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Abstract. Data mining techniques have been used to extract useful knowledge from
DNA microarray gene expression data for discovering the relations between novel dis-
eases and their related genes. However, DNA microarray gene expression data often
contain missing values that must be dealt with to prevent them from significantly affect-
ing analysis results. Hence, a number of missing-value imputation approaches have been
proposed. In this paper, an intelligent imputation approach named the CFBRST (Col-
laborative Filtering Based on Rough-Set Theory) method is proposed to impute missing
values more accurately than currently done by existing approaches. Experimental re-
sults on real microarray gene expression datasets reveal that the proposed approach can
effectively improve missing-value estimation. The collaborative filtering (CF) approach
is often used in recommender systems due to its excellent performance. The proposed
CFRBS method is based on the CF method and rough-set theory. The CFBRST method
is compared with the k-nearest neighbor (k-NN) imputation algorithm. Experimental re-
sults show that the CFBRST method has better accuracy than that of a k-NN approach
for yeast cDNA microarray datasets, especially when the percentage of missing values is
high.
Keywords: Collaborative filtering, Rough-set theory, Gene expression data, Missing
values, Imputation

1. Introduction. In recent years, DNA microarray gene expression data have been
widely used in numerous studies to determine the relation between novel diseases and
their related genes. These studies proposed some effective techniques for extracting useful
knowledge from thousands of gene expression levels simultaneously under various condi-
tions [11,12,24].

In the field of bio-informatics, DNA microarray gene expression data analysis is used for
applications such as drug discovery, protein sequencing, cancer classification [13], and the
identification of genes relevant to a certain diagnosis or therapy. However, DNA microar-
ray gene expression data often contain missing values for various reasons, including image
corruption [29], hybridization error, dust, and insufficient resolution. Unfortunately, the
missing values significantly affect gene expression data analysis results. A lot of informa-
tion is lost when genes with missing values are ignored or directly deleted. For example, it
has been shown that missing values may seriously disturb or even prevent subsequent data
analysis [1]. Furthermore, high-quality of DNA microarray gene expression data analysis
that heavily relies on the quantity of missing values can actually provide researchers with
valuable information.
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To deal with such problems, many imputation algorithms have been developed to re-
cover the missing values before the actual data analysis is conducted. Imputation al-
gorithms include the SVDimpute method [36], the k-nearest neighbor (k-NN) method
[36], the local least-squares (LLS) approach [18], the Bayesian approach [29], the collat-
eral missing value imputation approach [33], and the Gene Ontology k-nearest neighbor
(GOKNN) method [8,10,25,37]. Although these imputation algorithms deal with missing
values well when the required condition is satisfied, they also have several limitations.
kNNimpute performs best on non-time series data or noisy time series data, whereas
SVDimpute works well on time series data with low noise levels and with a strong global
correlation structure. LLSimpute and GOKNN have the best performance when strong
local correlation exists in the data.
The collaborative filtering (CF) approach is often used in recommender systems. This

approach provides recommendations based on the similarity of preferences between users.
The advantages of the CF approach are that the recommendation relies on other users’
experiences and that it has better accuracy than content-based [2,3,26] recommender
systems. Two types of basic CF algorithm have been proposed. The first type is memory-
based (user-based) CF algorithms, which provide recommendations according to the pref-
erences between an active user and his or her top-k nearest neighbors. The GroupLen[31]
system is a user-based CF algorithm. The second type is model-based CF [5,7,27,28,40]
algorithms, which first train a model based on a training dataset and then provide recom-
mendations according to this model. In addition to user-based CF and model-based CF
methods, hybrid CF algorithms provide recommendations by combining user-based CF
and model-based CF [9,30,34] or by combining the CF-based recommendation approach
and the content-based recommendation approach [3,17,26].
Since the data format of DNA microarray datasets is similar to that of datasets used

in CF recommender systems, the present study develops an imputation method named
the CFBRST (Collaborative Filtering Based on Rough-Set Theory) method for imputing
missing values in DNA microarray datasets. Rough sets have been shown to be very use-
ful in various applications [15,21,23,35]. The main advantage of the proposed method is
that rough-set prediction considers not only the similarities between genes but also those
between conditions. By integrating the similarities between genes and those between
conditions, the nearest genes and conditions can be derived simultaneously to infer more
accurate missing values. With this, the proposed method further achieves higher precision
by performing rough-set-based prediction. The missing values imputed in the preprocess-
ing phase are used to infer the missing values in the prediction phase. Without imputed
values, it is difficult to derive accurate missing values. The experimental results show that
the CFBRST method has better accuracy than that of the kNNimpute algorithm in yeast
cDNA microarray datasets. The remainder of this paper is organized as follows. A review
of related work is given in Section 2. In Section 3, the proposed approach for imputing
missing values in a DNA microarray dataset is described. Experimental evaluations of
the proposed approach are presented in Section 4. Finally, conclusions and future work
are stated in Section 5.

2. Related Work. The estimation of missing values in DNA microarray gene expression
data has been studied in recent years. Several imputation algorithms have been proposed
for imputing the missing values in DNA microarray gene expression data. In the k-NN
method [36], for gene A with a missing value, the top k neighboring genes similar to gene
A are first selected according to their expression values. The missing value of gene A
can then be imputed by the weighted average of the values from the top k similar genes.
The weighted average is the contribution of each gene based on the similarity between
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gene A and its neighbors. The similarity between two genes is computed as the Euclidean
distance based on their expression values:

d(g1, g2) =

√√√√ p∑
k=1

(ek − fk)2

where g1 = ⟨e1, e1, . . ., ep⟩ and g2 = ⟨f1, f2, . . ., fp⟩ are two genes, d(g1, g2) is the Euclidean
distance (dissimilarity) between g1 and g2, and the predicated value α can be computed
using:

α =

∑k
i=1 bi

/
d(A, i)

∑k
i=1 1

/
d(A, i)

where bi is the expression value of the jth condition in the ith neighbor.
Tuikkala et al. [37] proposed an imputation method that considers gene ontology (GO)

information to improve missing-value estimation. The method (GOKNN) calculates the
semantic similarity between two genes from their GO annotations. The semantic similar-
ity is used as additional information of the two genes, whose similarity is computed by
combining the semantic similarity with the similarity computed from expression values
in the pure k-NN imputation method. The experimental results show that this method
outperforms the pure k-NN imputation method especially when the percentage of missing
values is high.

One of the most effective algorithms for missing-value imputation is local least-squares
(LLS) imputation [18]. The LLS algorithm selects the top k nearest neighboring genes
and then predicts the missing values using the least-squares method.

A number of collaborative filtering algorithms have been proposed for recommender
systems. The GroupLen system is a well-known user-based CF algorithm. The basic idea
of the system is to find the active user’s nearest neighbors from the massive number of
users’ ratings, aggregate the ratings of the active user’s nearest neighbors to predict the
values of unrated items, and then recommend the top k items with the highest values to the
active user. However, the user-based CF algorithm has a high computation time because
it has to compute the similarities between the active user and all users in the dataset. To
alleviate this problem, cluster-based CF algorithms [7,38,41] have been proposed. Cluster-
based CF algorithms work by identifying groups of users who have similar preferences first,
and then computing the similarities between the active user and all groups. The active
user belongs to the group that has the highest similarity with it, then applies user-based
CF algorithm in the group to provide recommendation. This approach is more efficient
than a user-based CF algorithm, but its accuracy is lower.

An item-based CF algorithm was proposed in 2001 [32]. In contrast to a user-based
CF algorithm, it measures items’ similarities from the massive number of users’ ratings,
finds the nearest neighbors of items, predicts the values of the unrated items for the active
user, and then recommends the top k items with highest values. In general, item-based
CF algorithms outperform user-based CF algorithms and cluster-based CF algorithms.

Some model-based CF algorithms regard recommendation as behavior classification.
Xu et al. [40] proposed a learning algorithm that constructs a personalized recommender
system based on support vector machines (SVMs). Based on frequent itemset lattices,
Nikovski et al. [28] presented an induction of compact decision trees as the optimal
recommendation policy. Using a Bayesian network, Breese et al. [7] attempted to solve
the problem of personalized recommendation using probabilistic formulations. Lin et
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al. [22] found the overlaps of several users’ tastes that match the active user’s taste by
utilizing the discovered user associations and article associations.
Many kinds of hybrid CF algorithm have been recently proposed. Chuan et al. [9] solved

the recommendation problem by combining user-based CF regression and item-based CF
filtering. Based on the similarity fusion of user-based and item-based CF, Wang et al. [39]
used a probabilistic framework to exploit available data in the user-item matrix. Other
hybrid CF algorithms [4,6,14,17,26,30] that combine a content-based recommender system
and user-based/item-based CF outperform individual methods.

3. Proposed Approach. The data format of DNA microarray datasets is similar to
that for datasets used in recommender systems, where genes can be regarded as users
and conditions can be regarded as items. The collaborative filtering (CF) algorithm can
then be applied to the DNA microarray datasets to accurately estimate missing values.
The critical problem for an excellent imputing missing-value system is how to predict
the missing values correctly. The proposed method approximates an optimal solution for
predicting the unknown values by combining user-based CF and rough-set theory.

3.1. Overview of the proposed approach. The proposed CFBRST approach can be
characterized by considering the correlation of genes in the DNA microarray data and
a rough-set-based prediction framework to predict the missing values. This method can
predict good missing values to facilitate subsequent DNA microarray gene expression data
analysis. The framework of the CFBRST approach, shown in Figure 1, can be divided
into the following two stages.

Figure 1. Framework of the proposed approach

Preprocessing Stage: To predict the missing values using the rough-set-based meth-
od, all the data in the dataset must be known except the predicted missing values and
the data type in a dataset must be categorical. The user-based CF method is first used
to fill the missing values. Then, the numerical data is transformed into categorical data.
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Prediction Stage: After the preprocessing stage, the unknown values for the dataset
can be imputed using the user-based CF method and the numerical data are transformed
into categorical data. The rough-set-based prediction method is used to impute the
unknown values for the items of the matrix.

3.2. Preprocessing stage. A lot of genes have missing values in a gene expression
dataset. Thus, rows (genes) with missing values are first removed to make the dataset
a complete matrix. Then, some of the data are deleted at random to produce a testing
dataset with missing values. The user-based CF method is applied to the testing dataset
and to estimate the missing values that were deleted to produce a complete matrix.

There are two main steps in user-based CF algorithms, namely similarity computation
and prediction computation.

Similarity Computation. In this paper, the Pearson correlation coefficient is used
to compute the similarity between two genes i and j.

sim(i, j) =

∑
c∈C

(yi,c − yi)(yj,c − yj)√∑
c∈C

(yi,c − yi)2
√∑

c∈C
(yj,c − yj)2

(1)

here, yi,c denotes the value of gene i on condition c, yi is the average value of gene i, and
C is the set with known values of both genes i and j. Suppose that gene i is the gene with
missing values to be imputed. The similarities between gene i and the other genes in the
dataset are computed, and then the top k genes that have highest similarities with gene
i are selected. After the top k nearest neighbors of gene i have been chosen, the missing
values of the gene i are predicted according to the expression value of the selected top k
nearest neighbors of gene i.

Prediction Computation. The missing values of gene i can be predicted according
to the expression value of the selected top k nearest neighbors of the gene i. The missing
values of gene i can be predicted using:

pi,c = yi +

∑
j∈J sim(i, j)× (yj,c − yj)∑

j∈J |sim(i, j)|
(2)

where pi,c denotes the predicted value of gene i on condition c, yj,c denotes the value of
gene j on condition c, yi is the average value of gene i, and J is the set of genes similar
to gene i.

Data Discretization. To use rough-set theory to increase the prediction accuracy of
the missing values, the numerical dataset must be transformed into a categorical dataset.
The data of the dataset must thus be discretized.

First, the number of categories the dataset should have must be decided. Then, for
each gene i , the following two steps are used to discretize the data of the dataset.

(1) step(i) = (valuemax(i) − valuemin(i))/N
(2) valuetransformed = 1 + Round((valueoriginal − valuemin(i))/step(i))

here, valuemax(i) and valuemin(i) are the maximum value and the minimum value in gene
i, respectively, and valueoriginal and valuetransformed are the original value and transformed
value, respectively. N is the number of discrete levels used to discretize the original value,
and step(i) is the step size for gene i. After discretizing the dataset, the transformed value
of the data is an integer between 1 and N+1. An example is shown below to demonstrate
data discretization.

Example 3.1. Suppose that the data in Table 1 is the original gene expression data. The

value of N is set to 4, step(1) =
1.2− (−0.4)

4
= 0.4, and the transformed value of cond1
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in gene1 is 1 + round

(
(0.9− (−0.4))

0.4

)
= 4. Similarly, step(2) = 0.3 and step(3) = 0.3.

Table 2 shows the transformed gene expression data.

Table 1. Original gene expression data

Gene ID cond1 cond2 cond3 cond4 cond5
1 0.9 T 0.5 1.2 −0.4
2 0.9 0.85 0.6 1.1 −0.1
3 0.95 1.0 −0.2 −0.2 −0.15

Table 2. Transformed gene expression data

Gene ID cond1 cond2 cond3 cond4 cond5
1 4 T 3 5 1
2 4 4 3 5 1
3 5 5 1 1 1

3.3. Prediction stage. After the preprocessing tasks, the proposed prediction approach
is used. The goal of this stage is to impute the missing values accurately to improve
subsequent analysis.
Rough-Set-Based Prediction. Generally speaking, a dataset in real applications can

be decomposed into two subsets, namely the complete dataset and the incomplete dataset.
An incomplete dataset has missing attribute values. A missing value in a dataset can
significantly affect data analysis. Unfortunately, most DNA microarray gene expression
datasets are incomplete. Several studies have attempted to infer the missing values by
learning from objects with known values [16,19,20]. The method proposed here estimates
the unknown values in a transformed gene-condition matrix with the help of rough-set
theory.
As illustrated in Figure 2, the first task of rough-set-based prediction is to determine a

class attribute (or condition). The class attribute is derived from the Pearson correlation
coefficient between targetcond and the other filtered conditions (lines 2-7). Therefore,
the class attribute most relevant to targetcond can be used to infer the unknown value
vi,targetcond. Based on rough-set theory, after the elementary set of the class attribute is
generated, the available elementary subset group which contains the active gene (gene
with missing value to be predicted) is selected from the elementary set of the class at-
tribute (lines 8-9). Then, targetcond is combined with the most relevant condition into
a new condition set Ccondk (line 11). Then, the algorithm partitions the genes into an
elementary set of Ccondk according to the condition values (line 14). Next, the match-
ing equivalence class set must be found. That is, if the subsets of the elementary set of
targetcond are all contained in group and the number of genes exceeds the constraint cg,
the subsets are collected as a potential equivalence class set (line 16). From the potential
equivalence class set, the subsets whose combined condition values are the same as the
condition values of targetcond are selected as the equivalence class set (lines 17-18). If no
equivalence class set is found, the procedure iteratively partitions the genes into another
elementary set of the combination of Ccondk and the other conditions. Finally, the un-
known value vi,targetcond is derived (line 25). Examples are shown below to demonstrate
the prediction process.
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Example 3.2. Suppose that there are 10 genes and 5 conditions in the database. Table
3 shows that an un-imputed matrix containing ten genes {g1, g2, . . . , g10}, four selected
conditions {cond1, cond3, cond4, cond5}, and target condition targetcond, which represents
a missing value in the 1st gene that is to be predicted. Except targetcond, each condition
for the 1st gene (the 1st tuple) has a non-zero value. In contrast, the condition values
to the other genes may be zero in Table 3 since some genes have missing values. In this
matrix, zero represents a missing value. Table 4 shows the resulting matrix after the user-
based imputation operation. Except the targetcond value, each condition value should be
a non-zero value after the user-based imputation operation.

Table 3. Example of an un-imputed matrix

Gene ID cond1 targetcond cond3 cond4 cond5
1 4 T 3 5 1
2 4 4 3 5 1
3 5 5 0 1 1
4 2 1 3 0 2
5 4 4 2 2 2
6 0 3 1 0 1
7 3 4 2 2 2
8 1 1 0 1 1
9 4 0 3 1 1
10 0 5 3 1 0

Table 4. Example of an imputed matrix

Gene ID cond1 targetcond cond3 cond4 cond5
1 4 T 3 5 1
2 4 4 3 5 1
3 5 5 1 1 1
4 2 1 3 2 2
5 4 4 2 2 2
6 3 3 1 1 1
7 3 4 2 2 2
8 1 1 1 1 1
9 4 4 3 1 1
10 4 5 3 1 1

Example 3.3. This example is based on Example 3.2. By calculating the Pearson correla-
tion coefficient between targetcond and the other conditions, the derived set {sim(1, target
cond), sim(3, targetcond), sim(4, targetcond), sim(5, targetcond)} is {0.92, 0.14,−0.06,
−0.22}. Therefore, the class attribute is cond1. Next, as shown in Table 5, the group
is generated from the elementary set of cond1 with respect to {g1, g2, g5, g9, g10}. Assume
that the condition constraint cc is 2 and the gene constraint gc is 2. Without consider-
ing class attribute cond1, sim(3, targetcond) is the largest. Hence, the condition most
relevant to targetcond is condition 3. The system combines targetcond and cond3 as
Ccond2 = {targetcond, cond3} to to meet the condition constraint. Thereby the elemen-
tary sets referred to Citm1 are generated. As shown in Table 6, seven partitions of the
elementary set (ELSet) of Ccond1 were found; the matching subsets are thus {g2, g9} and
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Figure 2. Algorithm for rough-set-based prediction

{g10}. In this step, {g10} has to be dropped since the number of users in {g10} cannot ex-
ceed the gene constraint. Therefore, the potential equivalence class set is {g2, g9}. Because
the value of cond3 for {g2, g9} is the same as that of targetcond for g1, the equivalence
class set {g2, g9} is judged. Consequently, the iterative operation stops finding combina-
tions of Ccond2 and the other conditions to look for the equivalence class set. Finally, the
prediction value v1,targetcond is 4. Note that the purpose of the gene constraint and the con-
dition constraint is to enhance the prediction precision. That is, the larger the gene and
condition constraints, the fewer the number of matching elementary sets, the higher the
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equivalence granularity, and the fewer the number of matching equivalence class sets. For
example, if the gene constraint is set to 1, the matching elementary sets include {g2, g9}
and {g10}. Therefore, the prediction value v1,targetcond is (4+5)/2=4.5, which is different
from the value derived when only {g10} was used.

Table 5. Example of the elementary set of the class attribute cond1

Elementary set Gene ID cond1
1 (group) 1 (active) 4

2 4
5 4
9 4
10 4

2 8 1

3 4 2

4 6 3
7 3

5 3 5

Table 6. Example of the elementary set of {targetcond, cond3}

Elementary set Gene ID targetcond cond3
1 8 1 1

2 4 1 3

3 6 3 1

4 5 4 2
7 4 2

5 2 4 3
9 4 3

6 3 5 1

7 10 5 3

Missing-Value Prediction
In order to impute original missing values, the values predicted in rough-set-based

prediction (valuetransformed) must be transformed into original values (valueoriginal):
(1) step(i) = (valuemax(i) − valuemin(i))/N and
(2) valuetransformed = 1 + Round((valueoriginal − valuemin(i))/step(i))

where:
valueoriginal = (valuetransformed − 1)× step(i) + valuemin(i)
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An example is shown below to demonstrate the process.

Example 3.4. Suppose that the data in Table 7 is the transformed gene expression data,
the value of N is 4, step(1) = 0.4, valuemin(1) = −0.4, step(2) = 0.3, valuemin(2) = −0.1,
step(3) = 0.3, valuemin(3) = −0.2. The original gene expression data is shown in Table 8.

Table 7. Transformed gene expression data

Gene ID cond1 cond2 cond3 cond4 cond5
1 4 4 3 5 1
2 4 4 3 5 1
3 5 5 1 1 1

Table 8. Original gene expression data

Gene ID cond1 cond2 cond3 cond4 cond5
1 0.8 0.8 0.4 1.2 −0.4
2 0.8 0.8 0.5 1.1 −0.1
3 1.0 1.0 −0.2 −0.2 −0.2

4. Experimental Evaluations. This section presents the empirical evaluations. The
main goal of the experiments was to measure the performance of the proposed CFBRST
approach. Four methods were compared: the CFBRST approach, the user-based (gene-
based) CF imputation approach, the k-NN imputation approach, and the row (gene)
average (filling missing values with row average) imputation approach. The experimental
results show that the proposed CFBRST approach outperforms the other imputation
approaches.

4.1. Datasets. Experiments with three public yeast cDNA microarray datasets were per-
formed. The first dataset (diauxic) is from a study of temporal gene expression (Derisi et
al., 1997). It consists of 6068 genes and 7 conditions. After genes with missing values were
removed, 5875 genes remained. The second dataset (elutriation) is the elutriation part of
a study on yeast cell-cycle gene expression (Spellman et al., 1998). There are 6075 genes
and 14 conditions in this dataset. After genes with missing values were removed, 5766
genes remained. The last dataset (phosphate) is from a study of phosphate accumulation
(Ogawa et al., 2000). There are 6013 genes and 8 conditions in this dataset. After genes
with missing values were removed, 5783 genes remained. A summary of the three datasets
is shown in Table 9.

Table 9. Summary of the three datasets used for experiments

Name M M’ C
Diauxic 6068 5875 7

Elutriation 6075 5766 14
Phosphate 6013 5783 8
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Figure 3. Effect of the number of nearest neighbors on CFBRST estima-
tion for the elutriation dataset

Figure 4. Effect of the number of discrete levelsN on CFBRST estimation
for elutriation dataset

4.2. Evaluation metrics. Mean absolute error (MAE) is often used to measure the
effectiveness in CF recommender systems. It represents the difference between the actual
values and predicted values. It is defined as:

MAE =

∑N
i=1 |yprei − yacti|

S

where yprei and yacti are the i
th predicted value and the ith actual value, respectively, and

S is the number of the predicted entries. Generally, the smaller the MAE is, the better
the approach performs.
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Normalized root mean squared error (NRMSE) is often used as an evaluation criterion
in missing-value imputation algorithms. It is defined as:

NRMSE =

√
mean[(ypre − yact)2]

std[yact]

where ypre and yact are vectors containing the predicted values and the actual values for
all estimated entries, respectively. Similar to MAE, the smaller the NRMSE is, the better
the approach performs.
In this paper, NRMSE is used as the evaluation metric to compare the proposed algo-

rithm with other imputation algorithms because it is widely used to evaluate the effec-
tiveness of algorithms for microarray gene expression data.

(a) (b)

(c)

Figure 5. Comparison of NRMSE values of the tested imputation meth-
ods for various missing-value rates

4.3. Evaluations for the parameter settings. Before evaluating the performance of
the CFBRST approach, suitable parameter settings were determined for the experiments.
Two parameters play important roles in the experiments. The first is the neighborhoods
k, which determines the size of the nearest neighbors for the user-based CF algorithm.
The other parameter is the number of discrete levels N , which controls the number of
categories when the numerical dataset is transformed into the categorical dataset.
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Experiment for determining neighborhood size k. The size of the neighborhood
can affect the prediction quality. When the number of similar neighbors is insufficient, the
performance decreases due to an overemphasis on similar genes. On the other hand, too
many similar neighbors deteriorates accuracy because too many irrelevant neighbors will
be used to predict the missing values. To determine this parameter, Troyanska et al. 2001
observed that the best results of the k-NN imputation algorithm can be obtained when the
neighborhood size is between 10 and 20. Tuikkala et al. 2006 found that a neighborhood
size of 20 is suitable for the GOKNN imputation algorithm. An experiment (Figure 3)
was performed in this study by varying the neighborhood size k. NRMSE was computed
for the elutriation dataset. The results show that a neighborhood size of 20 is optimal.
Hence, the neighborhood size was set to 20 in subsequent experiments.

(a) (b)

(c)

Figure 6. Improvement rate of NRMSE values for various missing-value rates

Experiment for determining number of discrete levels N . After user-based CF
prediction, rough-set theory is applied to increase the prediction accuracy of the missing
values. The data of the dataset must be discretized to transform the numerical dataset
into a categorical dataset. The number of the discrete levels N affects the accuracy of the
CFBRST approach. An experiment was conducted to determine the number of discrete
levels N for subsequent experiments. Figure 4 reveals that the impact of the number of
discrete levels N is very small and that the best result was obtained for N = 6. Therefore,
this parameter was set to 6 for subsequent experiments.
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4.4. Comparisons between CFBRST and other approaches. To assess the qual-
ity of the proposed algorithm, several experiments were conducted using the CFBRST
algorithm, the user-based (gene-based) CF imputation approach, the k-NN imputation
approach, and the row (gene) average imputation approach. Figure 5 shows the results
for various missing-value rates (percentage of missing values) for the three datasets. For
all missing-value rates, the NRMSE value for the proposed CFBRST approach is smaller
than those of the other imputation algorithms for the three datasets.
Moreover, the improvement rate (IR) of CFBRST compared with the k-NN imputation

algorithm was determined as:

IR =
NRMSEKNN −NRMSECFBRST

NRMSEKNN

where NRMSECFBRST is the NRMSE value of the proposed CFBRST algorithm.
Figure 6 illustrates the IR of NRMSE values for various missing-value rates. The

improvement rate rises with increasing missing-value rate.

5. Conclusions. The Collaborative Filtering Based on Rough-Set Theory (CFBRST)
method, which combines collaborative information and rough-set theory, was proposed
for imputing the missing values of microarray gene expression data. Three real yeast
microarray datasets were used to evaluate the performance of the proposed CFBRST
imputation approach. The experimental results show that the CFBRST algorithm con-
sistently outperforms other imputation algorithms in terms of estimation accuracy. The
improvement rate of the CFBRST method compared to the k-NN imputation algorithm
increased with increasing missing-value rate.
In future work, biological information such as Gene Ontology (GO) Annotation or

protein information will be integrated into the CFBRST approach to impute missing
values in microarray datasets.
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