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Abstract. Gene expression technology, especially microarrays, can be used to measure
the expression levels of thousands of genes simultaneously in biological organisms. Gene
expression data produced by microarrays are expected to be useful for cancer classification.
To select a small subset of informative genes for cancer classification, many researchers
have analysed the gene expression data using various computational intelligence methods.
However, due to the small number of samples compared with the huge number of genes
(high-dimensional data), irrelevant genes, and noisy genes, many of the computational
methods face difficulties in selecting the small subset. Thus, we propose a modified binary
particle swarm optimisation to select a small subset of informative genes that are relevant
for the cancer classification. In the proposed method, we introduce the particle speed and
a rule for increasing the probability of bits in a particle’s position to be zero. The method
was empirically applied to a suite of four well-known benchmark gene expression data
sets. The experimental results demonstrate that the proposed method outperforms the
conventional version of binary particle swarm optimisation (BPSO) and other related
works in terms of classification accuracy and the number of selected genes. In addition,
this method also produces lower running times compared to BPSO.
Keywords: Binary particle swarm optimisation, Gene selection, Gene expression data,
Cancer classification

1. Introduction. Advances in the area of microarray-based gene expression analysis
have led to a promising future for the diagnosis using new molecular-based approaches
[1]. Microarray technology allows scientists to measure the expression levels of thousands
of genes simultaneously, producing gene expression data that contain useful genomic,
diagnostic, and prognostic information for researchers [2]. Comparisons between the gene
expression levels of cancerous and normal tissues can be performed, and these comparisons
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are useful for selecting genes that might predict the clinical behaviour of cancers. Thus,
there is a need to select informative genes that contribute to cancerous states. However,
the gene selection process poses a major challenge because of the following characteristics
of gene expression data: the huge number of genes compared with the small number of
samples (high-dimensional data), irrelevant genes, and noisy data. To overcome these
challenges, a gene selection method is typically used to select a subset of genes that
maximises the ability to classify samples more accurately [3]. Gene selection is called
feature selection in the pattern recognition domain, and it has several advantages [4]:
1) It can maintain or improve classification accuracy.
2) It can reduce the dimensionality of the data.
3) It can yield a small subset of genes.
4) It can remove irrelevant and noisy genes.
5) It can reduce the cost in a clinical setting.
In the context of cancer classification, gene selection methods can be grouped into two

categories [5]. If a gene selection method is carried out independently from a classification
procedure, it belongs to the filter method. Otherwise, it is said to follow a hybrid (wrap-
per) method. In the early era of gene expression analysis, most research groups used the
filter method to select genes because it is computationally more efficient than the hybrid
method [3]. Many filter methods are described as individual gene-ranking methods. They
evaluate a gene based on its discriminative power for the target classes without considering
its correlations with other genes, which may result in the inclusion of irrelevant and noisy
genes in a gene subset for cancer classification. These genes increase the dimensionality
of the gene subset and, in turn, affect the classification performance. The filter methods
also select a number of genes manually, which causes difficulty in usage, especially for
beginner biologists.
Hybrid methods usually provide greater accuracy than filter methods because the genes

are selected by considering and optimising correlations among genes. Recently, several
hybrid methods based on particle swarm optimisation (PSO) have been proposed to select
informative genes from gene expression data [6-9]. PSO is a new evolutionary technique
proposed by Kennedy and Eberhart [10], which was motivated by simulations of the social
behaviour of organisms such as bird flocking and fish schooling. Alba et al. [6] evaluated a
new version of PSO, called geometric PSO, for gene selection. However, the experimental
results are less significant because geometric PSO is more about generalising optimis-
ers based on a notion of distance where different distance metrics give rise to different
operators with regards to the predefined geometric operators. Shen et al. [7] proposed
a hybrid of PSO and tabu search approaches for gene selection. Unfortunately, the re-
sults obtained by using the hybrid method are less meaningful because tabu approaches
in PSO are unable to search for a near-optimal solution in search spaces. An improved
binary PSO was proposed by Chuang et al. [8]. This approach exhibited 100% classifi-
cation accuracy in many data sets, but it used a high number of selected genes (large
gene subset) to achieve the high accuracy. This method uses a large number of genes
because the global best particle is reset to the zero position when its fitness values do
not change after three consecutive iterations. Li et al. [9] then introduced a hybrid of
the PSO and genetic algorithms (GA) for the same purpose. Unfortunately, the accuracy
was still not high, and many genes were selected for cancer classification because there
were no direct probability relations between GA and PSO. The PSO-based methods are
generally intractable to efficiently produce a small (near-optimal) subset of informative
genes for high classification accuracy [6-9], mainly because the total number of genes in
the gene expression data is too large (high-dimensional data).
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One diagnostic goal is to develop a medical procedure based on the least number of
genes that are needed to detect diseases. We propose an improved (modified) binary PSO
(IPSO) to select a small (near-optimal) subset of informative genes that is most relevant
for cancer classification. To test the effectiveness of our proposed method, we applied
IPSO to four gene expression data sets, including binary- and multi-class data sets.

This paper is organised as follows. In Section 2, we briefly describe the conventional
version of binary PSO and IPSO. Section 3 presents the data sets used and the experi-
mental results. Section 4 summarises this paper by providing its main conclusions and
addresses future directions.

2. Methods.

2.1. The conventional version of binary PSO (BPSO). Binary PSO (BPSO) is
initialised with a population of particles. At each iteration, all particles move in a prob-
lem space to find the optimal solution. A particle represents a potential solution in
an n-dimensional space. Each particle has position and velocity vectors for directing
its movement. The position and velocity vectors of the ith particle in the n-dimension
can be represented as Xi = (x1

i , x
2
i , . . ., x

n
i ) and Vi = (v1i , v

2
i , . . ., v

n
i ), respectively, where

xd
i ∈ {0, 1}; i = 1, 2, . . .,m (m is the total number of particles) and d = 1, 2, . . ., n (n

is the dimension of data) [11]. vdi is a real number for the dth dimension of the particle
i, where the maximum vdi is Vmax = (1/3) × n. This value is important, as it controls
the granularity of the search by clamping the escalating velocities. Large values of Vmax

facilitate global exploration, while small values encourage local exploitation. If Vmax is too
small, the swarm may not explore sufficiently beyond locally good regions. In addition,
Vmax increases the number of time steps to reach an optimum and may become trapped
in a local optimum. On the other hand, values of Vmax that are too large risks missing
a good region. The particles may jump over good solutions and continue to search in
fruitless regions of the search space. After many tests, we found that an appropriate
maximum velocity value is (1/3)× n. We choose Vmax= (1/3) ×n and limit the velocity
within the range [1, (1/3) ×n] which prevents an overly large velocity. A particle can be
near an optimal solution, but a high velocity may make it move far away. By limiting
the maximum velocity, particles cannot fly too far away from the optimal solution. The
BPSO method has a greater chance of finding the optimal solution under the limit.

In gene selection, the vector of the particle position is represented by a binary bit string
of length n, where n is the total number of genes. Each position vector (Xi) denotes a gene
subset. If the value of the bit is 1, then the corresponding gene is selected. By contrast,
a value of 0 means that the corresponding gene is not selected. Each particle in the tth
iteration updates its own position and velocity according to the following equations:

vdi (t+ 1) = w(t)× vdi (t) + c1r
d
1(t)×

(
pbestdi (t)− xd

i (t)
)

+c2r
d
2(t)×

(
gbestd(t)− xd

i (t)
) (1)

Sig
(
vdi (t+ 1)

)
=

1

1 + e−vdi (t+1)
(2)

if Sig
(
vdi (t+ 1)

)
> rd3(t), then xd

i (t+ 1) = 1; else xd
i (t+ 1) = 0 (3)

where c1 and c2 are the acceleration constants in the interval [0, 2] and rd1(t), r
d
2(t), r

d
3(t) ∼

U(0, 1) are random values in the range [0, 1], which are sampled from a uniform distribu-
tion. Pbesti(t) = (pbest1i (t), pbest

2
i (t), . . ., pbest

n
i (t)) and Gbest(t) = (gbest1(t), gbest2(t),

. . ., gbestn(t)) represent the best previous position of the ith particle and the global best
position of the swarm (all particles), respectively. They are assessed base on a fitness
function. Sig(vdi (t + 1)) is a sigmoid function where Sig(vdi (t + 1)) ∈ [0, 1]. w(t) is an
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inertia weight, which was introduced by Shi and Eberhart [12] as a mechanism to control
the exploration and exploitation abilities of the swarm and eliminate the need for veloc-
ity clamping. The inertia weight controls the momentum of the particle by weighting
the contribution of the previous velocity, namely, by controlling how much memory of
the previous particle direction will influence the new velocity. In this paper, a nonlin-
ear decreasing approach was applied in BPSO to update w(t) in each iteration. In this
approach, an initially large value decreases nonlinearly to a small value. It also allows
a shorter exploration time than a linear decreasing approach, with more time spent on
refining the solution (exploiting). w(t) was initialised with a value of 1.4 and was updated
as follows [13,14]:

w(t+ 1) =
(w(t)− 0.4)× (MAXITER− Iter(t))

(MAXITER + 0.4)
(4)

where MAXITER is the maximum iteration (generation) and Iter(t) is the current
iteration. Figure 1 shows the pseudo code of BPSO.

Figure 1. The pseudo code of BPSO

2.1.1. Investigating the drawbacks of BPSO and previous PSO-based methods. Before at-
tempting to propose IPSO as a suitable method, it was prudent to find the limitations
of BPSO and previous PSO-based methods [6-9]. This subsection investigates the limita-
tions of these methods by analyzing Equation (2) and Equation (3), which are the most
important equations for gene selection in binary spaces. Both of these equations are also
implemented in BPSO and the PSO-based methods.
The sigmoid function (Equation (2)) represents a probability for xd

i (t) to be 0 or 1
(P

(
xd
i (t) = 0

)
or P

(
xd
i (t) = 1

)
). For example,

if vdi (t) = 0, then Sig(vdi (t) = 0) = 0.5 and P (xd
i (t) = 0) = 0.5.

if vdi (t) < 0, then Sig(vdi (t) < 0) < 0.5 and P (xd
i (t) = 0) > 0.5.

if vdi (t) > 0, then Sig(vdi (t) > 0) > 0.5 and P (xd
i (t) = 0) < 0.5.

In addition, P (xd
i (t) = 0) = 1 − P (xd

i (t) = 1). From the analysis, we concluded that
P (xd

i (t) = 0) = P (xd
i (t) = 1) = 0.5 for the initial iteration, because Equation (2) is

a standard sigmoid function without any constraint and no modification. Although the
next iterations potentially influence the P (xd

i (t) = 0) or P (xd
i (t) = 1), the P (xd

i (t) =
0) = P (xd

i (t) = 1) = 0.5 is almost unchanged for its application on gene expression data
because gene expression data is high dimensional and has a large search space. Using this
standard sigmoid function in high-dimensional data only reduces the number of genes to
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about half of the total number of genes, as shown in the experimental results section.
Therefore, Equation (2) and Equation (3) are potentially drawbacks of BPSO and the
previous PSO-based methods in selecting a small number of genes for producing a near-
optimal (small) subset of genes from gene expression data.

2.2. An improved (modified) binary PSO (IPSO). In almost all previous gene
expression data research, a subset of genes was selected for excellent cancer classifications.
In this article, we propose IPSO for selecting a near-optimal (small) subset of genes in
order to overcome the limitations of BPSO and previous PSO-based methods [6-9]. IPSO
differs from the BPSO and PSO-based methods in two ways: 1) we introduce a scalar
quantity called the particle speed (s), and 2) we propose a rule for updating xd

i (t + 1).
By contrast, the BPSO and PSO-based methods use the original rule (Equation (3)) and
lack the particle speed implementation. The particles’ speed and rule are introduced in
order to:

1) increase the probability of xd
i (t+ 1) = 0 (P (xd

i (t+ 1) = 0)) and
2) reduce the probability of xd

i (t+ 1) = 1 (P (xd
i (t+ 1) = 1)).

The increased and decreased probability values cause a small number of genes to be
selected and grouped into a gene subset. xd

i (t+1) = 1 means that the corresponding gene
is selected. Otherwise, xd

i (t+1) = 0 indicates that the corresponding gene is not selected.

Definition 2.1. si is the speed, length or magnitude of Vi for the particle i. Therefore,
the following properties of si are crucial:

1) non-negativity: si ≥ 0;
2) definiteness: si = 0 if and only if Vi = 0;
3) homogeneity: ‖αVi‖ = α ‖Vi‖ = αsi where α ≥ 0;
4) the triangle inequality: ‖Vi + Vi+1‖ ≤ ‖Vi‖+‖Vi+1‖ where ‖Vi‖ = si and ‖Vi+1‖ = si+1.

The particles’ speed and the rule are proposed as follows:

si(t+ 1) = w(t)× si(t) + c1r1(t)× dist(Pbesti(t)−Xi(t))

+c2r2(t)× dist(Gbest(t)−Xi(t)) (5)

Sig(si(t+ 1)) =
1

1 + e−si(t+1)
(6)

subject to si(t+ 1) ≥ 0

if Sig(si(t+ 1)) > rd3(t), then xd
i (t+ 1) = 0; else xd

i (t+ 1) = 1, (7)

where si(t+ 1) represents the speed of the particle i for the t+ 1 iteration. By contrast,
in BPSO and other PSO-based methods (Equations (1)-(3)), vdi (t+1) represents a single
element of a particle velocity vector for the particle i. In IPSO, Equations (5)-(7) are
used to replace Equations (1)-(3), respectively. si(t+ 1) is the rate at which the particle
i changes its position. Based on Definition 2.1, the most important property of si(t + 1)
is si(t+ 1) ≥ 0. Hence, si(t+ 1) is used instead of vdi (t+ 1) so that its positive value can
increase P (xd

i (t+ 1) = 0).
In Equation (5), si(t+1) for each particle is initialised with positive real numbers. The

calculation for updating si(t+ 1) is mainly based on the distance between Pbesti(t) and
Xi(t)(dist(Pbesti(t)−Xi(t))), and the distance betweenGbest(t) andXi(t)(dist(Gbest(t)−
Xi(t))), whereas the original formula (Equation (1)) is used to calculate vdi (t + 1) and is
essentially based on the difference between Pbestdi (t) and xd

i (t), and the difference between
Gbestd(t) and xd

i (t). The distances are used in the calculation for updating si(t + 1) in
order to make sure that Equation (6) is always satisfying the property of si(t+1), namely
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(si(t+1) ≥ 0) and to increase P (xd
i (t+1) = 0). Subsection 2.2.1 explains how to calculate

the distance between two positions of two particles, e.g., dist(Gbest(t)−Xi(t)).
Equations (5)-(7) and si(t) ≥ 0 increase P (xd

i (t) = 0) because the minimum value for
P (xd

i (t) = 0) is 0.5 when si(t) = 0 (minP (xd
i (t) = 0) ≥ 0.5). In addition, they decrease

the maximum value for P (xd
i (t) = 1) to 0.5 (maxP (xd

i (t) = 1) ≤ 0.5). Therefore, if
si(t) > 0, then P (xd

i (t) = 0) >> 0.5 and P (xd
i (t) = 1) << 0.5.

Figure 2 shows that a) Equations (5)-(7) and si(t) ≥ 0 in IPSO increase, and b)
Equations (1)-(3) in BPSO yield P (xd

i (t) = 0) = P (xd
i (t) = 1) = 0.5. As an example, the

calculations for P (xd
i (t) = 0) and P (xd

i (t) = 1) in Figure 2(a) are shown as follows:
if si(t) = 1, then P (xd

i (t) = 0) = 0.73 and P (xd
i (t) = 1) = 1− P (xd

i (t) = 0) = 0.27.
if si(t) = 2, then P (xd

i (t) = 0) = 0.88 and P (xd
i (t) = 1) = 1− P (xd

i (t) = 0) = 0.12.
This high probability of xd

i (t) = 0 (P (xd
i (t) = 0)) causes a small number of genes to

be selected in order to produce a near-optimal (small) gene subset from high-dimensional
data (gene expression data). Hence, IPSO is proposed to overcome the limitations of
BPSO and the previous PSO-based methods and to produce a small subset of informative
genes.

(a) (b)

Figure 2. The areas of P (xd
i (t) = 0) and P (xd

i (t) = 1) based on sigmoid
functions in a) IPSO; b) BPSO. The blue and green colors show the areas
for P (xd

i (t) = 0) and P (xd
i (t) = 1), respectively, and whereas the red color

indicates the part of unsatisfied si(t) ≥ 0.

2.2.1. Calculating the distance of two particles’ positions. The number of different bits
between two particles is related to the difference between their positions. For example,
Gbest(t) = [0011101000] and Xi(t) = [1110110100]. The difference between Gbest(t) and
Xi(t) is diff(Gbest(t) − Xi(t)) = [−1 −1010 −11 −100]. A value of 1 indicates, this
bit (gene) should be selected in comparison with the best position. However, if it is not
selected, the classification quality may decrease and lead to a lower fitness value. In
contrast, a value of −1 indicates that this bit should not be selected in comparison with
the best position, but it is selected. The selection of irrelevant genes makes the length of
the subset longer and leads to a lower fitness value. The number of 1 is assumed to be a,
whereas the number of −1 is b. We use the absolute value of a− b (|a− b|) to express the
distance between the two positions. In this example, the distance between Gbest(t) and
Xi(t) is dist(Gbest(t)−Xi(t)) = |a− b| = |2− 4| = 2.
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2.2.2. Fitness functions. The fitness value of a particle (a gene subset) is calculated as
follows:

fitness(Xi) = w1 × A(Xi) + (w2 (n−R(Xi)) /n) (8)

in which A(Xi) ∈ [0, 1] is the leave-one-out-cross-validation (LOOCV) classification ac-
curacy that uses the only genes in a gene subset (Xi). This accuracy is provided by
support vector machine (SVM) classifiers. R(Xi) is the number of selected genes in Xi.
n is the total number of genes for each sample. w1 and w2 are two priority weights,
which correspond to the importance of the accuracy and the number of selected genes,
respectively. In this article, the accuracy is more important than the number of selected
genes. Therefore, we selected the value of w1 in the range [0.6, 0.9] and set w2 = 1− w1.
The value of w2 was set to 1−w1 to obtain the remaining percentage of weights after the
value of w1 was chosen.

3. Experiments.

3.1. Data sets and experimental setup. The gene expression data sets used in this
study are summarised in Table 1. They included binary- and multi-class data sets that
have thousands of genes (high-dimensional data). All of the experimental results reported
in this article are acquired using Rocks Linux version 4.2.1 (Cydonia) on the IBM xSeries
335 (cluster node that contains 13 compute nodes). Each compute node has four high
performances and 3.0 GHz Intel Xeon CPUs with 512 MB of memory. Thus, a total of
52 CPUs for the 13 compute nodes were used. The IBM xSeries 335 with 52 CPUs was
needed to experiment with IPSO and BPSO because both of these methods have huge
computational times and run on high-dimensional data. The computational power of IBM
xSeries 335 can reduce the computational time of both methods on high-dimensional data.
In order to make sure the running time of every run used the same capacity of CPU usage,
each run was independently experimented on only one CPU, which was important because
the comparison of running times between IPSO and BPSO was used for evaluation of their
performances.

The experimental results using IPSO are compared with an experimental method
(BPSO) and other PSO-based methods [6-9]. We first applied the gain ratio technique
for pre-processing in order to pre-select the top 500-ranked genes, which were then used
by IPSO and BPSO. Next, SVM was used to measure the LOOCV accuracy on the
gene subsets produced by IPSO and BPSO. In order to avoid selection bias, the LOOCV
was implemented in exactly the same way as described by Chuang et al. [8]. Only one

Table 1. The description of gene expression data sets

Data Number of Number of Number of
Source

Sets Samples Genes Classes
Leukemia 72 7,129 2 http://www.broad.mit.edu/cgi-bin/

cancer/datasets.cgi
Lung 181 12,533 2 http://chestsurg.org/publications/

2002-microarray.aspx
MLL 72 12,582 3 http://www.broad.mit.edu/cgi-bin/

cancer/datasets.cgi
SRBCT 83 2,308 4 http://research.nhgri.nih.gov/

microarray/Supplement/
Note:

MLL = mixed-lineage leukemia.

SRBCT = small round blue cell tumor.
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cross-validation cycle (LOOCV, outer loop) was used and not two nested ones. Several
experiments were independently conducted 10 times on each data set using IPSO and
BPSO. An average result of the 10 independent runs was obtained. Two criteria were
considered to evaluate the performances of IPSO and BPSO: LOOCV accuracy and the
number of selected genes. In addition, the running times were also measured for the
comparison between IPSO and BPSO. High accuracy, a small number of selected genes,
and low running time were needed for an excellent performance. Table 2 contains the
parameter values for IPSO and BPSO, which were chosen based on the results of prelim-
inary runs. The numbers of particles and iterations to reach a good solution are problem
dependent [15]. If the numbers were large, IBPSO needed more time to complete its
process. If the numbers were small, IBPSO took short period of time, but it could not
found a good solution. Therefore, we choose intermediate values for the number of par-
ticles and iterations betweb 100 and 300. The value of w1 is larger than w2 because the
classification accuracy is more important than the number of selected genes. We tried to
get the best value based on trial and error approaches. IBPSO and BPSO were analyzed
using different parameters values. So far, the best values for both w1 and w2 using these
methods are 0.8 and 0.2, respectively. When w2 was more than w1, the number of selected
genes also increased. c1 and c2 had the same value (2) so that particles were attracted
towards the averages of Pbesti(t) and Gbest(t) [15].

Table 2. Parameter settings for IPSO and BPSO

Parameters Values
The number of particles 100
The number of iteration (generation) 300
w1 0.8
w2 0.2
c1 2
c2 2

3.2. Experimental results. Based on the standard deviation of the classification accu-
racy shown in Table 3, the results from IPSO were consistent on all data sets. Interestingly,
all runs achieved 100% LOOCV accuracy with less than 30 selected genes on all of the
data sets. Moreover, the standard deviations of the number of selected genes were less
than 1.6 for all of the data sets except for the SRBCT data set (8.32 standard deviations).
All of the best results achieved 100% LOOCV accuracy with not more than 6 selected
genes, indicating that IPSO efficiently selected and produced a near-optimal gene subset
from high-dimensional data (gene expression data).
Practically, the best subset of a data set is first chosen and the genes in it are then

listed for biological usage. These informative genes among the thousand of genes may
be excellent candidates for clinical and medical investigations. Biologists can save time
because they can directly refer to the genes that have higher possibilities of being useful
for cancer diagnoses and as drug targets in the future. The best subset is chosen based
on the highest classification accuracy with the smallest number of selected genes. The
highest accuracy provides confidence for the most accurate classification of cancer types.
Moreover, the smallest number of selected genes for cancer classification can reduce the
cost in clinical settings.
Figure 3 shows that the averages of the fitness values of IPSO increased dramatically

after a few generations on all of the data sets. This trend indicates that IPSO is appro-
priate for selecting a small number of genes from high-dimensional data (gene expression
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Table 3. Experimental results for each run using IPSO on leukemia, lung,
MLL and SRBCT data sets

Run#
Leukemia Lung MLL SRBCT

#Acc #Selected #Acc #Selected #Acc #Selected #Acc #Selected
(%) Genes (%) Genes (%) Genes (%) Genes

1 100 4 100 9 100 7 100 10
2 100 2 100 6 100 6 100 22
3 100 4 100 6 100 7 100 25
4 100 4 100 5 100 6 100 8
5 100 3 100 6 100 8 100 28
6 100 4 100 8 100 4 100 12
7 100 4 100 4 100 5 100 14
8 100 3 100 5 100 7 100 26
9 100 4 100 7 100 8 100 24
10 100 3 100 6 100 9 100 6

Average 100 3.50 100 6.20 100 6.70 100 17.50
± S.D. ±0 ±0.71 ±0 ±1.48 ±0 ±1.50 ±0 ±8.32
Note: Results of the best subsets shown in shaded cells. A near-optimal subset that produces
the highest classification accuracy with the smallest number of genes is selected as the best subset.
#Acc and S.D. denote the classification accuracy and the standard deviation, respectively, whereas
#Selected Genes and Run# represent the number of selected genes and a run number, respectively.

Table 4. Comparative experimental results of IPSO and BPSO

Data
`````````````Evaluation

Method IPSO BPSO
Best #Ave S.D Best #Ave S.D

Leukemia
#Acc (%) 100 100 0 98.61 98.61 0
#Genes 2 3.50 0.71 216 224.70 5.23
#Time 2.28 2.31 0.02 13.86 13.94 0.03

Lung
#Acc (%) 100 100 0 99.45 99.39 0.18
#Genes 4 6.20 1.48 219 223.33 4.24
#Time 8.22 8.31 0.05 110.71 111.07 0.23

MLL
#Acc (%) 100 100 0 97.22 97.22 0
#Genes 4 6.70 1.50 218 228.11 4.86
#Time 2.24 2.72 0.25 19.37 19.90 0.35

SRBCT
#Acc (%) 100 100 0 100 100 0
#Genes 6 17.50 8.32 206 221.30 7.35
#Time 5.52 5.96 0.39 44.86 44.88 0.01

Note: The best result of each data set shown in shaded cells. It is selected based on the

following priority criteria: 1) the highest classification accuracy; 2) the smallest number of

selected genes. #Acc and S.D. denote the classification accuracy and the standard deviation,

respectively, whereas #Genes and #Ave represent the number of selected genes and an average,

respectively. #Time stands for running time in the hour unit.

data) to increase the classification accuracy. A high fitness value is obtained by a com-
bination of a high classification rate and a small number (subset) of selected genes. The
condition that the proposed particle speed should always be positive real numbers was
started in the initialisation method, and the new rule for updating the particles’ positions
provoked the early convergence of IPSO. The fitness value of IPSO increased slightly for
further generations with all of the data sets, indicating that IPSO explored to find a good
solution. By contrast, the averages of the fitness values of BPSO were not improved until
the last generation due to P (xd

i (t) = 0) = P (xd
i (t) = 1) = 0.5.
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Figure 3. The relation between the average of fitness values (10 runs on
average) and the number of generations for IPSO and BPSO

As shown in Table 4, the classification accuracy, running time, and the number of
selected genes of IPSO were superior to BPSO in terms of the best, average, and standard
deviation results on all of the data sets. Moreover, IPSO also produced a smaller number
of genes compared to BPSO.
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The running times of IPSO were also lower than BPSO in all of the data sets. IPSO
can reduce its running times due to the following reasons:

1) IPSO selects a smaller number of genes compared to BPSO;
2) The computation of SVM is fast because it uses a small number of features (genes)

that were selected by IPSO for the classification process;
3) IPSO only uses the speed of a particle for comparison with rd3(t), whereas BPSO

incorporates all elements of a particle’s velocity vector for the comparison.

For an objective comparison, we compared our work with previous related works that
used PSO-based methods [6-9], as shown in Table 5. Two criteria were used to evaluate
the performance of IPSO and the other methods: classification accuracy and the number
of selected genes. Higher accuracy with a smaller number of selected genes is needed
to obtain superior performance. For all of the data sets except the Lung data set, the
averages of the number of the selected genes of our work were smaller [6-9]. Our method
also resulted in higher averages of the classification accuracies on all data sets compared to
the other methods. The most recent work came up with similar LOOCV results (100%) to
ours on Leukemia, MLL, and SRBCT, but they used more than 400 genes to obtain these
results [8]. Moreover, they did not have statistically meaningful conclusions because their
experimental results were obtained by only one independent run on each data set and
not based on average results. The average results are important because their proposed
method is a stochastic approach. In additionally, the global best particle position in
their approach is reset to the zero position when its fitness values do not change after
three successive iterations. Theoretically, their approach is almost impossible to result in
a near-optimal gene subset from high-dimensional spaces (high-dimension data) because
the global best particles’ positions should allow for new exploration and exploitation
for finding a near-optimal solution after its position is reset to zero. Overall, our work
outperformed the other methods in terms of the LOOCV accuracy and the number of
selected genes. The running times between IPSO and these works cannot be compared
because they were not reported.

Table 5. A comparison between our method (IPSO) and previous PSO-
Based methods

Data
`````````````Evaluation

Method
IPSO

IBPSO PSOTS PSOGA GPSO
[8] [7] [9] [6]

Leukemia
#Acc(%) (100) 100 (98.61) (95.10) –
#Genes (3.50) 1034 (7) (21) –

Lung
#Acc(%) (100) – – – (99)
#Genes (6.20) – – – (4)

MLL
#Acc(%) (100) 100 – – –
#Genes (6.70) 1292 – – –

SRBCT
#Acc(%) (100) 100 – – –
#Genes (17.50) 431 – – –

Note: The results of the best subsets shown in shaded cells. It is selected based on the following

priority criteria: 1) the highest classification accuracy: 2) the smallest number of selected genes.

‘–’ means that a result is not reported in the previous related work. A result in ‘( )’ denotes an

average result. #Genes and #Acc represent the number of selected genes and the classification

accuracy, respectively.

IBPSO = An improved binary PSO.

PSOGA = A hybrid of PSO and GA.

PSOTS = A hybrid of PSO and tabu search.

GPSO = Geometric PSO.
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According to Figure 3 and Tables 3-5, IPSO is reliable for gene selection because
it produced the near-optimal solution from the gene expression data, due to the pro-
posed particle speed and the introduced rule that increased the probability xd

i (t+ 1) = 0
(P (xd

i (t+1) = 0)). The particle speed was introduced to provide the rate at which a par-
ticle changes its position, whereas the rule was proposed to update the particle positions.
The increased probability value for xd

i (t + 1) = 0 causes the selection of a small number
of informative genes and produces a near-optimal subset (a small subset of informative
genes with high classification accuracy) for cancer classification.

4. Conclusion. In this paper, IPSO was proposed for gene selection on four gene ex-
pression data sets. Overall, based on the experimental results, the performance of IPSO
was superior to BPSO and PSO-based methods in terms of the classification accuracy and
the number of selected genes. IPSO was excellent because the probability xd

i (t + 1) = 0
was increased by the particle speed and the introduced rule, which were proposed to yield
a near-optimal subset of genes for better cancer classification. IPSO also features lower
running times because it selects a smaller number of genes compared with BPSO. In fu-
ture work, a modified representation of the particle positions in PSO will be proposed to
reduce the number of gene subsets in solution spaces.
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