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Abstract. Bagging, boosting and random subspace methods are well known re-sampling
ensemble methods that generate and combine a diversity of learners using the same learn-
ing algorithm for the base-regressor. In this work, we built an ensemble of bagging,
boosting and random subspace methods ensembles with 8 sub-regressors in each one and
then an averaging methodology is used for the final prediction. We performed a com-
parison with simple bagging, boosting and random subspace methods ensembles with 25
sub-regressors, as well as other well known combining methods, on standard benchmark
datasets and the proposed technique had better correlation coefficient in most cases.
Keywords: Machine learning, Data mining, Regression

1. Introduction. Many regression problems involve an investigation of relationships be-
tween attributes in heterogeneous databases, where different prediction models can be
more appropriate for different regions [5,9]. As a consequence multiple learner systems
(an ensemble of regressors) try to exploit the local different behavior of the base learners
to improve the correlation coefficient and the reliability of the overall inductive learning
system [10].

Three of the most popular ensemble algorithms are bagging [3], boosting [1] and random
subspace method [21]. In bagging [3], the training set is randomly sampled k times
with replacement, producing k training sets with sizes equal to the original training set.
Theoretical results show that the expected error of bagging has the same bias component
as a single bootstrap replicate, while the variance component is reduced [6]. Boosting, on
the other hand, induces the ensemble of learners by adaptively changing the distribution of
the training set based on the performance of the previously created regressors. There are
two main differences between bagging and boosting. First, boosting changes adaptively
the distribution of the data set based on the performance of previously created learners
while bagging changes the distribution of the data set stochastically [33]. Second, boosting
uses a function of the performance of a learner as a weight for averaging, while bagging
utilizes equal weight averaging. On the other hand, in random subspace method [21]
the regressor consists of multiple learners constructed systematically by pseudo-randomly
selecting subsets of components of the feature vector, that is, learners constructed in
randomly chosen subspaces.

Boosting algorithms are considered stronger than bagging and random subspace method
on noise-free data; however, bagging and random subspace methods are much more robust
than boosting in noisy settings. For this reason, in this work, we built an ensemble comb-
ing bagging, boosting and random subspace version of the same learning algorithm using
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an averaging methodology. We performed a comparison with simple bagging, boosting
and random subspace method ensembles as well as other known ensembles on standard
benchmark datasets and the proposed technique had better correlation coefficient in most
cases. For the experiments, representative algorithms of well known machine learning
techniques, such as model trees, rule learners and support vector machines were used.
Section 2 presents the most well known algorithms for building ensembles that are

based on a single learning algorithm, while Section 3 discusses the proposed ensemble
method. Experiment results using a number of data sets and comparisons of the proposed
method with other ensembles are presented in Section 4. We conclude with summary and
additional research topics in Section 5.

2. Ensembles of Regressors. As we have already mentioned, the Bagging algorithm
(Bootstrap aggregating) [3] averages regressors generated by different bootstrap samples
(replicates). The main explanation of bagging operation is given in terms of its capa-
bility to reduce the variance component of the error, which was related to the degree of
instability of the base learner [3], informally defined as the tendency of undergoing large
changes in its decision function as a result of small changes in the training set: Theo-
retical investigations of why bagging works have also been found in [6,7,14]. With the
influence equalization viewpoint, bagging is interpreted as a perturbation technique aim-
ing at improving the robustness against outliers [19]. Works in the literature focused on
determining the ensemble size sufficient to reach the asymptotic error, empirically show-
ing that suitable values are between 10 and 20 depending on the particular data set and
base learner [22].
Quite well known is Random Subspace Method [21], which consists of training several

regressors from input data sets constructed with a given proportion k of features picked
randomly from the original set of features the author of this method suggested in his
experiment to select around 50.
As we have already mentioned, boosting attempts to generate new regressors that are

able to better predict the hard instances for the previous ensemble members. Roughly
speaking, two different approaches for boosting have been considered. The first one is
related to the gradient-based algorithm following the ideas initiated by [15,33]. In each it-
eration, the algorithm constructs goal values for each data-point xi equal to the (negative)
gradient of the loss of its current master hypothesis on xi. The base learner then finds a
function in a class minimizing the squared error on this constructed sample. On the other
hand, the AdaBoost.R algorithm [12] attacks the regression problems by reducing them
to classification problems. Drucker [11] proposes a direct adaptation of the classification
technique of boosting (AdaBoost) to the regression framework, which exhibits interesting
performance by boosting regression trees [2]. Shrestha and Solomatine [29] also proposed
Adaboost.RT which firstly employs a pre-set relative error threshold value to demarcate
predictions to be correct and incorrect, and the following steps are the same as those
in Adaboost that solves binary classification problems. Park and Reddy [23] proposed a
scale-space based boosting framework which applies scale-space theory for choosing the
optimal regressors during the various iterations of the boosting algorithm. Yin et al. [31]
introduced a strategy of boosting based feature combination, where a variant of boosting
is proposed for integrating different features. Redpath and Lebart [24] identified fea-
ture subset by the regularized version of Boosting, i.e., AdaboostReg. Additionally, their
search strategy is the floating feature search.
Based on Principal Component Analysis (PCA), Rodriguez et al. [25] proposed a new

ensemble generation technique Rotation Forest. Its main idea is to simultaneously en-
courage diversity and individual performance within an ensemble. Specifically, diversity is
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promoted by using PCA to do feature extraction for each base learner and performance is
sought by keeping all principal components and also using the whole data set to train each
base learner. Zhang et al. [34] investigates the performance of Rotation Forest ensemble
method in improving the generalization ability of a base predictor for solving regression
problems through conducting experiments on several benchmark data sets.

3. Proposed Methodology. Several authors [3,16,21] have proposed theories for the ef-
fectiveness of bagging, boosting and random subspace method based on bias plus variance
decomposition. The success of the techniques that combine regression models comes from
their ability to reduce the bias error as well as the variance error [12]. Unlike bagging and
random subspace method, which is largely a variance reduction method, boosting appears
to reduce both bias and variance [4]. Clearly, boosting attempts to correct the bias of the
most recently constructed base model by focusing more attention on the instances that
it erroneous predicted. This skill to reduce bias enables boosting to work especially well
with high-bias, low-variance base models. As mentioned in [22] the main trouble with
boosting seems to be robustness to noise. This is expected because noisy examples tend
not to correctly predicted, and the weight will increase for these instances.

(Input LS learning set; T(= 8) number of bootstrap samples; LA learning algorithm
output R* regressor)
begin
for i = 1 to T do
begin
Si:= bootstrap sample from LS; {sample with replacement}
Ri:= LA (Si); {generate a base regressor}
end;{endfor}
for i = T+1 to T+8 do
begin
Si:= random projection from the d-dimensional input space to a k-dimensional sub-
space;
Ri:= LA (Si); {generate a base regressor}
end;{endfor}
Initialize the observation weights wk = 1/n, i = 1, 2, . . . , n
for i = T+9 to T+16 do
begin
Produce from LA regressor Ri to the training data using weights wk

Calculate the adjusted error eik for each instance:
Let Di = maxkj=1 |yi − hi(xj)|
Then eik = |yk − hi(xk)|/Di

εi =
∑k

i=1 e
i
k wi

k; if εi > 0, 5 stop
βi = εi/(1− εi)

wi+1
k = wi

kβ
1−eik
i

Ri = the weighted median using ln(1/βk) as the weight for hypothesis
end;{endfor}
Output = R* =

∑3T
i=1Ri(x)/3T

End

Figure 1. The average B&B&R algorithm
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For additional improvement of the prediction of a regressor, we suggest combing bag-
ging, boosting and random subspace methodology with averaging process (Average B&B
&R). The approach is presented briefly in Figure 1. It has been observed that for bagging,
boosting and random subspace method, an increase in committee size (sub-regressors)
usually leads to a decrease in prediction error, but the relative impact of each successive
addition to a committee is ever diminishing. Most of the effect of each technique is ob-
tained by the first few committee members [3,17,21]. We used 8 sub-regressors for each
sub-ensemble for the proposed algorithm. The presented ensemble is effective owing to
representational reason. The hypothesis space h may not contain the true function f ,
but several good approximations. Then, by taking combinations of these approximations,
learners that lie outside of h may be represented. Both theory and experiments show that
averaging helps most if the errors in the individual regression models are not positively
correlated [19].

4. Comparisons and Results. For the comparisons of our study, we used 33 well-known
datasets mostly from many domains from the UCI repository [13]. In order to calculate
the learners correlation coefficient, the whole training set was divided into ten mutually
exclusive and equal-sized subsets and for each subset the learner was trained on the union
of all of the other subsets. Then, cross validation was run 10 times for each algorithm and
the average value of the 10-cross validations was calculated. In the following tables, we
represent with * that the specific ensemble looses from the proposed ensemble. That is,
the proposed algorithm performed statistically better than the specific ensemble according
to t-test with p<0.05. In addition, in the tables, we represent with v that the proposed
ensemble looses from the specific ensemble according to t-test with p<0.05. In all the
other cases, there is no significant statistical difference between the results (Draws). In
the last rows of the tables one can see the aggregated results in the form (a/b/c). In this
notation a means that the specific ensemble algorithm is significantly more accurate than
the proposed ensemble in a out of 33 data sets, c means that the proposed ensemble is
significantly more accurate than the specific ensemble in c out of 33 data sets, while in
the remaining cases (b), there is no significant statistical difference between the results.
For bagging, boosting and random subspace methodology, much of the reduction in

error appears to have occurred after ten to fifteen learners. But boosting continues to
measurably improve their test-set error until around 25 learners [22]. For this reason, we
used 25 sub-learners for all the tested ensembles of regressors. The time complexity of the
proposed regressor is about the same with simple bagging, boosting and random subspace
methodology with 25 sub-regressors. This happens because we use 8 sub-regressors for
each sub-ensemble (totally 24).
In the sequel, we present the experiment results for different base learners. For the

experiments, representative algorithms of well known machine learning techniques, such
as model trees, rule learners and support vector machines were used. Model trees are the
counterpart of decision trees for regression tasks [30]. Model trees generalize the concepts
of regression trees, which have constant values at their leaves. Thus, they are analogous to
piece-wise linear functions (and hence nonlinear). The most well known model tree inducer
is the M5 [32]. Model trees can tackle tasks with very high dimensionality-up to hundreds
of attributes; however, computational requirements grow rapidly with dimensionality.
We compare the presented ensemble with bagging, boosting [18], and Random-SubSpace

version of M5 (using 25 sub-regressors). In the last raw of Table 1 one can see the concen-
trated results. The presented ensemble is significantly more accurate than Bagging M5
in 3 out of the 33 data sets, while it has significantly higher error rates in one data set.
The presented ensemble is significantly more accurate than Boosting M5 in 4 out of the
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Table 1. Comparing the proposed ensemble with other well known en-
sembles that uses as base regression model the M5

Average Random
Dataset B&B&R Bagging Boosting Subspace

M5 M5 M5 M5
auto93 0.9 0.89 0.87 * 0.91

autoHorse 0.96 0.95 0.95 0.95
autoMpg 0.94 0.93 0.94 0.92
autoPrice 0.91 0.91 0.9 0.92
baskball 0.64 0.64 0.65 0.64
bodyfat 0.99 0.99 0.99 0.95 *
bolts 0.97 0.84 * 0.99 0.81 *

breastTumor 0.32 0.32 0.31 0.33
cholesterol 0.21 0.24 0.21 0.23
cleveland 0.72 0.73 0.7 0.73
cloud 0.94 0.94 0.94 0.92
cpu 0.99 0.99 0.99 0.99

detroit 0.3 0.3 0.3 0.3
echoMonths 0.71 0.69 0.71 0.71

elusage 0.88 0.89 0.87 0.88
fishcatch 0.99 0.99 0.99 0.99
gascons 0.96 0.93 * 0.98 0.95
housing 0.92 0.92 0.91 0.9

hungarian 0.7 0.68 0.69 0.7
lowbwt 0.8 0.81 0.79 0.78

mbagrade 0.46 0.44 0.44 0.47
meta 0.43 0.44 0.36 * 0.45
pbc 0.62 0.62 0.6 0.61

pharynx 0.25 0.03 * 0.06 * 0.47 v
pollution 0.8 0.8 0.79 0.77 *
pwLinear 0.93 0.94 0.94 0.9 *
quake 0.09 0.1 0.08 0.08
sensory 0.54 0.53 0.51 * 0.53
servo 0.93 0.94 0.94 0.82 *
strike 0.54 0.53 0.53 0.53
veteran 0.54 0.52 0.54 0.56
vineyard 0.7 0.74 v 0.67 0.66 *
Average 0.71 0.69 0.69 0.69
W/D/L 1/29/3 0/29/4 1/27/6

33 data sets whilst it has significantly higher error rates in none data set. Furthermore,
Random Subspace M5 has significantly lower error rates in 1 out of the 33 data sets than
the proposed ensemble, whereas it is significantly less accurate in 6 data sets. To sum up,
the performance of the presented ensemble is more accurate than the other well-known
ensembles that use only the M5 algorithm.

A regression rule is an IF-THEN rule that has as conditional part a set of conditions
on the input features and as conclusion a regression model. M5rules algorithm produces
regression rules using routines for generating a decision list from M5 Model trees [32]. We
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Table 2. Comparing the proposed ensemble with other well known en-
sembles that uses as base regression model the M5rules

Average Random
Dataset B&B&R Bagging Boosting Subspace

M5rules M5rules M5rules M5rules
auto93 0.89 0.89 0.86 * 0.91

autoHorse 0.96 0.96 0.94 0.96
autoMpg 0.93 0.93 0.93 0.92
autoPrice 0.91 0.91 0.82 * 0.93
baskball 0.65 0.65 0.65 0.63
bodyfat 0.99 0.99 0.99 0.95 *
bolts 0.95 0.9 * 0.86 * 0.81 *

breastTumor 0.32 0.32 0.31 0.33
cholesterol 0.22 0.24 0.23 0.22
cleveland 0.72 0.73 0.7 0.73
cloud 0.93 0.94 0.93 0.91
cpu 0.99 1 0.98 0.99

detroit 0.3 0.3 0.3 0.3
echoMonths 0.71 0.69 0.71 0.71

elusage 0.88 0.89 0.86 0.88
fishcatch 0.99 0.99 0.99 0.99
gascons 0.98 0.93 * 0.99 0.96
housing 0.93 0.92 0.91 0.9 *

hungarian 0.7 0.68 0.69 0.7
lowbwt 0.8 0.81 0.79 0.78

mbagrade 0.46 0.44 0.44 0.47
meta 0.43 0.54 v 0.3 * 0.42
pbc 0.62 0.62 0.6 0.61

pharynx 0.24 0.04 * 0.03 * 0.47 v
pollution 0.79 0.78 0.78 0.77
pwLinear 0.93 0.94 0.94 0.9 *
quake 0.09 0.11 0.08 0.08
sensory 0.54 0.53 0.49 * 0.52
servo 0.93 0.95 0.94 0.82 *
strike 0.55 0.52 * 0.53 0.53
veteran 0.53 0.5 * 0.53 0.57 v
vineyard 0.72 0.76 v 0.68 * 0.7
Average 0.71 0.7 0.68 0.7
W/D/L 2/26/5 0/26/7 2/26/5

compare the presented ensemble with bagging, boosting and Random-SubSpace version
of M5rules. In the last raw of Table 2 one can see the aggregated results.
The presented ensemble is significantly more accurate than Bagging M5rules in 5 out of

the 33 data sets, while it has significantly higher error rates in 2 data sets. The presented
ensemble is significantly more accurate than Boosting M5rules in 7 out of the 33 data
sets whilst it has significantly higher error rates in none data set. Furthermore, Random
Subspace M5rules has significantly lower error rates in 2 out of the 33 data sets than the
proposed ensemble, whereas it is significantly less accurate in 5 data sets. To sum up,
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the performance of the proposed ensemble is more accurate than the other well-known
ensembles that use only the M5rules algorithm.

The sequential minimal optimization algorithm (SMO) has been shown to be an effective
method for training support vector machines (SVMs) on classification tasks defined on
sparse data sets [35]. SMO differs from most SVM algorithms in that it does not require
a quadratic programming solver. SMO is generalized so that it can handle regression
problems (SMOreg) [26]. We compare the presented ensemble with bagging, boosting

Table 3. Comparing the proposed ensemble with other well known en-
sembles that uses as base regression model the SMOreg

Average Random
Dataset B&B&R Bagging Boosting Subspace

SMOreg SMOreg SMOreg SMOreg
auto93 0.86 0.85 0.75 * 0.9 v

autoHorse 0.96 0.96 0.95 0.96
autoMpg 0.92 0.92 0.92 0.91
autoPrice 0.9 0.89 0.9 0.9
baskball 0.63 0.64 0.61 0.62
bodyfat 0.99 0.99 0.99 0.95 *
bolts 0.8 0.72 * 0.82 0.73 *

breastTumor 0.29 0.27 0.3 0.33 v
cholesterol 0.15 0.17 0.14 0.17
cleveland 0.72 0.72 0.71 0.72
cloud 0.93 0.94 0.94 0.91
cpu 0.96 0.97 0.97 0.96

detroit 0.3 0.3 0.3 0.3
echoMonths 0.7 0.68 0.69 0.7

elusage 0.86 0.87 0.87 0.84
fishcatch 0.97 0.97 0.97 0.96
gascons 0.98 0.99 1 0.94 *
housing 0.83 0.84 0.84 0.82

hungarian 0.64 0.6 * 0.59 * 0.68 v
lowbwt 0.79 0.79 0.78 0.75 *

mbagrade 0.45 0.45 0.45 0.42 *
meta 0.49 0.5 0.49 0.48
pbc 0.58 0.58 0.57 0.59

pharynx 0.61 0.63 0.5 * 0.62
pollution 0.8 0.81 0.75 * 0.8
pwLinear 0.86 0.86 0.86 0.85
quake 0.05 0.05 0.07 0.06
sensory 0.36 0.36 0.34 0.36
servo 0.84 0.85 0.84 0.81 *
strike 0.56 0.56 0.56 0.55
veteran 0.52 0.52 0.52 0.51
vineyard 0.7 0.7 0.7 0.64 *
Average 0.69 0.68 0.67 0.68
W/D/L 0/31/2 0/29/4 3/23/7
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and Random-SubSpace version of SMOreg (using 25 sub-regressors). In the last row of
Table 3 one can see the aggregated results.
The presented ensemble is significantly more accurate than Bagging SMOreg in 2 out

of the 33 data sets, while it has significantly higher error rates in none data set. The
presented ensemble is significantly more accurate than Boosting SMOreg in 4 out of the
33 data sets whilst it has significantly higher error rates in none data set. Furthermore,
Random Subspace SMOreg has significantly lower error rates in 3 out of the 33 data sets
than the proposed ensemble, whereas it is significantly less accurate in 7 data sets. To
sum up, the performance of the presented ensemble is much more accurate than the other
well-known ensembles that use only the SMOreg algorithm.

5. Conclusions. An ensemble of learners is a set of regressors whose individual decisions
are combined in some way (typically by weighted or unweighted averaging) to predict the
values of new examples [20]. The main discovery is that ensembles are often much more
accurate than the individual learners that make them up [8]. The main reason is that
many learning algorithms apply local optimization techniques, which may get stuck in
local optima. As a consequence even if the learning algorithm can in principle find the
best hypothesis, we really may not be able to find it [27]. Building an ensemble may
achieve a better approximation, even if no assurance of this is given.
In this work, we built an ensemble using an averaging methodology of bagging, boosting

and random subspace ensembles. It was proved after a number of comparisons with other
ensembles, that the proposed methodology gives better correlation coefficient in most
cases. Finally, there is an open problem in ensemble of learners, such as how to understand
and interpret the decision made by an ensemble of learners because an ensemble provides
little insight into how it makes its decision. This is a research topic we are currently
working on and expect to report our findings in the near future.
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