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Abstract. In this paper, three probabilistic models are applied to represent and recog-
nize human activities from observed sensor sequences: Näıve Bayes classifier, forward
procedure of a Hidden Markov Model and Viterbi algorithm based on a Hidden Markov
Model. A variety of different feature selection methods is tested in order to reduce the
dimensionality of the learning problem. The results show that the activity recognition
performance measures of the three algorithms have a strong relationship with the dataset
features that are utilized. Larger time feature values and smaller length size feature values
will generate better results, relatively.
Keywords: Activity recognition, Näıve Bayes classifier, Hidden Markov model, Viterbi
algorithm, Smart home

1. Introduction. As the world’s population ages, the number of elderly people living
alone will enormously increase. With aging, health related problems also increase. Hence,
the number of elderly people in need of assistance to have a normal life will increase rapidly.
The number of care-givers will be outnumbered by the increasing elderly population.
With the advent of smart home technologies, people with cognitive impairments can lead
independent lives in their homes for longer duration of time. Smart homes can assist their
residents by acting as a cognitive prosthesis, by handling various appliances/objects and
also by facilitating emergency communication. Furthermore, cognitive health assessments
performed in clinical settings do not always provide an adequate representation of a
patient’s behavior. Real life assessments of Activities of Daily Living (ADLs) can provide
a better understanding of the subject than assessments performed in a clinical setting
[1]. Computer vision sensing often works in the laboratory but fails in real home settings
due to clutter, variable lighting, and highly varied activities. Video feeds have been used
for activity recognition. Sensors such as microphones and cameras are commonly used
as recording devices. Cameras and microphones face another challenge because they are
perceived as invasive by most people [2-6]. Alternatively, motion sensor data can be used
to recognize real-life activities done in a home. The CASAS smart homes [7] provide
continuous monitoring capability that conventional methodologies lack. Being able to
automate the activity recognition from human motion patterns, using unobtrusive sensors
or other devices can be useful in monitoring older adults in their homes and keeping track
of their ADLs and behavioral changes [8-15]. This could lead to a better understanding
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of numerous medical conditions and treatments. The CASAS smart home project is a
multi-disciplinary research project at Washington State University, USA, focused on the
creation of an intelligent home environment. The approach is to view the smart home as
an intelligent agent that perceives its environment through the use of sensors, and can
act upon the environment through the use of actuators. The research goals of the CASAS
smart home project are to enhance and improve quality of life, prolong stay at home with
technology-enabled assistance, minimize the cost of maintaining the home and maximize
the comfort of its inhabitants. In order to meet these goals, the smart home must be able
to reason about and adapt to provide information. To implement the goal of the CASAS
smart home project, a primary challenge is to design an algorithm that labels the activity
performed by an inhabitant in a smart environment from the sensor data collected by
the environment during the activity. Medical professionals also believe that one of the
best ways to detect emerging medical conditions before they become serious is to look for
changes in the ADLs. Recently, human activity discovery and recognition has gained a lot
of interest due to its enormous potential in context aware computing systems, including
smart home environments. To recognize residents’ activities and their daily routines can
greatly help in providing automation, security, and more importance in remote health
monitoring of elder or people with disabilities. The main object of activity recognition
in smart home environments is to find interesting patterns of behavior from sensor data
and to recognize such patterns. Actually, the datasets include a large number of sensor
events sequences generated by a various activities, and any activity annotated in dataset
has various features. However, the influence of these feature values to activity recognition
performance is seldom addressed, and it is necessary to research and test the relationship
between feature selections and activity recognition accuracy rate.

2. Smart Apartment Testbed and Data Collection. The smart apartment testbed
[12,13] for this study is located on Washington State University campus and is maintained
as part of the ongoing CASAS smart home project. The smart apartment testbed includes
three bedrooms, one bathroom, a kitchen, and a living/dining room. The smart apartment
is equipped with motion sensors distributed approximately 1 meter apart throughout the
space on the ceilings. Sensor data are captured using a sensor network that was designed
in-house and is stored in an SQL database. The middleware uses a XMPP-based publish-
subscribe protocol as a lightweight platform and language-independent method to push
data to client tools with minimal overhead and maximal flexibility. To maintain privacy,
participant names and identifying information are removed and encrypt collected data
before it is transmitted over the network. After collecting data from the smart apartment
testbed, the sensor events are annotated for ADLs, which are used to train the algorithms.
A large number of sensor events are generated everyday. The data gathered by CASAS
smart home is represented by the following parameters, which specify the number of
features that are used to describe the sensor event. The default number of features is 5
and the default interpretation of the five features is shown below.

2.1. Sensor ID. This is an integer value in the range of 0 to the number of logical sensor
values (defined in a separate parameter). The number of logical sensors can be any value
between 1 and the number of physical sensors. The number of logical sensors is generally
defined to be smaller than the number of physical sensors if multiple physical sensors will
be mapped onto one logical sensor, thereby clustering the sensors together into one logical
or functional unit. The ranges are not used by default.

2.2. Time of day. This is the input time of the sensor event but is discretized to an
integer value (the discretization process is explained in a separate parameter entry). The
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default value is 5, which means the time ranges of one entire day are 0-5, 6-10, 11-15,
16-20, 21-24. The value of this feature is adjustable.

2.3. Day of week. The input date of the sensor event is converted into a value in the
range of 0 to 6 that represents the day of the week on which the sensor event occurred.

2.4. Previous activity. This feature is an integer value that represents the activity that
occurred before the current activity. The ranges are not used by default.

2.5. Activity length. This feature represents the length of the current activity measured
in number of sensor events. The value of this feature is to calculate the value of length
size threshold, and the default value is 3, which means the length size of each activity
is distinguished by 3 thresholds: {small, medium, large}. The value of this feature is
adjustable.

The generalized syntax of the dataset is given below:

Date Time Sensor ID Sensor Value 〈label〉
An example of the dataset of Night wandering activity is:
{
2009-06-10 03:20:59.08 M006 ON Night wandering begin
2009-06-10 03:25:19.05 M012 ON
2009-06-10 03:25:19.08 M011 ON
2009-06-10 03:25:24.05 M011 OFF
2009-06-10 03:25:24.07 M012 OFF Night wandering end

}
This example shows one sensors sequence corresponds to the Night wandering activity

with concrete Date, Time, Sensor ID, Sensor Value as well as activity label parameters.

3. Algorithms Applied for Activity Recognition.

3.1. Näıve Bayes (NB) classifier. An NB classifier uses the relative frequencies of
feature values and the activity labels for the sample training data to learn a mapping
from a data point description to a classification label. NB classifier determines activity
labels probabilistically based on the number of sensor event of various kinds that occurred
during the activity. In this research, all activities are represented by various features
including the number of occurring times of SensorID, Time of day, Day of week, Previous
activity and Activity length [12,15].

The activity label, A, is calculated as:

argmaxa∈A P (a |D ) =
P (D |a) · P (a)

P (D)
(1)

In this equation, D represents the feature values. Since the denominator will be the
same for all values of activity labeled a, it can be simply calculated only the numerator
values, which means ignoring P (D). P (a) is estimated by the proportion of cases for
which the activity label is a, and P (D|a) is calculated as the probability of the feature
value combination for the specific observed activity, i.e.,

P (D |a) =
∏

i
P (di |a) (2)

where i is the index of features.
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3.2. Hidden Markov model and Viterbi algorithm. An Hidden Markov Model
(HMM) is a statistical model in which the underlying model is a stochastic process that is
not observable (i.e., hidden) and is assumed to be a Markov process which can be observed
through another set of stochastic processes that produce the sequence of observed symbols
[6,15,16]. The current state depends on a finite history of previous states. Actually, in this
research, the current state depends only on the previous state. A hidden state is used to
represent each of the separate activities. Each observable and hidden state is associated
with a multidimensional probability distribution over a set of parameters. The parameters
for the model are the feature values described in the previous section. Transitions between
states are governed by transition probabilities. An HMM assigns probability values over
a potentially infinite number of sequences. However, as the probabilities values must sum
to one, the distribution described by the HMM is constrained.
For any given state, a sequence of observations can be generated according to the asso-

ciated probability distribution. Since the goal is to recognize the activity that corresponds
to a sequence of observed sensor events, one HMM is generated for each activity to be
learned.
In an HMM, these hidden states are not directly visible, and are influenced by the

observable states. Transition from any one state to another is governed by transition
probabilities as in the Markov chain. Therefore, in a particular state an outcome can be
generated according to the associated probability distribution.
The conditional probability distribution of any hidden state depends only on the value

of the preceding hidden state. Similarly, the value of an observable state depends only on
the value of the current hidden state.
Consider a system that has N distinct states, {s1, s2, · · · , sN}, and the actual state

at time t is qt = si, 1 ≤ i ≤ N , then each state has M distinct observation symbols,
which can be denoted as {v1, v2, · · · , vM}. In the theory of HMM, the observable variable
ot = vk, 1 ≤ k ≤ M at time t depends only on the hidden state variable si at that time.
An HMM utilizes three probability distributions: the first is a probability distribution

over initial states

πi = P (q1 = si) (3)

Second, the state transition probability distribution represents the probability of tran-
sitioning from state i to state j, which has the form of

aij = P (qt = sj |qt−1 = si ), 1 ≤ i, j ≤ N (4)

Third, the observation probability distribution indicates the probability that the state
j would generate observation ot = vk

bj(k) = P (ot = vk |qt = sj ), 1 ≤ j ≤ N, 1 ≤ k ≤ M (5)

These distributions are estimated based on the relative frequencies of visited states and
state transitions observed in the training data.
To calculate the probability of the observation sequence, {o1, o2, · · · , oT}, given a spe-

cific state qt, i.e., P (o1, o2, · · · , ot |qt ), where T is the number of observations in the se-
quence, the forward procedure can be applied. Consider the definition of a forward variable
is

αt(i) = P (o1, o2, · · · , ot, qt = si) (6)

Equation (6) calculates the probability of the partial observation sequence, {o1, o2, · · · , ot},
until time t, and state si at time t. Actually, the forward variable is approximately equal
to P (o1, o2, · · · , ot |qt ), which ignores the probability of the partial observation sequence,
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P (o1, o2, · · · , ot). The reason for ignoring P (o1, o2, · · · , ot) is similar to that of ignoring
P (D) in Equation (1). Then, the forward variable can be solved inductively as:

αt+1(j) =

[
N∑
i=1

αt(i) · aij

]
· bj(ot+1) (7)

The initialization is:

α1(i) = πi · bi(o1) (8)

Once the forward procedure is done, the state qt is known. Therefore, the forward
procedure can be applied to recognize human activities with sensor event sequence of
observations.

The aim of Viterbi algorithm is to find the single best state sequence, {q∗1, q∗2, · · · , q∗T},
for the given observation sequence, {o1, o2, · · · , oT}. The best score, i.e., the highest
probability, along a single path at time t is define as:

δt(i) = max
q1,q2,···,qt−1

P (q1q2 · · · qt = si, o1o2 · · · ot) (9)

where δt(i) accounts for the first t observations and end in state si, and it can be solved
inductively as:

δt+1(j) =

[
max
1≤i≤N

δt(i) · aij
]
· bj(ot+1) (10)

where 1 ≤ j ≤ N and 1 ≤ t ≤ T − 1.
The initialization is:

δ1(i) = πi · bi(o1), 1 ≤ i ≤ N (11)

In each recursion of Equation (10), the label of a hidden state which Equation (9) is
returned by

l∗t = argmax
1≤i≤N

[δt(i)] (12)

Once the procedure is done, the best hidden state label sequence can be obtained as
{l∗1, l∗2, · · · , l∗T}, which corresponds to the best hidden state sequence {q∗1, q∗2, · · · , q∗T}.

To implement the forward procedure of an HMM, as well as Viterbi algorithm, every
activity is treated as a hidden state. If a total of N activities are labeled in the dataset
to be recognized, then, HMM and Viterbi algorithms include N hidden states. Each
hidden state denotes one of the N modeled activities. Next, each sensor is treated as an
observable state, because of each used sensor is observable in the dataset.

The training data are used to learn the transition probabilities between states for the
corresponding activity model and to learn probability distributions for the feature values
of each state in the model. For this, the prior probability (i.e., the start probability) of
every state can be calculated based on the collected data. The prior probability represents
the belief about which state HMM is in when the first sensor event is seen. For a state (i.e.,
activity) a, this is calculated as the ratio of instances for which the activity label is a. The
transition probability which represents the change of the state in the underlying Markov
model, can also be calculated. For any two states a and b, the probability of transitioning
from state a to state b is calculated as the ratio of instances having activity label a followed
activity label b, to the total number of instances. The transition probability signifies the
likelihood of transitioning from a given state to any other state in the model and captures
the temporal relationship between the states.

Furthermore, the emission probability represents the likelihood of observing a particular
sensor event for a given activity. This is calculated by finding the frequency of every sensor
event as observed for each activity.
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4. Tests Results.

4.1. Training activities. A total of 10 activities were performed in the CASAS smart
apartment by 2 volunteers to provide physical training data for the three algorithms.
These activities include both basic and more complex ADLs that are found in clinical
questionnaires. These activities are: Bed to toilet (activity 0, A0), Breakfast (activity 1,
A1), Bed (activity 2, A2), Computer work (activity 3, A3), Dinner (activity 4, A4), Laun-
dry (activity 5, A5), Leave home (activity 6, A6), Lunch (activity 7, A7), Night wandering
(activity 8, A8) and Resident medicine (activity 9, A9). The data have been collected in
the CASAS smart apartment testbed for 55 days, which resulting in total 600 instances
of theses activities and 647,485 collected motion sensor events.

4.2. Time feature selections. In this case, the length feature value is defined as the
default value 3. This means that three activity length ranges are used. However, the time
feature values are compared for different numbers of ranges including 1, 2, 3, 4, 5, 6, 8,
12 and 24, respectively. The 3-fold cross validation is applied in the data.

Table 1. Comparison results for total activities recognition accuracy rate

Algorithms 1 2 3 4 5 6 8 12 24
NB 0.685 0.723 0.732 0.755 0.788 0.775 0.775 0.803 0.815

HMM 0.550 0.577 0.613 0.628 0.683 0.687 0.690 0.717 0.725
Viterbi 0.567 0.590 0.613 0.617 0.687 0.692 0.690 0.715 0.735

From Table 1, it can be found that with the increasing number of time feature values,
the trends of the total activities recognition accuracy rate increase for HMM and Viterbi
algorithms, respectively. Whereas, the results for NB are slightly different. However,
the results of all the three algorithms show that the highest total activities recognition
accuracy rate can be obtained when time feature value is defined as 24. Further, NB
outperforms other algorithms significantly with each tested time feature value. However,
the comparison results of HMM and Viterbi algorithms are slightly different.
Table 2 shows that NB has the best recognition accuracy rate when time feature value

is defined as 24 for activities 0, 1, 2, 3, as well as 8, the rate is 50% of all activities.
When the time feature value is 12, the best results of activity 4 and 7 are generated by
NB, with a proportion of 20%. Similarly, HMM generates the best recognition accuracy
rate for activities 0, 1, 3, 4, and 8 when the time feature value is 24. Also, HMM has
the best recognition accuracy rate for activity 6 and 9 when the time feature value is 12.
Again, Viterbi algorithm has the best recognition accuracy rate for activities 0, 2, 3, 4,
and 8 when the time feature value is 24, and it has the best recognition accuracy rate
for activities 6 and 9 when the time feature value is 12. Therefore, it can be concluded
that a relatively larger time feature value will result in a better recognition accuracy rate
of a specific activity by NB, HMM and Viterbi algorithms. Moreover, NB outperforms
other algorithms for activities 1, 3, 4, 6, 7 and 8. Viterbi algorithm outperforms other
algorithms for activity 2. HMM and Viterbi algorithms have the same best results than
NB for activity 0. All of the three algorithms have the same best results for activity 9.
One important point to be noted is that a lot of optimal results shown in Tables 1 and 2

are not generated under only one specific time feature value (i.e., the algorithms generate
same optimal results under different time feature values). However, in these tests, only
the maximal optimal time feature value for each activity is listed above. Even though,
it shows that most of the activities have better results with a higher time feature value
for all of the three algorithms applied. The reasons can be explained from the statistical
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data, which shows the hour-by-hour sensors events proportion of the 10 activities. Since
one day has 24 hours, therefore, if the time feature value is defined as 24, which means 24
separate time zones are defined, hour-by-hour. Actually, the living habits or ADLs have
strong relationship with time of the residents in CASAS smart home, e.g., for activity
0 (bed-to-toilet), 17.75% sensors events occur in the time zone of (0:00-1:00), 29.12%
sensors events occur in the time zone of (2:00-3:00), and there are no sensors events occur
in the time zone of (8:00-22:00). Larger time feature value means more precise time zone
resolution, which generates relatively better results.

Table 2. Comparison results for each activity recognition accuracy rate

Activities Algorithms 1 2 3 4 5 6 8 12 24
NB 0.233 0.233 0.233 0.200 0.200 0.233 0.233 0.300 0.333

0 HMM 0.300 0.333 0.333 0.333 0.400 0.400 0.466 0.333 0.500
Viterbi 0.300 0.300 0.300 0.333 0.400 0.400 0.467 0.400 0.500
NB 0.896 0.917 0.875 0.896 0.917 0.875 0.875 0.917 0.917

1 HMM 0.271 0.271 0.771 0.354 0.563 0.771 0.833 0.813 0.833
Viterbi 0.250 0.271 0.750 0.333 0.563 0.750 0.813 0.792 0.792
NB 0.696 0.700 0.715 0.768 0.831 0.812 0.812 0.826 0.860

2 HMM 0.700 0.700 0.696 0.787 0.855 0.821 0.773 0.845 0.845
Viterbi 0.749 0.734 0.720 0.783 0.884 0.865 0.797 0.870 0.884
NB 0.500 0.478 0.478 0.478 0.478 0.457 0.457 0.478 0.500

3 HMM 0.217 0.239 0.261 0.261 0.217 0.261 0.261 0.261 0.261
Viterbi 0.217 0.239 0.217 0.261 0.217 0.261 0.261 0.261 0.261
NB 0.548 0.786 0.810 0.929 0.810 0.810 0.810 1.000 0.976

4 HMM 0.833 0.833 0.619 0.857 0.738 0.690 0.857 0.905 0.929
Viterbi 0.857 0.833 0.619 0.833 0.762 0.738 0.833 0.857 0.905
NB 0.4 0.3 0.4 0.3 0.4 0.3 0.3 0.3 0.3

5 HMM 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.2 0.4
Viterbi 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.2 0.4
NB 0.928 0.928 0.942 0.928 0.928 0.942 0.942 0.928 0.928

6 HMM 0.826 0.855 0.855 0.841 0.870 0.841 0.870 0.884 0.826
Viterbi 0.841 0.855 0.826 0.855 0.855 0.841 0.870 0.870 0.826
NB 0.486 0.784 0.838 0.784 0.892 0.838 0.838 0.946 0.892

7 HMM 0.216 0.541 0.730 0.541 0.595 0.703 0.541 0.622 0.622
Viterbi 0.243 0.541 0.703 0.514 0.595 0.676 0.568 0.595 0.649
NB 0.821 0.821 0.821 0.851 0.940 0.940 0.940 0.910 0.940

8 HMM 0.313 0.299 0.313 0.448 0.553 0.507 0.552 0.567 0.597
Viterbi 0.284 0.299 0.299 0.373 0.493 0.463 0.493 0.522 0.582
NB 0.682 0.727 0.705 0.705 0.705 0.705 0.705 0.705 0.682

9 HMM 0.614 0.636 0.614 0.591 0.659 0.659 0.705 0.727 0.682
Viterbi 0.614 0.682 0.682 0.614 0.659 0.682 0.727 0.727 0.705

4.3. Length feature selections. In this case, the time feature value is defined with a
larger value as 24, and the length feature value is defined from 2 to 45, respectively.

Figure 1 shows the comparison results of the trends of total activities recognition ac-
curacy rate generated by NB, HMM and Viterbi algorithms with the increasing of length
feature value. It can be found that in this test, NB outperforms HMM and Viterbi al-
gorithms, significantly. The optimal value for the length feature for NB is 5. HMM and
Viterbi algorithms have the same optimal results with length feature value of 8, and the
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Figure 1. Comparison results of the trends of total activities recognition
accuracy rate

Figure 2. Comparison results of the trends of recognition accuracy rate
for activities 0-3

other results of both algorithms are similar. HMM also has another optimal result with
the length feature value of 6. Moreover, it shows that with the increasing of the length
feature value, the results of all of the three algorithms appear oscillations and even become
worse.
Figures 2 and 3 compare the results of the accuracy recognition trends of activities 0 to

9 generated by NB, HMM and Viterbi algorithms with increasing length feature values. It
can be seen that NB significantly outperforms HMM and Viterbi algorithms for activities
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Figure 3. Comparison results of the trends of recognition accuracy rate
for activities 4-9
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1, 3, 4, 6, 7 and 8. Viterbi algorithm outperforms NB and HMM algorithms for activity
2. Both HMM and Viterbi algorithms have the same best results which are better than
NB for activities 0, 5, and 9. It also can be seen that the results of HMM and Viterbi
algorithms are close and usually the same, especially for activities 0, 3, 5, 6, 7, 8 and 9.
The accuracy rates still show oscillations with increasing length feature values.
Again, it should be noted that the optimal results shown in Figures 2 and 3 are not

generated by only one specific length feature value, i.e., the algorithms generate same
optimal results under different length feature values. Actually, only the minimum optimal
length feature value for each activity is given in this discussion. However, the results
show that, it is better to define a small length feature value to get a better result. The
reasons can be explained from the statistical data of sensors events length size of each
activity. Different activity has different statistical data of sensors event length size; e.g.,
activity 6 has an average sensors event length size of 6, and in contrast, activity 4 has an
average sensors event length size of 534. Larger length feature value will result in smaller
length threshold value, which will generate more length features. Since the probability
of feature given a specific activity is the product of the probabilities of each sub-feature
given this activity, as shown in Equation (2), more length features will generate a smaller
probability of feature given this activity. Therefore, a larger length feature value even
generates relatively worse results.

5. Conclusions. This paper applies three probabilistic models to represent and recognize
activities based on observed sensor sequences. In order to optimize these algorithms, the
relationship between feature selections and recognition accuracy has been tested. From
the results, it can be concluded that the activity recognition performances of the three
algorithms have strong relationships with the feature values of datasets. Larger time
feature values and smaller length feature values will generate better results, relatively.
However, for different activities, the recognition accuracy rate results vary. In addition,
this research is useful to select feature values to generate relatively better recognition
accuracy for the three algorithms. In future work, the methods of automatically selecting
feature values will be studied.
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