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ABSTRACT. In this paper, an estimator is developed to estimate the states of monlin-
ear stochastic discrete-time dynamical systems with uncertain parameters. The system
model and the measurements are assumed to be corrupted by uncorrelated zero mean white
Gaussian noise sequences. The parameters of the system are assumed to be uncertain.
The proposed approach is based on the extended Kalman filter and the active set method,
in which multiple projection approach is used to get the dynamics of the proposed es-
timator. Although the developed state estimator uses the nominal values of the system
parameters, it shows to be more stable when compared with other existing techniques and
gives satisfactory results. To illustrate the effectiveness and simplicity of the developed
approach, an illustrative example is presented. Simulation results show that the devel-
oped technique leads to a stable state estimator even in many cases in which the extended
Kaman filter and the extended Kalman filter with parameter estimation diverge.
Keywords: Discrete-time systems, Nonlinear systems, Stability, State estimation, Sto-
chastic systems

1. Introduction. The well-known Kalman filter (KF) has been widely used in many
areas. It has been proved that it is the optimal minimum variance state estimator for
linear dynamical systems with Gaussian noise; and it is the optimal linear estimator
for linear dynamical systems with non-Gaussian noise [1]. On the other hand, several
algorithms have been proposed to estimate the states of nonlinear dynamical systems.
Among these algorithms, the Moving Horizon estimation [2], the particle filter [3], the
ensemble Kalman filter [4], the unscented Kalman filter [5] and the extended Kalman
filter (EKF) [6], generally, the EKF is the most extensively used algorithm for state
estimation of nonlinear systems, especially those characterized by their weak nonlinearities
[7]. On the other hand, unlike the linear counter part, it is not the optimal estimator. In
addition, it may quickly diverge if the system acquires strong nonlinearities [8,9], or if the
initial estimate of the states is wrong, or the process is modeled incorrectly, owing to its
linearization.

In many applications of state estimation problems some equality and/or inequality con-
straints are imposed on the states of the system. These constraints are due to physical
or practical considerations. The KF and the EKF do not incorporate such information
and hence they lead to a sub-optimal state estimator. In these situations it is neces-
sary to modify the estimator resulting from KF or EKF to incorporate such additional
information.
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Many researchers have worked on the development of different techniques to estimate
the constrained states of linear and nonlinear systems, see for example [9-43] and the ref-
erences therein for some of the works on constrained state estimation. For linear systems,
in one approach the equality constraints are considered as perfect (noise-free) measure-
ments [10]. However, this technique may lead to some computational problems because
of the singularity of the covariance matrix. In another approach, the model reduction
technique is used to handle estimation problems with equality constraints [11]. However,
this technique eliminates the physical meaning of some of the state variables. In a third
approach, a quadratic optimization problem is formulated and solved at the sampling
instants at which the state constraints are violated [12,14-16]. This technique can be
classified as a special case of the projection approach. Recently, Teixeira et al. derived an
estimator with state interval constraints [13] as well as several algorithms for linear and
nonlinear state estimation with equality constraints on the states [21,22]. These estima-
tors are based on the unscented Kalman filter. On the other hand, for nonlinear systems
the moving horizon estimation technique is widely used for state estimation with equality
and inequality constraints [9]. In [32,33] a procedure is proposed to include state inequal-
ity constraints in the unscented Kalman Filter. Kolas et al. [7] studied the use of the
unscented Kalman filter for nonlinear state estimation. Sircoulomb et al. [34] introduced
a projection approach for nonlinear state estimation when the states are constrained with
nonlinear state soft inequality constraints. Dolence and Ungarala [9] derived a constrained
EKF for the estimation of the states of nonlinear systems with equality and inequality
constraints on the states, and the proposed estimator is computationally efficient because
it does not require matrix inversion. Recently, in [44] the active set method and the mul-
tiple projection approach [45-48] are used to solve this problem. The proposed recursive
technique showed to be simple and computationally efficient.

State estimation for nonlinear discrete-time dynamical systems with strong nonlineari-
ties and uncertain parameters is a challenging problem due to the following:

1) Strong nonlinearities may lead to a quick divergence of the EKF. However, due to
the fact that the estimated states resulting from the EKF are suboptimal and hence they
are not orthogonal to the estimation error, such a problem can be improved by using the
iterative Kalman filter (IKF) in which the projection operation is repeated several times
at each sampling instant. This process increases the computational time by a factor equal
to the number of repetition of the projection operations to be executed at each sampling
instant.

2) Ignoring the uncertainty of the model parameters increases the tendency of diver-
gence of the EKF. On the other hand, if the parameters of the model are estimated, the
dimensionality of the system model will increase by the number of parameters to be esti-
mated. Such a process will also increase the computational time as well as the numerical
unstability of the estimator.

In this paper, we address the state estimation problem of stochastic nonlinear discrete-
time dynamical systems with strong nonlinearities and uncertain parameters. Based on
the fact that the EKF estimator and its associated estimation error are not orthogonal,
a technique is proposed to solve this problem in a simple and recursive approach.

To clarify the idea used in our development, let us consider the estimation problem for
nonlinear systems with uncertain parameters. Assume for the moment that the output
measurements are noise free. In this case, the best estimator is the one that leads to an
estimate of the output vector equaling the measured one. In general, this is not possible
due to the input noise and the stochastic nature of the problem. However, it is still
possible to get a better estimator if we can impose bounds on the differences between the
actual and estimated outputs, element by element, and maintain the estimated outputs
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within these bounds. In other words, if a subset of the estimated output vector starts
to diverge at any sampling instant of time and by some means the estimated states are
modified such that this subset of the estimated output vector is maintained within the
bounded region, it is expected that the stability of the estimator will be improved. In case
of noisy measurements, the situation is different. If the imposed bounds are such that
the estimated outputs are very close to the measured ones, we may get a worst estimator,
especially for cases in which the level of the output measurement noise is high. On the
other hand, it is still desired to have the estimated outputs bounded within a pre-specified
region around the measured ones in order to get better performance of the estimator.

The proposed estimator is developed by extending the idea of constrained state esti-
mation [44] to enforce constraints on the innovation. It consists of two stages. In the
first stage, the standard EKF is used to estimate the states. If the imposed constraints
are satisfied, we proceed to the next sampling instant of time. Otherwise, the subset of
violated constraints is identified. The measurements corresponding to this subset are used
to generate a new subset of equality constraints to be satisfied. This subset of equality
constraints is treated as a new received vector of measurement. By applying the multiple
projection approach, the assumed new received measurement vector is used to update the
estimator. This procedure leads to an iterative estimator very close to IKF [49].

The rest of the paper is organized as follows. In Section 2 the constrained estimation
problem for stochastic nonlinear discrete-time dynamical systems with uncertain param-
eters is formulated. Section 3 is devoted to the presentation of the dynamics of the
developed estimator for nonlinear systems with uncertain parameters. The convergence
of the update phase of the nonlinear estimator is discussed in Section 4. The algorithm
used to implement the proposed estimator is presented in Section 5. In Section 6 an
illustrative example is solved using the proposed estimator, the EKF and the EKF with
parameter estimation. The results show good convergence behavior of the developed es-
timator even in the cases at which the EKF and the EKF with parameter estimation
diverge. The paper is concluded in Section 7.

2. Problem Statement. Consider the following stochastic nonlinear discrete-time dy-
namical systems with uncertain parameters:

Trpr = [e(wr, br) + wp (1)

Yk+1 = N1 (Tht1s Chog1) + Uk (2)

where x;, € R" is the state vector, y, € R™ is the output vector, w, € R" and vg; € R™
are, respectively, zero mean white Gaussian input and output noise vectors with covariance
matrices Qy = E{wyw] } € R™™ and Ry = E{vg1v,,} € R™™, fp(xy, by) : R — R"
is a vector nonlinear function of the state equation, hyy1(2gi1,crp1) @ R* — R™ is a
vector nonlinear function of the output measurements, z, € R" is the initial conditions
of the states assumed zero mean random Gaussian vector with covariance matrix P, =
P, = E{xoxOT} € R™" b, € R is the parameter vector of the system model assumed
uncorrelated white Gaussian random variables with mean b, equals the nominal values of
the model parameters, and a covariance matrix I'y, = E{(b; — b)(b — b)"}, cpp1 € R" is
the parameter vector of the output model assumed uncorrelated white Gaussian random
variables with mean ¢, equals the nominal values of the output model parameters, and a
covariance matrix Uy = E{(cxy1—¢)(ck1—c)T'}. Finally k € {0,1,2,...} is the discrete
time instant.

In the above model it is assumed that x,, bg, cki1, Wi, vk, are all independent. More-
over, it is assumed that the model has the following properties:
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E{ka% 0, Vk<yj; E{zw/}=0, VYk,Jj; E{yk?}% VEk<j
E{fﬂkb%} =0, Vk<y; E{fﬂkCT} =0, Yk, j; Elycj}= 0 VE<j (3)
B{bcl} =0, Vk,j
Let YA+t = [y, yd', ..., yf ;)" be the vector of measurement up to the instant k + 1.
Our objective is to get the estimate of the state vector 2,41 which:
min J = E{[2e1 — Tepipr1]” [Bort — Tegpappe] [V} (4a)

subject to the system model (1) and (2). Moreover, the estimator has to satisfy the set
of imposed inequality constraints on the differences between the actual and estimated
outputs given by:

C < Ykt1 = Jrt1je+1 <€ (4b)
where Jyi1k41 = E{yra [V} is the estimate of the output vector, ¢, ( € R™ are
respectively, the lower and upper bounds of the inequality constraints element by element.

However, due to the nonlinearity of the problem, and hence the non-Gaussian nature of
its probability distribution function, such an optimal estimator does not exist. Therefore,
we are looking for a suboptimal state estimator which has better convergence properties
than EKF and EKF with parameter estimation.

The main results to be derived in the rest of the paper are based on the following
assumptions and approximations which are usually used with EKF.

1) Although nonlinear systems are non-Gaussian by their nature, they will be treated
as GGaussian.

2) The covariance matrices of the predicted estimation error Ttk = Tkt — Thti)k
(where Zpi1 = E{xp41|Ye}), the filtered estimation error Tyi1jp41 = Thy1 — Thpijhst
(where 2411541 = F{Zk41|Ye41}), and the Kalman gain matrix will be calculated from the
linearized model around the last estimated state and the nominal values of the parameters.
Higher order terms in Tailor series expansion will be neglected.

3) Although the filtered estimate @jqx41 resulting from EKF is suboptimal, which
means that Ty 141, j£+1|k+1 and Tpp1jp1s Yoy
Tpipart 7 00 E{@rrrpps k+1|k+1} # 0), they will be approximated and treated as or-
thogonal (i.e., E{£k+1\k+1xk+1\k+1} =0, E{fkﬂlkﬂykjjrukﬂ} =0).

4) Again, although Z41jk41, :ifﬂ‘kﬂ are not orthogonal which means that P,

Pry 1 ks 10 gain calculation Py, g will be approximated and treated as for linear
systems in which we adopt the relation ka+1@k+uk = ka+ukyk+1|k

5) It will be assumed that the conditional probability density function p(z|Y*) is
approximated by Gaussian distribution with known conditional mean 2, and covariance
matrix Py, at the k™™ sampling instant.

, are not orthogonal (i.e., E{Zpq1k41

k+1Tk+1]k 7é

3. Development of the Constrained Estimator. The main idea is to enforce an inter-
val constraint on the innovation vector to satisfy (4b) while using a successive projection
approach. This leads to an iterative estimator similar to that used by IKF [49].

3.1. The dynamics of the EKF with uncertain parameters. Relaxing for the mo-
ment the set of imposed inequality constraints (4b), let us consider the estimation problem
for the uncertain nonlinear discrete-time dynamical system described by Equations (1)
and (2). For the reasons stated above, the modified dynamics to be developed for the
unconstrained EKF leads to a suboptimal estimator through the linearization of the non-
linear dynamics around the last state estimate and the nominal values of the system
parameters.
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Let F, By, Hry1, Dy1 be the Jacobean matrices of fr and hj; defined by:

O f _ Ofk Ohy41 Ohg41

Fk = — | A T = - T ° = — | A = D = — | A = (5)
b k b k+1 T ,C k+1 T ,C
axk Tk|k,0 7 abk Tk|k,0 7 akarl k+1|ksC ) ack+1 k+1|k

Neglecting second and higher order terms in Tailor series expansion, the modified dy-
namics of the unconstrained EKF are given by the following lemma:

Lemma 3.1. a) The predicted estimate of the state vector Tyi1 )k, its associated covariance
matriz Pyy1, and the predicted estimate of the output vector Jyi1 are given by:

Trg1lk = fe(Trr, 0) (6)
Peie & Fe P FY + Belk Bl + Qg (7)
Uk = i1 (Tpgafky ©) (8)

b) The filtered estimate of the state vector @y k41, its associated covariance matric
Py 1jk41 and the filtered estimate of the output vector i1 k41 are such that:

Tpgifbrt = Trgrfe + Kipg1 [Vrs1 — Urt1ji) (9)
Priahr1 2 I — Kigyr He 1] Prapi (10)
with
Kige1 & Pope H 1 [Hor1 PorieHiy + DU 1 Dy + Ry] ™! (11)
Uk1lk+1 = Pt (Trg o5 €) (12)

Proof: Linearizing the system dynamics fi(zy,b;) around Zy, b, while neglecting
higher order terms, we have:

fi(@r, br) 22 fr(@rpp, 0) + Filzw — Zxx] + Br(br — b) + wg (13)
Substituting (13) into (1), one gets:
Tt = fi(Ewe, b) + Filzr — 2] + Bi(bs — b) + wy, (14)

The conditional expectation of (14) knowing Y* is given by:
Frrre = E{[fu(@rpp, b) + Frlow — Exi] + Br(be — b) + wi][Y*} (15)

Since Ty = E{x;|Y*}, the variables Y*, wy, b, are independent, EF{w;} = 0, and
E{b;} = b, then the predicted estimate of &, takes the form:

Tk = fe(Trpp, 0) (16)
Let Ty = Tk — Thjks Tht|k = Tk — Thp |k br = b, — b, then from (14) and (16) we get:
Ty = Firlgr + Biby 4wy (17)
The covariance matrix of the resulting error is given by:
Pisie = BlZps1edh ] (18)

Substituting from (17) into (18) and with the use of the model properties (3) (i.e., b,
wy, are independent, x;, is independent of by, wy, and E{b,} = E{b, — b} = 0) one gets,
after simple mathematical manipulation, P in the form:

Peiip & Fy Py By + BTy Bl + Qx (19)

Equation (16) gives the predicted estimate of x4, denoted by Zj1px, while (19) gives
the covariance matrix of the prediction error Pj.
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To get the filtered estimate, assume that the system measurement y;,; is received at
the sampling instant £ + 1. Hence, the predicted estimate Zy, 1 will be updated taking
into consideration the new measurements. Such a filtered estimate is given by:

Tt = B{xp |V, yesa} (20)
where
Yes1 = hey1 (Thg1, Cor1) + Uk (21)
Linearizing (21) around 21|, ¢ while neglecting higher order terms, one gets:
Ykt1 = hi1 (Tesapk, €) + Hep1Tegapk + Dip1Copr + Vg (22)

where ¢xy 1 = Ccgy1 — C.
Defining §;11x as:

Drstle = E{ypr1[Y*} = E{hpyr (1, crp) + v [Y*)
Since Y'* is independent of ¢y 1, vgy1 while E{v;.1} =0 and E{c;1} = ¢, we get:
Uerilk = Pkt (Tpg1jks ©) (23)
Let i1k = Yr+1 — Jr+1jk, then from (22) and (23) §py1ps is such that:
Ukrik = He1Zpyp + Dia1Cryr + Vg (24)

From (20), while using the properties of conditional expectation of Gaussian random
variables, we have:

Fegtpprr = B{ona Y™, yer1} =2 B{opa V5, Grip}
>~ B{op1 [V} + E{ops|[Trsapr }

N ~ A -
Thytkr1 = e + Kipp1 ek (25)
where
~ . -1 ~ D ~ -1
K1k+1 - PIk+1yk+1\kng+1‘kﬂk+1|k - P$k+1|kyk+1|kPﬂk+1|k_gk+1‘k
_ fa ~T
Pi'k+1\k?7k-+1|k- - E{xk+1\kyk+1|k}

~JS

Kipr1 & E{Zpi1p[Hir1Zpr1p6 + DisiCrsr + ven]” }

Since E{¢p41} =0, E{vg11} = 0 and Ty is independent of both ¢4y, vey1, we get:

_ p. ) T
Pi?k+1|k?3k+1\k - ka+1\k1k+1\ka+1 (26)
However, Py, .\ 5., 1S such that:
— s ~T
Pﬂk+1|k?3k+1\k - E{yk+1\kyk+l|k}

Using (24) and recalling that Z441jk, k11, V41 are mutually independent, we get:

ng+1\kgk+1|k = Hk+1pk+1|kaT+1 + Dk+1Uk+1DkT+1 + R (27)
Using (26) and (27), the gain matrix Ky, takes the form:
Kiep1 & PoppH 1 [Het Pop HE 1 + DieaUpn DEyy + Ry ™! (28)

The covariance matrix of the filtered estimate P41 is given by:

_ ~ ~T
Preiijps1 = E{xk+1|k+1xk+1|k+1}

where the error Iy x4 is defined by:

jlc-|—1|lc-;-1 = Tkl — Th41|k+1
= Trre — Kk 1Uks1k



ITERATED CONSTRAINED STATE ESTIMATOR 6147

From the definitions of Py k41, Tk41jk+1 and after simple mathematical manipulation,
one gets:
Pryijpsr = [ — K1 Hy 1] Py (29)
By expanding Ay 1 (Zg41, Cr41) around @piq 541 and ¢, it is easy to get the approximate
estimate of the output vector ;11 x4+1 as given by (12).

3.2. Derivation of the nonlinear update estimator. As stated above, the different
assumptions and approximations used with EKF not only lead to a suboptimal estimator
Try1jk+1, but may also lead to the divergence of EKF. Moreover, if the model is un-
precious and/or the model parameters are random, the situation becomes worst. In this
case, the probability of the divergence of EKF becomes higher, even when used with weak
nonlinear systems. The stability of the estimator can be improved if the estimated output
vector is enforced to be bounded, element by element, by imposing the set of inequality
constraints (4b), which when violated enforces an interval constraint on the innovation
vector.

In order to clarify our idea, let us assume that a subset of s-elements of the estimated
output vector gri1k+1, as given by (12), violates the constraints (4b) at the sampling
instant k + 1. It is, therefore, necessary to saturate the violated constraints to the upper
or lower levels of the violated bounds. Let:

41 = y1'c+1 — Opy1; j1k+1\k+1 = §7k+1\k+1; P1k+1\k+1 = Pk+1\k+1 (30)
where y,., € R’ is the output measurement sub-vector corresponding to the violated
constraints, #y,; € R° is a vector that contains the corresponding violated elements of
the upper bound vector ¢ or the lower bound vector ¢ and Ty 1jky1, Pryijps1 are as given
by (25) and (29) respectively.

Our objective is to get an update estimator Zyix4+1 such that the following equality
constraint is satisfied:
Zk41 = Gkt 1 (141, C) (31)
where gkﬂ(:%kﬂ‘k“,é’) : R™ — R? is a vector nonlinear function that contains the s-
elements of hyyq(Zgs1, k1) corresponding to the s-violated constraints from (4b) after
replacing x4 by its desired estimated value Zpy 1441 and cgyq by the nominal values of
the subset of parameters ¢ included in g1 (Tg41,¢) ).
Let Azpi1jk11 = Tpq1jk+1 — L1k+1jk+1, then the first two terms of Tailor series expansion
of (31) takes the form:

angrl(xa EI)

Zp+1 = k1 (T1kt1jkt1, € ) + o AZgi1 k41 (32)

T=F1pg1]k41

: A —r ~ .
Since gpi1(Z1k+1jk41,€C) = Uttt then we have:

=
~ . N . 39k+1(%0)
Zh+1lk+1 = Zk+1 — Yp41jk+1 — T or

Apiijh1 (33)
T=T1k+1|k+1
In (33), Zit1jk+1 can be calculated by using 2,4 as defined by (30) and the estimate
of the subset of the violated output vector @2+1|k+1- Our objective is to get an estimate
of AZji1k41 to satisfy (33). One of the procedures to solve this problem is to formulate
an optimization problem in which we minimize a quadratic cost function of Azj 4y
subject to the equality constraint (33) [14-16]. Although this approach is feasible, it leads
to an unstable estimator, at least in the illustrative example given in Section 6.
The idea of our approach is to get an estimate of Axj, 41 as a linear function of
Zkt1lk+1. oince the last estimate 21441441, the statistical information of the output model
uncertainties and the measurement noise have direct impact on the results, they have
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to be included in the projection operator to be applied on Zj4;41. Moreover, since the
system is nonlinear, and due to the different approximations used to get (9)-(12), such an
estimate is calculated iteratively through successive application of the projection approach
till the satisfaction of the constraints (4b) within a pre-specified accuracy.

Since Azjpyi,41 is not a state variable, it is desired to define 2,4, as function of x4,
such that:

a) Zptiks1 = g;c+1\k+17 and hence Zj11541 is as given by (33).

b) The projection operator to be used to update the estimator incorporates the statis-
tical information of the output model uncertainties and the measurement noise.

c¢) The violated upper or lower bounds are used to enforce an interval constraint on the
innovation vector.

Therefore, we define 2, as:

Zet1 = Gr1(Th1, C;c+1) + U;c+1 (34)

where 241, Y4, and Oy are as defined above, gy (Tp41, ¢, ;) © R — R® is a vector
nonlinear function that contains the elements of hgiq(zgy1, k1) corresponding to the
violated constraints in (4b), ¢, is the subset of parameters included in g1 (2x11, ¢} ),
vy, € R’ is a vector that contains the corresponding elements of the output noise vector
Vk41-

Since zp41 can be calculated, Equation (34) will be treated as a new received subset
of measurements. Therefore, the new estimation problem is to get an estimator for the
system (1) using the measurements (2) and (34) while satisfying the constraints (4b).

Again, let us denote by Z1pi1jkt1, Pretije+1s J1k+1je+1 as, respectively, the filtered es-
timate (9), the covariance matrix (10), and the estimated output vector (12) resulting
from the unconstrained EKF. The following lemma gives the dynamics of the constrained
estimator (update estimator) for the nonlinear discrete-time system:

Lemma 3.2. The updated filtered estimate Tyi1k41, the covariance matriz of the con-
strained estimator Pyiqk+1, and the estimate of the assumed new subset of measurements
Zkt1lk+1, are computed such as:

Totkt1 = Tipp1fkrr + Kok [Ze1 — Zogt o] (35)
Priijpr1 = I — Ko 1 G| Prgsjios1 (36)
Kopi1 2 Pi1e1Ght (Gt Prkrip 1 Gy + MU M + R 70 (37)
Zerpert = B{aen Y5, vk} = gri1 (Bregaps, ©) (38)
where
0 0
Gk+1 = a%:: E1pt1k+1,E Mk+1 = %:: Zikg1|ht1,C (39)
hil = E{U;Hlv;cjjrl}; Upt1 = E{(Chs1 — O)(Chps — E)T} (40)
Proof: Due to system nonlinearities, the estimator 2,41 is approximated by:
Bkt = B{@per [V, Yk, Zerappe}
~ B{aem [V*, e} + E{zrs1 | Zorip }
Thitjkrr = Tikrijksr + Kokg1 Zerips (41)
where
Zh1lk41 = Zh41 — ZhA1k+1 (42)
and
K2k+1 = PIk+12k+1|k+1PZ;il‘k§k+1|k = Pi‘lk+1|k+12k+1|k+1PZ;il‘k+12k+1‘k+1 (43)
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Equation (34) can be rewritten in the form:
2kt = Gt (Tt Cogr) + Vg
Zht1 = Gt (Frkt1fk+1 + Trkt1ht1, € + Chpq) + Vpys (44)
Linearizing (44) around Z441jk41, ¢ while neglecting higher order terms, we have:
Zet1 = Grpt (Brrsrpsr, ©) + Grr et + MGy + Vi (45)
Substituting from (38) and (45) into (42), one gets:
Zrstlkr1 = Ger@irstfkrr + M1 Croa + vy (46)

It is clear that 1541541 depends on yj1 which in turn depends on ¢4 1 and vi4.,. However,
in order to get expressions for Ptk Zrsiiisrs DognjisiZooansr» A1 approximation is made
through which it is assumed that Zi4 1541 is independent on ¢4y and wvgyq. Therefore,

using (46), the covariance matrices PryiiiisiZegirss PoipijpssZoes, are such that:
~ D . T
Pflk+1|k+15k+1|k+1 - Px1k+1\k+1$1k+1|k+1Gk+1 (47)
~ T ! T /
P2k+1\k+12k+l\k+l = Gk+1P1k+1\k+1Gk+1 + Mk+1Uk+1Mk+1 + Rk+1 (48)

With direct substitution from (47) and (48) into (43), one gets the equation for the
gain matrix Ky, as given by (37).
To get an expression for P qx41, we have:

Pk+1\k+1 = E{jk+1|k+lj;‘cp+1|k+1} (49)

Using (41) and the definition of T, 1|41 88 Tpp1jkt1 = Tht1 — Tt k1, We get:

Trg1lkrr = Tirstfkrtr — Kory1 Zeg1jert (50)
Substituting from (50) into (49), Pri1je41 takes the form:
Pri1jes1 = I — Kopy1Grg | Prisajpst (51)

which proves the assertion.
Now, the estimated output is such that:

Ur+1/k+1 = Nyt (Trs1pt1, C) (52)

If the constraints are satisfied, we proceed to the next sampling instant of time. Other-
wise, we let T1p1jk+1 = Tr1p+15 Pirgijp+1 = Prs1jp41 and then repeat the same procedure
till the satisfaction of the imposed constraints.

Therefore, the proposed estimation algorithm consists of the following two phases:

Phase I: In this phase, the filtered estimate of the state vector and its covariance
matrix are calculated using the modified dynamics of the unconstrained EKF. If all the
constraints are satisfied within a pre-specified accuracy, proceed to the next sampling
instant. Otherwise go to Phase II.

Phase II: Formulate the subset of equality constraints to be satisfied, and then apply
the dynamics of the update estimator. Check the constraints, if satisfied within a pre-
specified accuracy, proceed to the next sampling instant, otherwise calculate the norm of
the error vector between the actual and estimated subset of outputs used in this phase.
If decreasing repeat Phase II, else terminate the program.

Remark 3.1. The proposed estimator can be considered as a modified form of the IKF.
The differences between the two estimators can be summarized in the following:

a) The developed estimator is applied only at sampling instants at which a subset of the
constraints is violated while the IKF is applied at each sampling instant.
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b) The developed estimator is used with the assumed new output measurement vector zj1
rather than the output vector yz1, and the results of the i*" iteration are used to get
the state estimator and its covariance matriz at the (i + 1) iteration.

c) In case of linear output model with certain parameters, the IKF will not have any
updating effect on the estimator except if the initial estimator and its covariance matrix
are replaced by the results of the ™™ iteration. However, the proposed technique can
always be used to adjust the estimated states.

d) The IKF is used to improve the estimator, resulting from the EKF, for nonlinear sto-
chastic dynamical systems with certain parameters using the fact that the estimated
states and their estimation errors are not orthogonal. On the other hand, the devel-
oped estimator is applicable to nonlinear stochastic dynamical systems with uncertain
parameters. As it is made clear by Lemmas 3.1 and 3.2, the dynamics of the proposed
filter are different from those used with the EKF.

Remark 3.2. In some cases, the assumed new received measurement vector (34) leads to
an unobservable system. Hence, the updating process will not affect all the state variables.
This problem can be avoided by defining gri1(Tpi1,Chrq) = M1 (Trg1, Copr), i-e., the
original m-dimensional vector nonlinear function of output measurements, vy, = Vpi1,
and zg+1 = Yg+1 — Oky1, where zp1 € R™ and Ox1 € R™ s a vector contains, element
by element, zeros at positions corresponding to output elements satisfying the constraints,
and the values of the violated upper or lower bounds in (4b) at positions corresponding
to output elements violating the constraints. In this case, if the algorithm converges, we
insure the boundedness of the estimated outputs and also gain the other stabilizing effects
of IKF.

Remark 3.3. Since the nonlinear updating algorithm is an application of Gauss-Newton
method for approximating a maximum likelihood estimate (as will be shown in Section 4),
it is controlled by the rate of convergence of the this method. It shows correct convergence
behavior as the observation becomes more accurate. In other words, it may diverge as the
level of the measurement noise and/or the uncertainties of the output model parameters
increase. This fact will be justified in the illustrative example.

Remark 3.4. Assume that the output measurements are noise free and the output model
parameters are certain. Then, the best estimate of the output vector is that it matches the
measured one. In case of noisy measurements and uncertain parameters, each measured
element of the output vector is disturbed — in the average — from its ideal value (noise free
and certain parameters) by the standard deviations of its measurement noise and the set of
parameters related to this output. Therefore, a good choice of the upper and lower bounds
of the estimation error, (, ( — which have to be symmetric — is found to be (element by
element) within the range o < {‘g , ‘C_‘} <20 (e.g., if ( = —1.50 then ¢ = 1.50) where
o is a vector of elements each of which represents the sum of the standard deviations of
the output noise and the uncertain parameters affecting the corresponding element of the
output vector. This means that, such a range allows for instantaneous disturbance levels
up to the value of these limits before applying the algorithm. However, this range can be
updated depending on the sensitivity of the problem and design requirements.

Remark 3.5. The filter dynamics and its stability are highly affected by the chosen sam-
pling period which depends on the system dynamics. Bad choice of the sampling period
may lead to an unstable estimator. However, the proposed estimator shows to be less sen-
sitive to sampling period. This feature will be verified through simulation. It will be shown
that if the sampling period is chosen within certain limits, the proposed estimator will be
stable while the EKF may diverge. Beyond these limits both estimators will diverge.
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4. Conversion of the Nonlinear Update Estimator. In this section, the maximum
likelihood /least square technique is formulated to the nonlinear update estimator. It will
be shown that the proposed update procedure is an application of Gauss-Newton method
to approximate a solution.

Since the update procedure is applied only at the sampling instants at which some of the
constraints are violated, it is independent of the dynamics of the system [50]. Therefore,
the update estimator is equivalent to the static estimation problem in which we correct the
current state estimator using the assumed new received subset of measurements in which
the interval constraint is enforced. To simplify our notation, and without introducing any
ambiguity, the subscript indicates the time is omitted from the variables.

Linearizing (34) around ¢ we get:

z=g(x, &)+ Mc + (53)

where M = % |2, -
Regarding z and z; as realization of independent multivariate random vectors with
normal distribution at the i*® iteration:

z:N(g(z,@),R;), & :N(z,P) (54)
where R; = R' + M;U'M} and M; = %

— C

Values for 2, z;, R;, P; are given. The update problem is to find a better estimate ;.
and its covariance matrix P, using the available information.

Lumping the current observation and the state estimate into a single vector, the aug-

mented vectors are such as:
11T _ T
m=[2" 3], @) =[¢"(x,¢&) "] (55)
Using the independent assumptions, we get:

Ui N(V(»”)a@i)

iiaél :

where B
- | R O
=5 %] (56)
Replacing x by ;,1, where ;. is the estimate we are looking for, and let z;,,; = &; +
Ax;. Assume that Z;q is close to Z; that we can replace «y by its first order approximation,
i.e., we assume 7 affine on a neighborhood of #; 1, &;. Thus, v(#;41) = v(2;) + (%;) Az;

where
_ | G@) . 99(z,7)
—[ ] (o = 20 (57)

and I € R™" is a unity matrix.
Re-arranging (55) while using (57), the approximate representation of (Z;41) and sub-
stituting for = by #;.1 = ; + Ax;, we get:
= (& OT]T, Y(Aw) = T(#;) Awy = [(G (&) A;) T Amz‘T}T (58)

)

where Z; = z — ¢(2;,7); O € R™ is a vector of zero elements.

4.1. The maximum likelihood update. It is well known that the likelihood function
L(§) is the probability density of 77 with Ax; replaced by the free variable . Therefore,

1@ = (1/yfenr=jal) e (—50- 101 e G -5€) 6
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Maximizing L(§) with respect to & is equivalent to minimizing the exponent of (59)
with respect to £&. Such a minimization leads to the following:

0 =II(#:)" Q7 (1 — 7(6))
Az = (I(#:) Q7 'TI(2,)) ™' (&) Q7 ' (60)
Since (HT(i'Z)Q;IH(i'Z))_IHT(i'Z)Q;If]Z = (GT(i'Z)R;IG(i'Z) +PZ-71)_IGT(i'i)R;1§i and by
using the matrix inversion lemma [48] we get:
(G" (&) R;'G (&) + BTG (8 Ry = K = PGT (&) (G(&:) RGT (2;) + Ri)™ (61)
Therefore,
The covariance matrix P, is such that:

Pyt 2 B{(#ip1 — &) (31 — 3)7} = B{Az; AT}

Pryy = (I () QT (#:)) ™" (63)
Using (57) we get:
Py = (G(2:)" Ry 'G(a) + P71 (64)
Hence, by using (61) and (64), the covariance matrix is given by:
P = (I = KG(2:) P, (65)

From (61), (62) and (65), it is clear that the proposed estimator given by (35)-(37) is
equivalent to the maximum likelihood update.

4.2. The nonlinear update estimator is a Gauss-Newton method. Consider the
following nonlinear least square problem [46]:

min f(a) = %r(a)Tr(a) (66)

where 7(«) : R® — R® is twice differentiable. The Gauss-Newton method for solving
this problem is based on the successive application of Newton method to find the roots
of fo(a) = 0, where %,(«) is the first derivative of x(a) with respect to (w.r.t.)a. Let
F,a be the second derivative of f(«) w.r.t.c, then given an initial approximation «,, we
inductively define:

Qi1 = 05 — Fog (i) fa(on) (67)
where

Foo = ro() ro(a) + S(a) (68)
The second term in the right hand side (R.H.S.) of (68) is given by J(a) = > rj(a)x; ()

j=1
where y,(c) is the Hessian of the j'™ component of ().
Dropping the term () from (68), the sequence (67) is approximated by:

Qi1 = i — (ra(a) ra(eq) " ra() r(a) (69)
It is worth mentioning that the same results can be obtained if we let o; 1 = o; + Aq;
and approximate r(c;41) by its first order approximation, i.e., r(a;11) = r(a;)+7ra () Aa;.
Then by minimizing f(c; + Aa;) w.r.t. Aa; we get the optimal value of Aq; as given by
the second term in the R.H.S. of (69).
Define r : R" — R""* as:
r(a) = S — () (70)
where S7S = Q.
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Using (57), (70) and r,(a) = —ST(«), while substituting for «;, ;11 by Z;, &1 re-
spectively, the Gauss-Newton iteration (69) takes the form:
Fipr = &+ ((#:)"Q7'I(#:)) ™' T(#:) " Q7' (7 — 3(24)) (71)
From (56)-(58), (61), (64) and by using the matrix inversion lemma, we get after simple
mathematical manipulation:
Therefore, the sequence of iterates generated by Gauss-Newton method is identical to

the proposed update procedure. Hence, the rate of convergence of the proposed nonlinear
update estimator is as stated for Gauss-Newton method [51].

5. The Developed Recursive Algorithm. The algorithm used to solve the estimation

problem of nonlinear systems with uncertain parameters is as follows:

Step 1: Initialize the value of Ty, Pylo = Py, Qo, Ry, ', Uy, the pre-specified accuracy e
and set v, = large number, k = 0.

Step 2: Calculate Tyi1k, Fry Be, Higry, Digr s Pesifes Untrr, using (6), (5), (7) and (8)
respectively.

Step 3: Calculate Kigpyijk+1, Theik+1s Yktik+1 0nd Pppypyr using (11), (9), (12) and
(10) respectively.

Step 4: Check the satisfaction of the constraints.

If all the constraints are satisfied within €

Then
Go to Step 5
Else
Calculate vg 1 = Hngrl\kJrl - yk+1“
If V41 > Uk
Then
Stop
Else
Assign: Tikrtieet = Sl

P1k+1\k+1 = Pk+1\k+1
Identify the violated constraints and formulate Equation (34). Calcu-
late Gk+17 Mk:—l—la K2k+1, i‘k+1|k+17 Pk-l-l\k-l-l using (39), (37), (35) and
(36) respectively.
Go to the beginning of Step 4.
Step 5: Set k=Fk+1;
If k =k (kg is the last sampling instant),
Then
Stop
Else
Go to Step 2

6. Simulation Results and Discussion. For the completeness of our presentation, we
start this section by introducing Monte Carlo simulation technique, then we present our
illustrative practical problem representing a synchronous machine.

6.1. Monte Carlo simulation. For deterministic systems with certain inputs, no matter
how many times the calculations are repeated to get the set of variables, one gets the same
results. On the other hand, for stochastic systems, since random variables and inputs are
involved, this is not the case. Therefore, to complement the theoretical derivations and to
test the applicability and efficiency of any new approach related to stochastic processes, it
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has to pass firstly through a statistical analysis phase. In general, Monte Carlo simulation
[52] is commonly used for stochastic systems. It is a sampling technique that was invented
by scientists long time ago. Such an approach is a problem solving technique used to
approximate the probability of certain outcomes by running multiple trial runs using the
random variables.

This approach is used in our numerical analysis not only to show the effectiveness of the
developed procedure, but also to make a quantitative comparison with other techniques
usually used to handle similar problems. In order to achieve this objective, two indicators
will be calculated through our simulation and their results will be used as a base for our
analysis. These indicators are:

1) The Root Mean Square Index (RMSI). This index is an overall index which
calculates the root mean square estimation error for each state variable over the whole
horizon of estimation and for the total number of Monte Carlo simulation. It is given by:

NOMTI ky

>, Do [wi (k) — iy (K[R)]?

J=1 ko

NOMT = (k; — ko + 1)

where NOMI is the number of trial runs or Monte Carlo simulation, RM S1I; is the root
mean square index for x;, k, is the initial time and k; is the final time.

It is obvious that, the lower the value of this index, the better the performance of the
estimator.

2) The Root Mean Square Estimation Error (RMS). This index calculates
the root mean square estimation error of each state variable at each sampling instant of
time. It is given by:

RMSI; = (73)

NOMI

> [wi; (k) — @i, (k|k)]?

j=1
NOMI
where RM S;(k) is the root mean square estimation error for z; at the sampling instant
k.
The progress of this indicator with time gives an indication of the behavior of the
estimation procedure. In other words, if the indicator increases with time, this means
that the chosen technique has the tendency to diverge.

RMS;(k) = (74)

6.2. Illustrative problem. To illustrate the effectiveness of the developed approach, let
us consider the following model for a synchronous machine [48]:

i‘l = T + Wy

Ty = Q] — QgTo — Q3T sinx; — 0.5a4 sin 221 + wo (75)
T3 = Upef — Q5T3 + g COS T + W3

y=cri+v (76)

where z; = 6 is the angular position of the rotor (rad.), x = Aw is the change in the
angular speed w (rad./sec.), w3 is the flux variation (web.), u,.r is the reference input,
w;; i € {1,2,3} is the input noise, y is the output measurement and v is the output
measurement noise.

The following assumptions and data are used within our simulation:

(1) w, v are assumed to be uncorrelated zero mean white Gaussian input and output
noise vectors with covariance matrices @) = diag[q q 0.1g] and R = [r] respectively. The
values of ¢, r will be specified within our case studies.
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(2) P, = diag[1.0 1.0 1.0]. With &,, = [0.0 0.0 0.0] the estimated states were stable
and the results were very satisfactory. However, the graphical representation of the states
and their estimated trajectories were not very clear due to the scale used for plotting
the results. To avoid this problem, the obtained trajectories will be plotted for Z,, =
[0.7461 0.0 7.7438].

(3) The set of model parameters, «;; ¢ € {1,2,...,6}, and the output measurement
parameter ¢ are assumed to be uncertain and represented by uncorrelated white Gaussian
random variables with the following statistics: aq: N(38.18,36.4428); an: N(0.27,0.001
82); ag: N(12.01,3.606); cvy: N(—48.04,57.696); as: N(0.32,0.00255); aig: N(1.9,0.9024);
c: N(1,0.1). Again, the mean values of these parameters are their physical nominal values.

(4) Simulations are carried out over a time horizon ¢ € [0, 150]sec. and measurements
are taken at a sampling rate AT = 0.01sec.

(5) To illustrate the effectiveness of the proposed approach, different case studies are
simulated and the results are compared with those achieved from the different techniques
used for the same purpose. For each case, 100 Monte Carlo simulation runs are performed
to estimate the states using the following estimation procedures:

a) Extended Kalman filter with the nominal values of the parameters (denoted by

b) Extended Kalman filter with parameter estimation (denoted by EKF.P.E). In this
approach the parameters are treated as static states with the prior at k = 0 being
N(b,T) as specified in the assumption (3) above.

¢) The proposed stabilized estimator (denoted by St. EKF).

The RMSI; (i = 1,2,3), averaged over 100 Monte Carlo simulations and 15001 sam-
pling points, are calculated for each state variable and for each case study considered in

our simulation using the three different estimation procedures. The results are given in
Table 1.

TABLE 1. RMSI of the estimation errors

Case Filter

o Type q |R| X1 X2 X3
EKF 0.687 | 4.847 | 0.584

1 EKF P.E. |0.001[1.0| 0.459 | 3.009 | 0.676
St. EKF 0.124 | 0.978 | 0.087

EKF 0.662 | 4.720 | 0.550

p EKF P.E. | 0.01 [1.0| 0.348 | 2.654 | 0.528
St. EKF 0.124 | 0.979 | 0.087

EKF 0.254 | 1.079 | 0.125

3 EKFPE. | 0.1 |[1.0] 0.203 | 1.578 | 0.187
St. EKF 0.125 | 0.985 | 0.088

EKF 0.138 | 1.080 | 0.097

4 EKFP.E. | 1.0 [1.0] 0.135 | 1.051 | 0.116
St. EKF 0.133 | 1.039 | 0.095

EKF 0.588 | 2.994 | 0.256

5 EKFPE. | 7.0 [1.0| 0.363 | 2.690 | 0.251
St. EKF 0.366 | 2.714 | 0.231

Moreover, the RM S;(k) (i = 1,2, 3) averaged over the 100 Monte Carlo simulations, are
calculated for each state variable and at each sampling instant using the three approaches.
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Sample of the results are plotted in Figures 1-6. Figures 1-3 present the results of Case
2, while Figures 4-6 demonstrate the results of Case 3.



ITERATED CONSTRAINED STATE ESTIMATOR 6157

6.3. Discussion of the results and remarks. Based on simulation results, one can
conclude the following:

1) From Table 1 it is clear that the least RMST® are achieved with the application of
the developed estimator.

2) The estimated states using the developed approach are stable either in Cases 1, 2,
3 and 5 in which the EKF and the EKF with parameter estimation are unstable (see for
example Figure 7 for x3 which has been found to be the most sensitive state variable).

3) The best results are always achieved through the application of the proposed esti-
mator, either in Case 4 in which the three estimators are stable (see for example Figure 8
for the most sensitive state variable x3). Moreover, the developed approach is faster than
the EKF with parameter estimation.
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4) Since the main objective is to insure that the estimated outputs are bounded and
not tracking the actual measurements, the upper and lower bounds are chosen as stated
in Remark 3.4 at the end of Section 3.

5) Since the developed approach can be imbedded in the class of techniques dealing
with constrained estimation problems, it is worth comparing with others dealing with the
same problem. One of the important techniques used in this domain is that presented in
[14-16]. Such a technique is adopted to enforce constraints on the innovation, and then
applied to our problem with the data set given in Case 5. The weighting matrix of the
quadratic cost function is chosen as a unity matrix and as the covariance matrix Pj 41
at the same sampling instant of time at which the constraints are violated. For each
choice of the weighting matrices, the RM SI° averaged over 100 Monte Carlo simulations
and 15001 sampling points, are calculated for each state variable. The obtained results
are 0.367, 3.3266 and 0.2120 for z;, x5, x3 with the use of unity matrix as a weighting
matrix, and 0.366, 2.752 and 0.2352 for x;, x5, 3 with the use of the covariance matrix
Pit1jk41 as a weighting matrix. Although the above numbers indicate that we may have
good results, the calculated averages at each sampling instant RM S;(k) as well as the
actual and estimated states are unstable.

6) As stated in Section 3 (Remark 3.3), we can have better convergence as the mea-
surement becomes more accurate. In other words, the estimator diverges as the level of
the measurement noise and/or the output parameter uncertainty increases. In order to
justify this fact, the problem is simulated using different values of R = {15, 20, 30} with
g = 1 and different values of the variance of the output parameter ¢ = {0.1, 0.5, 1.0}.
For each combination, 100 Monte Carlo simulation runs are performed and the different
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indicators are calculated. For example, the RM ST® for the states in case of R = 20, and
the variance of ¢ = 0.5 are 0.5428, 3.972, 0.396 for x, x5, x3. Comparing this result with
those obtained from the application of EKF (7.0248, 6.11, 0.5188) and EKF with param-
eter estimation (0.570 4.207 0.434), it is clear that although the proposed approach still
performing much better than the others, it starts to give unacceptable results specially for
x3 as shown in Figure 9. The situation becomes worst by increasing R and the variance
of the output parameter.

8.4

Act
8.2 -~ EKF
---------- StEKF
8 ) —-—-EKFP.E
T A o
B -
S )]“ﬂ.\.. ‘a.u”" w7 Y
_ 76} et i \
F=] L
3 eI 5,
;, 2 TR Ry
& ;
5
bl 51 8
68}
66
-
0 0 100 50

time (sec )

FIGURE 9. Actual and estimated state x3 (R = 20)

7) Although this approach leads to better results when compared with others dealing
with the same problem, it is still an open area for future research. In this direction we
are looking for an improvement of this technique or developing others leading to:

a) Faster convergence behavior than the proposed multiple projection approach.
b) Better control on the behavior of the estimators of the unmeasured state variables.

7. Conclusion. In this paper, a state estimator is developed for nonlinear stochastic
discrete-time dynamical systems with uncertain parameters. The states of the system
as well as the measured output vector are assumed to be corrupted by zero mean white
Gaussian noise. The statistical data of the parameters, the input and the output noise
vectors are assumed to be known. By imposing a set of inequality constraints on the error
between the actual and estimated outputs, an estimator is developed based on the EKF
and the active set method. This approach can be imbedded in the class of constrained
estimation algorithms. An illustrative example is presented to show the effectiveness of
the developed approach. Simulations results show that the developed technique improves
the stability of the estimator and leads to stable state estimates even in many cases in
which the EKF and the EKF with parameter estimation are unstable. Research activities
are now going on to use this approach in generating state dependent control strategies
to control the performance of stochastic nonlinear discrete-time control systems with
uncertain parameters.
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