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ABSTRACT. In this paper, the basic concepts for the design of a discrete-time constrained
predictive controller for a nonlinear process are presented in a didactic way. The con-
troller uses a standard predictive algorithm, whose solution is obtained by solving a well-
known convex quadratic programming (QP) problem. This controller combines the sim-
plicity of the linear models with the essential nonlinearities of the process using an on-line
linearised model of the process for the output prediction. The controller has been develo-
ped for a distillation column, presenting as main advantages the easy of tuning and its
adaptation to different operating points without need of readjusting the controller parame-
ters. Simulation results for diverse studied cases are presented along with experimental
tests carried out on a pilot distillation plant for the validation of the mathematical model.
Keywords: Predictive control, Nonlinear systems, Distillation column

1. Introduction. Distillation is probably one of the most employed operations in the
chemical, pharmaceutics and oil industry to separate different components from a flow or
for product purification. This process is very energy-intensive [21], so designing a high
performance control system for a distillation column is therefore important for improving
product quality and energy saving.

A modern control algorithm that has had success in industry is predictive control
(MPC). The original industrial algorithms [5,13] use a finite impulse or step response
model to predict the process behaviour, i.e., they can only capture local (linear) and
open-loop stable dynamics. However, distillation processes feature complicated multi-
variable nonlinear dynamics, for which it is expensive and time-consuming to develop
simplified models that can be used for MPC. Moreover, a nonlinear model of the process
is a better approach to address nonlinearities, particulary if the column must operate
at different purity levels, and to develop soft-sensors (observers) for estimating product
purity accurately [6,15].
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The use of a nonlinear model for the output prediction involves computational issues
related to the cost and the ability to solve the optimisation problem (nonlinear program-
ming), where convergence to a globally optimal solution cannot be guaranteed having
implications for closed-loop stability. For this problem, different solutions in the litera-
ture have been proposed, mainly finding feasible local solutions using different algorithms
to solve the nonlinear optimisation problem, e.g., [17,20]. Nevertheless, the elevated com-
plexity of these algorithms introduce computational delays, having in consequence long
processing times and difficulties for real-time implementation.

On the other hand, there are several papers about distillation control but mainly in
simulation [3,10]. Most of MPC applied to a distillation process use linear models lowering
the computational burden but restricting the operation region [1,7]. Another approach is
to work with different local models of de plant and scheduler coordinates the local models
according to the actual operation point of the plant to enlarge the operation region [4],
but the principal drawback of the paper is that it uses a DMC algorithm which only allows
open-loop stable models for prediction.

The goal of this paper is to develop an improved discrete-time MPC for a binary distil-
lation column. The controller uses a linearised model for prediction in each sampling time
as an approximate alternative to the constrained nonlinear MPC. The use of a lineralised
model in each sample time provides low computational requirements (compared with non-
linear programming) and guarantees less sensitivity to set point changes (compared with
lineal MPC). Another contribution is to establish a methodology for the implementation
of MPC to a nonlinear process, in particular to binary distillations columns. Furthermore,
the paper is presented as a practical guide for implementing MPC algorithms to nonlinear
processes, and it allows to visualise the ease of the technique, to both, process engineers
or students of control systems.

2. Model-Based Predictive Control. The methodology of the controllers belonging
to the MPC family is characterised by the following steps [14,19]: (i) at each sampling time
k, a finite horizon optimal control problem is solved over a prediction horizon n,, using the
current state of the process as the initial state; (ii) the on-line optimisation problem takes
account of system dynamics, constraints and control objectives, the optimisation yields
an optimal control sequence, and only the control action for the current time is applied
while the rest of the calculated sequence is discarded; (iii) at the next time instant the
horizon is shifted one sample and the optimisation is restarted with the information of
the new measurements, using the concept of receding horizon.

2.1. State-space formulation. Consider the following linear time-invariant determin-
istic discrete-time system represented by use of a state-space model:

Xpy1 = Axy + Bug;  y, = Cxp + dy, (1)

where x;, € R", y, € R™ and u, € R" are the state vector, the measured output
and the process input respectively. By iterating the model, the output prediction with a
prediction horizon n, and a control horizon n. is given by (n, > n.):

where Lk; AJ;C, F and G are defined as follows:

T T
X)k: Yi+1k o0 Yktnplk| AJkZ[Auk\k Auk+nc\k] ;
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2.2. Constraints. The constraints considered are: limits in the control signal (U,
Unmax), limits in the slew rate of the actuator (Aumin, Alpya,) and limits in the output
signals (¥ min» Ymax)- Lhen, for a process with n, inputs, n, outputs, the constraints along
the horizons n, and n. can be expressed as:

RAJ]C S C, (3)
where
[ Incxnc i [ 1nu Aumax i
_InC XMNe ]-nu Aumin
— T . _ lnuUmax - lnuukfl
R N -T ' €= _]-nuUmin + ]-nuukfl
G 1, Ymax — F

L -G . L _]-nmein + F -

1,, is an (n,xn,)xn, matrix formed by n. n, xn,, identity matrices; 1,, is an (n,xn, ) xn,
matrix formed by n, n, x n, identity matrices; and T its a lower triangular block matrix
whose nonnull block entries are n. X n. identity matrices.

2.3. Control signal. The set of control increments AJIC is calculated by minimising
an objective function over the prediction horizon. In the context of predictive control,
it is common to take the following quadratic performance index as the objective to be
minimised at each sample [14]:

np ne—1
J = Z (Wi — yk+j\k)2 + Z A (A“k+flk)2 ’ (4)
j=1 =0

where wy, is the reference trajectory, the second term in Equation (4) is the control effort
and ) is the weighting sequence factor. wy, is the desired output in the closed-loop of the
system, and is given by:

Wik = Skt — & Sk —yp); 1 <i<my, (5)

where s; is the set point and 0 < a < 1 determines the smoothness of the approach from

v, to si. The parameter o will have a substantial impact, but is rarely discussed except
in PFC approaches [18].
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The vector of future increments can be calculated as follows:

1
Auj_, = arg ming Ayl HAwe 1 + T Ay 1 +b o
_)uk—l

subject to ng_l <c;
H=2(G'G+I); f=2(F-W)'G; b=(F-W) (F-W).

Therefore, the solution takes the form of a standard Quadratic Programming (QP) for-
mulation. The objective function in Equation (6) is convex since it is quadratic with
positive definite Hessian (H > 0) and linear constraints. Given these conditions, it is
a well known result that a local minimum, if exists, is also a global minimum (see, for
example, Theorem 4.3.8 in [2]).

3. Mathematical Model of a Distillation Column. The dynamical model of a dis-
tillation column consists in a set of differential equations derived from mass and energy
balances in each stage of the column, and a set of algebraic equations used to describe
the chemical and thermodynamical properties. The mathematical model presented here
takes into account the following assumptions: (A1) the mixture is binary and ideal; (A2)
the purity of the components is 100%; (A3) constant pressure along the column; (A4)
constant molar flows; (A5) the molar vapour holdup is negligible compared with the mo-
lar liquid holdup; (A6) the volumetric mass and liquid hold up in each tray are constant;
(A7) the feed temperature is at bubble point; (A8) the boiler is a theoretical tray; (A9)
there are no losses of heat; (A10) the condenser is total.

3.1. Equilibrium relationship. When both vapour and liquid are in intimate contact
for a long period of time, equilibrium is attained between the two phases. If vapour-liquid
equilibrium exists then the vapour composition g; and the liquid composition x; can be
computed by correlating equations of the form (y;*", 2%") = K;(T;, Pr), where T; is the
temperature, Pr is the total pressure, y;?" and x;” are the vapour and liquid composition
respectively. The equilibrium constant K; depends of the thermodynamical properties of
the mixture. For an ideal mixture:

y; " BT, )
™ Pr’

2

Ki:

where P; is the vapour pressure of the light component.

In order to deal with mass transfer effects, the Murphree’s efficiencies are introduced.
The Murphree stage efficiency in the stripping (rectifying) section E; (e;) is the ratio
between the actual change in vapour (liquid) composition between two stages and the
change that would occur if the vapour (liquid) was in equilibrium with the liquid (vapour)
leaving the stage. In mathematical form:

E — Yi — Yi+1 | Ty — T 8
1T equ ) 1 equ . ( )
Y T VYit Ty — Ti-1

3.2. Flow rates, masses and input parameters. The distillation column has internal

and externals flows of vapour and liquid. Considering the assumptions A1 to A10, they

can be computed by the following equations [16] (see appendix for nomenclature):
Ve=Vs+(1—q)F; (9)
Lr=(1—R) Vg (10)
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@B
Vs = ; 11
ST AHxy, + AHYP (1 — 1) (11)
Ls = Lg+ qF; (12)
Zr1 1-— Tr1
F=F Wt 1-Wt ; 13
el 1= W] [ Lo, (13
D = (1 - R)Vg; (14)
B = (Ls— Vi) Vg (15)
The molar mass liquid of the light component can be obtained with [16]:
P1 P2 P2
My = Vi - . 1

o= | (3, = 30 ) W0 ] (10)

The quality of the input molar flow rate is described by the following equation:
Cpc (Tbc - Tf)
AH."?

The molar composition of the light component in the feed can be determined by its
weight fraction:

g=1+ (17)

(Mo — My) Wty + Myt

3.3. Mass balances. Equations (19) and (20) describe the principle of the matter con-
servation for an ideal mixture. For the light component:

]\:/[1:V2—LI_D;
M=V —Li=Vi+Lia+n(@)F; i=1,...,n—1 (19)
M, =L, -V, — B;

A:/[lx.l = Voys — L1y — Dxy;
szz = VisrViy1n — Lizi = Viyi+ Lz + 7 (i) Fop; i=1,...,n—1 (20)
Mnxn - Lnflxnfl - Vnyn - an;

where 7 (i) = 0 when i # f and 7 (i) = 1 when 7 = f.
Considering assumptions A1 to A10, the model given in Equation (20) (expressed in
terms of the light component) can be reduced to:

Mz, = Vg (y2 - £E1) ;

Miz; = Vi (Yiy1 — ¥i) + Lr (w1 —25); i=2,...,f =1
Mf:'vf:VSny—VRyf—l—LRxf,l—Lsxf+Fxf; (21)
M;i; = Vs (Yigr —¥i) + Ls (w1 —25); i =f+1,...,n—1

Mnxn — VS (xn - yn) + LS (xnfl - xn) .

Finally, the assumption of a constant vapour flow through the distillation column,
makes negligible the energy balance, then, it can be discarded from the formulation of
the model [16].

Summarising, the dynamical model of the distillation column considered for the MPC
control design, is given by Equations (9)-(18) and the set of differential-equations (21).

3.4. Experimental validation of the model. In order to validate the mathematical
model several experiments were made on a distillation pilot-plant, e.g., Figure 1; one of
these experiments is presented in this section. The pilot plant for the experiments has
n = 12 stages, 10 trays, the feed tray is located in the 7th stage.
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Ficure 1. Distillation pilot-plant

The considered mixture was Methanol-Ethanol, whose thermodynamic and chemical
properties (Ty, pe, AHYP My, Cp.) can be found in [11]. The purity of the components
was 96%. Nevertheless, they were both assumed as pure components to exclude a third
element (water) in the equilibrium relationship.

From the temperature measurements of the condenser, the boiler and the trays 4, 6,
7, 9; the molar compositions were obtained using the equilibrium relationship (7), with
Pr =101.3 kPa.

The input values for the process (Qp, Fyy and R) were used to calculate the molar flows
(Vg, Lg, Vs, Ls, F', D and B) using Equations (9)-(15). The initial operation volumes of
the components in F, Vi (Methanol, 2000 ml) and Vg, (Ethanol, 2000 ml), were used to
calculate the Methanol weight fraction in F. Finally, the volumes of the components in
the boiler, V} 15 (Methanol, 2000 ml) and V3,2 (Ethanol, 2000 ml) were used to calculate
the liquid molar mass of Methanol in the boiler using Equation (16).

The sampling period for temperature measurements was 1 min. The samples were taken
when all the stages of the distillation column reached the equilibrium. The elapsed time
when the process reached this point was discarded, the experiment began (¢ = 0) when
the first drop of reflux was obtained.

The comparison between the output of the mathematical model and the experimental
measurements are shown in Figure 2. Although there is not a perfect fit of the model,
it is useful to test the control strategy. The error between the experimental data and
the mathematical model in each tray where between 1.08% (tray 6) and 2.30% (boiler).
These errors depend in many factors, mainly in the assumptions A1 to A10. The math-
ematical model can be improved considering the energy balance, the vertical condenser
with subcooling and the specific geometry and configuration of the boiler as in [8].

4. Controller Design. The control objective is to regulate the liquid compositions at
the condenser (x;) and the boiler (z12). In this section the steps needed for a successful
design are presented. It is noted here that these are particularised for a distillation column
but they can be generalised for a range of nonlinear process.
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FIGURE 2. Model validation: experimental data vs. mathematical model

4.1. Variable selection. This step involves the selection of manipulated, controlled
and non-manipulated variables (disturbances). Although the design may change over the
course of the controller development and implementation, it will be strongly affected by
the decisions taken in the initial design.

The standard configuration (L — V') of dual control is chosen, so the classification of
the process’ variables in the distillation column are:

e Controlled variables: condenser (z;) and boiler (z,5) compositions.
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Ficure 3. Distillation column step

e Manipulated variables: the ON/OFF rate of the reflux valve (R) and the heating
power applied to the boiler (Qg).
e Measurable disturbance: volumetric feed flow (Fy/).

Note that F' is directly affected by the volumetric flow Fy (see Equation (13)) and is
a non-manipulated variable; i.e., it is an uncontrolled input and it can be considered a
measurable disturbance to the process.

4.2. Step response of the process. In this experiment step changes to the manipulated
variables (R and @)p) and to the measured disturbance (Fy ) were applied: a step in the
ON/OFF ratio of the reflux valve R (from 30 to 70% using a PWM signal), a step on the
heating power Qg (from 750 to 775 watts) and a step on the volumetric flow Fy (from 20
to 21 ml/min). The steps were applied when the process was in a steady-state operation
point. The step responses are shown in Figure 3.

Note that the steps applied on Fy and ()5 have low effects over the outputs x; and z9
compared with the effect of the step on R. These effects should be compensated with the
weights of the control moves () in the cost function Equation (4).

Also, maximum slew rates and constraints for each variable are determined, namely:
0<z112<1,0<Qp <2500, —10 < AQp < 10, R is an ON/OFF variable manipulated
with a PWM signal.

4.3. Model for prediction. The model for prediction is the most important component
in this family of controllers. The decision of which model to use and which model to
discard depends largely on the complexity of the process dynamics and in the available
amount of time for computing the predictions and the optimisation.

In this work an on-line linearisation approach is used. This means that in every sampling
period the plant is linearised to calculate an optimised input (AJ;C) In order have a
suitable prediction model for this approach, the mathematical model presented in Section
3 must be linearised.
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First, the vapour-liquid equilibrium that describes the relation between the vapour and
liquid compositions (y; and z;) on each stage ¢ of the column is given by the nonlinear
expression:

axT;

= i=1,... 22
1"—(0(—1).%'2, ‘ ’ T ( )

Yi
where « is the relative volatility (which depends on the mixture composition). Linearising
this equation:

8yi (6]

Ox; 1+ (a— l)x;?‘]Q'

Then, the system in Equation (21) yields a nonlinear model where x € R* (n = 12)
is the state vector composed by the tray compositions z; (i = 1...12), the input vector

isu=(Lg Vs F)" andy is the process output. The model can be lineralised around

the point (x,u) = (x*,u*) performing the following operations: A = g—){ (x*,u*), B =
% (x*,u*), C = % (x*,u*) and D = % (x*,u*).
Explicitly, the matrix A has dimension n X n and is only non-zero for the entries:
( Lk ( Veyin
— 1=2,... - =1
LMi 3 ) yIUf, VM ¢ )
A= MS i=mng+1,...,n—1, A= };a;“ 1=2,...,n5 1,
LSl . VS?J;EH
= i =n. ) = -1
|17 i=n Sy P=nf...,N
( Lr+ D
— 1 =1,
M;
Lr + Vry;
_T 1 = 2, .y nf 1,
. LS + \Z/Ryz* -
Am’— < —T Z—Tlf,
Ls + Vsy; .
—— i=ng+1,...,n—1,
_B + sty;-k i=n
\ Mi )
The matrix B has dimension n x 3 and its ¢th row B; is:
(1

(Yi1 — @) (1—Q)(yi+1—x§‘)]; 1=1,
Yi+1 = Yi) (1—Q)(yi+1—yi)]; 1 <1< ny,
yier =) 2 —qui—(1—qy |y i=ny

Yir1 — Yi) Q(ﬁ;’ll—ﬁf) ]; ny <i<mn,

—y) q@, —a7) ]; i=n
The matrix C is an n X n matrix and D = 0.

4.4. Tuning parameters of the controller. The selected prediction and control hori-
zons are n, = 10 and n, = 5. Longer predictions should be avoided because de lineralised
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internal model could underestimate the dynamics of the real process. Note that the con-
trol horizon should not be greater than the prediction horizon to structure the control
signal.

The parameter « is used to build the reference trajectory in Equation (5) and it was
selected to be 0.7 since it gives a good ratio approach-time/smoothness [18]. Because the
process has two inputs, A in Equation (6), is a 2 x 2 matrix: diag ([Ag Ag|), where Ap =1
is the weight used to penalise the control effort of the reflux electro-valve and A\, = 0.001
is the weight used to penalise the control effort of the power of heating. These weights
should compensate the effects noticed in Section 4.2. Finally, the sampling time is 0.2
min to update the linearised model in short periods of time.

The performance of the predictive controller was compared with a standard PI con-
troller. The tuning parameters of the PI controllers are for the reboiler P = 200, I = 1
and for the condenser P = 2000 and I = 5000. The PI design does not take explicit ac-
count of constraints, and thus ad hoc mechanisms are required; typically input saturation
with some form of anti-wind-up will be used.

Once the control signal for the reflux valve is calculated, it should be converted to a
pulse-width modulation signal. This is because the reflux valve is an ON/OFF three-way
electro-valve.

Note on closed-loop stability. The methods described in this paper do not guaran-
tee, a priori, closed-loop stability. However, this is normal with GPC/DMC and indeed
MPC is normally employed without this guarantee (see Section 7 of [12]). Algorithms
which give a priori stability gaurantees, such as those deploying a terminal constraint [9],
require far more complex constraint handling and optimisation procedures. The authors
believe that the methods presented here are important because of their ability to strategi-
cally ensure constraint satisfaction, which is often the main motivation for choosing MPC,
and moreover, this is achieved without incurring excessive coding complexity or a high
computational burden.

5. Numerical Simulations. The MPC controller designed in Section 4 will be used to
control the distillation process given by the mathematical model in Section 3. In order
to test the regulation and tracking capabilities of the proposed controller, two numerical
simulations were carried out. These are described below.

5.1. Regulation capabilities. The aim of this test is to show the controller performance
in presence of disturbances (changes in the feed flow Fy ) without changes in the set-point.

The simulation began when the column have reached the steady-state operation point.
The initial feed flow was 20 ml/min and the initial conditions of the states (compositions)
were:

xo = [0.942,0.915,0.9, 0.865, 0.82, 0.81, 0.804, 0.73, 0.722, 0.65, 0.624, 0.565]”

At ¢ = 50 min, the system was disturbed with a volumetric feed step from Fy = 20
ml/min to Fyy = 30 ml/min. At ¢ = 150 min the volumetric feed flow was changed to
Fy = 50 ml/min (a double increase than the previous one). Finally, at ¢ = 250 min the
feed flow was changed to F}y = 30 ml/min.

The simulation results are shown in Figure 4. Different changes in the volumetric feed
flow Fy can be compensated by the predictive controller. This can be done because the
volumetric feed flow is used as a feedforward variable to compute the output prediction and
the control signal. The compositions are practically not affected by the step disturbances
in Fy using the predictive control.

On the other hand, compensation of the volumetric feed flow can not be done with
the PI controller because, for the the PI controller design, Fy, is assumed as an operation
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F1GURE 4. Regulation case

condition. Large disturbances (changes of the volumetric feed flow), as presented in Figure
4, destabilises the PI controller.

5.2. Tracking capabilities. The aim of this test is to show the controller performance
in presence of set-point changes; i.e., how MPC allows low sensitivity to set-point changes
for a nonlinear process.

As in the previous case, the simulation began when all the stages of the column have
reached the steady stage operation. The initial feed flow Fy was 20 ml/min and did not
change during the simulation. The initial conditions of the states (compositions) were the
same as in the previous case.

When the simulation began (at ¢ = 0 min), step changes in the condenser-composition
(5" = 0.98) and in the boiler-composition (z§5 = 0.55) were demanded. Once a new
steady-state operation point has been reached (at ¢t = 50 min), a gradual change in the
boiler-composition was demanded from z$§ = 0.55 until 25§ = 0.5. A new gradual
change was demanded in the condenser-composition (at ¢ = 140 min) from 2§ = 0.98
to 3¢ = 0.96. Two more step changes were demanded in the composition: the first
at t = 200 min, from 25 = 0.96 to x{* = 0.92 and the second at ¢ = 300 min, from
55t = 0.5 to z54 = 0.4. Finally, a smooth condenser’s composition change was demanded
at t = 330 min from z5°* = 0.92 to 2§ = 0.94.

Figure 4 shows that, with the predictive control, the process takes a shorter time
(compared with the PI controller) to become stabilised. The regulation of the condenser
composition is a harder task for the controller due the ON/OFF effect of the reflux electro-
valve, nevertheless, the process outputs reach the set-points during all the simulation time.

The PI control reach the set-points in the first part of the simulation (f < 200 min).
When changes in the set-points are smooth the PI controller does not have tracking
problems, leading the process outputs to reach them. But it is not performant when big
changes in the set-points are made (¢ = 200 min, ¢ = 300 min). That is because in the
attempt to take the outputs to the new set-points, the PI controller calculates control
signals that exceed the allowed limits of these variables. Then, PI control signals saturate
at their limits, whereas the MPC “anticipates” the violation of these constraints. Also,
the PI controller was designed for a specific operating point, while the MPC controller
is redesigned in each sampling time because of the on-line linearisation of the prediction

model.
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FI1GURE 5. Tracking case

TABLE 1. Mean values of the cost J for the control simulations

MPC Controller PI Controller

T X192 X T12
Regulation 0.22 0.12 1.23 0.57
Tracking  0.85 0.53 6.45 2.5

In Figure 5, it can be seen that slow gradual changes are an easier task for both con-
trollers. This is because the changes in the set-points are smoother. For that reason, the
PT controller calculates smoother control signals, with no need to violate the constraints.
In spite of it, the PI control has a steady-state error because it is working in a different
operating point for witch it was designed. Whereas, for the MPC control, the greater
problem is the inherent noise caused by the loss of information when the signal control is
converted to pulses.

For both cases (regulation and tracking), the running costs which quantifies the per-
formance of the controllers, are measured using (4) and are presented in Table 1.

It is clear that this strategy can cope with measurable disturbances and different op-
erating points of the process with no need of readjusting the controller. The proposed
algorithm constitutes an alternative to nonlinear MPC with the advantage that the online
linearisation keeps the computational burden low solving a linear MPC problem (instead
a nonlinear one) each sampling time.

6. Conclusions. An improved discrete-time model-based predictive controller with con-
straints for a distillation process was developed. The control objective was to regulate the
liquid compositions at the condenser and the boiler. The MPC controller was compared
with a conventional PI controller. The implementation of the algorithms were presented
in a didactic way which allows meaningful and versatile learning of this technique. The
methodology presented for the incorporation of constrained predictive algorithms to the
distillation process can be easily extended to other systems.

The model used for the simulation of the distillation column is a simplified model
that reproduces the nonlinearities and the directionality of the process. The model was
successfully validated with experimental data.
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The main feature of the proposed MPC control lies in the fact that it uses an on-line
linearisation of the nonlinear model of the column. This ensures a solution to the min-
imisation problem (QP), saving computing time and avoiding the solution of a nonlinear
optimisation problem. In contrast, when nonlinear programming is used, the number of
numerical operations increases, leading to computational delays (with no guarantee to
find an optimal solution) that can easily arise from accumulated errors and, with that,
a degradation of the process performance. On the other hand, when linear MPC is used
to control a nonlinear process the tuning normally is done for an operating point; as the
set-points are modified, the poor tuning originates a loss of yield in the controller, causing
a high variability in the controlled outputs that can even arise in instability.

The proposed controller was simulated for continuous distillation and it performed well
despite the nonlinearities in the model and step perturbations (as already noted in Figures
4 and 5). A further point to be discussed as a potential advantage is the easy of tuning,
using mainly the step response of the process. On the other hand, the main disadvantage
of this method is the selection of the process model. In fact, this is the most difficult part
as it is in any algorithm of model-based control.

These results demonstrate the potential for implementing MPC based on online lineari-
sation for a nonlinear process. Nevertheless, there are several important issues the authors
intend to pursue next of which some significant ones are: (i) implement this controller in
standard industrial hardware; (ii) consider cases with more demanding constraint handling
requirements; (iii) consider the impact of uncertainty such as unmeasurable disturbances
and (iv) implement more advanced dual-mode type MPC algorithms that provide a priori
stability guarantees.
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Appendix A. Nomenclature.

Parameters
Molar flow rate of the bottom prod-

uct (mol/min). Wt Weight fraction.

Specific heat (kJ/mol°C). Ne gonc’lc‘r(ll- hoiizop.
Molar flow rate of the distillate " reciction orzon.
. q Feed quality.
product (mol/min). . o
Murphree stage efficiency x; Liquid molar composition at
Molar flow rate at the feed tray stage 1. -
i Yi Vapour molar composition
(mol/min). at stage ¢
1 ic fl he fi >
X(;;r(nrfﬁ;lr;in)o w rate at the feed AH!® Vaporisation enthalpy
Equilibrium coefficient. (k1/ rpol). 3
Pe Density (g/cm?).

Liquid molar flow rate (mol/min).

Molar holdup at stage i (mol). Subscripts and superscripts

SEeIFEETE 3 o%F 90
D

Molecular weight (g). B Component
Total pressure (kPa). {}C Feed tray '
Pressure at stage i (kPa). {}f ith stage .of the column
Heat input in the boiler (W). {}; Rectifoing soction. .
Reflux, binary value {0-1}. {}s  Stripping section
Temperature at stage i (°C). {3 In equilibrium '

T, Boiling temperature (°C). {1 Set-point valué.

V Vapour molar flow rate (mol/min).



