,

)

Training the ANFIS is a two-pass process over a number of epochs. During each epoch,
the node outputs are calculated up to layer 4. At layer 5, the outputs are calculated using
a least-squares regression method. The output of the ANFIS is calculated and the errors
propagated back through the layers in order to determine the premise parameter (layer
1) updates.

3.2. ANFIS methanol fuel supply control model. The input data to the ANFIS
model for the methanol fuel supply sub-system are the operating voltage (V) and the
operating current (I), used ANFIS to approximate the functional relations between input
variables and responses to a desired degree of accuracy, the output data are the dosing

pump active time. The performance of each model was evaluated by the root mean square
error (RMSE) is defined by:

N
RMSE = % ;(ei — pi)? (18)
where p is the actual value from experiments, e is the predicted value from the models
and N is the number of data points. According to the measured range resulted, the
membership function of the variable are expressed by linguistic variables ‘big (L)’, ‘small
(S)’, ‘zero (Z)’, ‘very small (VS)’, and ‘medium (M)’, as plotted in Figure 4, shows the
input and the output data of the ANFIS methanol fuel supply control model.

Current

FiGURE 4. ANFIS methanol fuel supply control model

3.3. Experimental setup. An experimental setup was assembled as shown in Figure 5.
Experimental system consisting of a DMFC stack, a water reservoir, a methanol reservoir,
a tank for mixing water and methanol, an electronic loading, the methanol feed system
consisted of a dosing pump unit for pure methanol and water. The methanol was injected
into the water where it underwent mixing tank before entering the fuel cell, while a
circulation pump for flow rate was fixed for each cycle. The methanol concentration was
controlled by ANFIS model (PC) control the dosing pump flow rate values ranging. The
overall flow rate of the methanol feed solution could be increased as desired by increasing
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FiGURE 5. The test apparatus for evaluating the ANFIS control
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FIGURE 6. Dynamic characteristics of the fuel cell under constant current
load (3 A)

the water flow rate. Load conditions on the fuel cell were maintained by DAQ system, and
the operating power density was recorded by a National Instruments DAQmx™ board.

4. Results and Discussion. Figure 6 shows the performance of the hybrid power system
under constant current load (3 A) for 80 min operation, which verifying ANFIS model.
The stack produced about 18 W steadily with very little fluctuation and the concentration
of methanol was controlled between 1 and 3 wt.%. Figure 7 and Figure 8 plot the transient
characteristics at ladder steps loads, which show good load following characteristics. The
power oscillations, measured at the stack terminal, can be regulated through the DC/DC
converter for steady output.

The model is successfully utilized on the power pack of 20-cell stack with active area of
50 cm? per cell developed using traditional bipolar plate configuration. Our DMFC team
at INER make a success at DMFC/battery hybrid power system to supply an E-Wheel
chair under the ANFIS control model embedded in the power management unit. The
power pack on the E-Wheel chair is 4.4 L. and 3 kg, which can produce about 50 W for
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FIGURE 7. Dynamic characteristics of the fuel cell under ladder steps down load
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FIGURE 8. Dynamic characteristics of the fuel cell under ladder steps up load

8 to 10 hours continuous operation. Two sets of Li-ion batteries can be recharged by the
power pack and served as the source of hybrid power.

5. Conclusions. We demonstrated the applicability of ANFIS methods for controlling
DMFC methanol fuel supply. This offers the advantage that fuel management is achieved
in an efficient way. Methanol crossover problems of the DMFC stack are prevented by
monitoring the minimum single cell voltage. Drying of the DMFC membrane can be
avoided by monitoring the ac impedance of the fuel cell stack. The complexity of a
rigorous, mathematical solution of this problem cannot be handled on-line using state-of-
the-art microcontrollers. On the other hand, the fuel cell characteristics depend strongly
on temperature. This temperature dependence can be introduced by simple ANFIS mod-
els with appropriate transfer characteristics. Therefore, water and thermal management
can be achieved by applying ANFIS logic in principle. The cost efficiency of our control
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system in DMFC is well demonstrated. We find that not only methanol fuel supply, other
factors such as temperature, stack decaying ratio which also can influence power density.
We would investigate the effect of temperature and stack deterioration ration on DMFC
in future study.
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