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Abstract. Missing values in datasets and databases can be estimated via statistics, ma-
chine learning and artificial intelligence methods. This paper uses a novel hybrid neural
network and weighted nearest neighbors to estimate missing values and provides good
results with high performance. In this work, four different characteristic datasets were
used and missing values were estimated. Error ratio, correlation coefficient, prediction
accuracy were calculated between actual and estimated values and the results were com-
pared with basic neural network-genetic algorithm estimation method.
Keywords: Missing data, Missing value, K-nearest neighbors, Neural networks, Impu-
tation, Auto-associative neural networks, Genetic algorithm

1. Introduction. Biological or medical experimentation results, chemical analysis re-
sults, meteorology, microarray gene monitoring technology or survey databases or datasets
contain missing values. Missing values can occur due to a sensor faults, not reacting ex-
periments, not recovering some situation of work, measuring a faulty value, transferring
data to digital system problem or participants skip some survey question [4,5].

Data quality is a major criterion for machine learning, data mining, information and
knowledge [13]. Data cleaning aims to produce quality data; thus, missing values are a
part of information and knowledge [14]. Deleting, ignoring records containing missing
values or imputation mean, mode or the most common value instead of missing value
significantly bias datasets and make datasets noisy and low quality [6,16]. Most compu-
tational intelligence techniques such as neural networks, support vector machines, and
decision trees are predictive models that take discovered data as inputs and estimate an
output class. This model fails if one or more inputs are missing. Consequently, they
cannot be used for decision-making purposes if the data variables are not complete [15].

2. Literature Review. In recent years, many applications and methods of missing value
estimation have been developed by researchers.

Troyanskaya et al. presented missing value estimation methods for DNA Microarrays
with weighted k-NN [1]. Thompson studied the contractive nature of auto-encoders, that
is, the practice of missing sensor restoration by using neural network [2]. Qiao et al.
also presented a missing data estimator based on a neural network coupled with particle
swarm optimization [3] and used it in tracking the dynamics of a plant in the presence of
missing sensor measurements. Abdella et al. proposed the use of genetic algorithms and
neural networks to approximate missing data in databases [4]. Mohamed et al. offered
an approach, which is both agent-based and neural network-based, to estimating missing
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data in databases [5]. Nelwamondo et al. worked on a comparison of neural network and
expectation maximization techniques [7]. Mohamed et al. also proposed hybrid method
estimating missing data using neural network techniques, principal component analysis
and genetic algorithms [9]. Nelwamondo et al. worked on a dynamic programming ap-
proach to missing data estimation using neural networks [10], which is a novel technique for
missing data estimation using a combination of dynamic programming, neural networks
and genetic algorithms (GA) on suitable subsets of the input data. Blend et al. provided
a comparative study of data imputation techniques and their impact [11]. Their paper
comprehensively compares auto-associative neural networks, neuro-fuzzy systems and the
hybrid combinations methods with hot-deck imputation. Hlalele et al. studied the impu-
tation of missing data using pca, neuro-fuzzy and genetic algorithms [12]. The presented
model was tested on the South African HIV sero-prevalence dataset. The results indicated
an average increase in accuracy. Patil et al. focused on multiple imputations of missing
data with genetic algorithm-based techniques [13]. The proposed imputation algorithm
was based on the genetic algorithm, which used a pool of solutions to estimate missing
values, and whose fitness function was decision tree classification accuracy. Ramı́rez et
al. also proposed a missing value imputation on missing completely at random data us-
ing multilayer perceptrons [14]. Their study focused on a methodological framework for
the development of an automated data imputation model based on artificial neural net-
works. Several architectures and learning algorithms for the multilayer perceptron were
tested and compared with three classic imputation procedures: mean/mode imputation,
regression and hot-deck. Nelwamondo et al. introduced techniques for handling missing
data for applications in online condition monitoring systems, in which missing data are
often attributed to sensor failure in online condition monitoring systems. Hybrid genetic
algorithms and fast simulated annealing are used to predict the missing values [16].

2.1. Missing data. Missing data are classified into three categories [6,7]:

• Missing Completely at Random (MCAR) – The missing value has no relation on any
other variable.

• Missing at Random (MAR) – The missing value has relation to other variables. The
missing value can be estimated by viewing the other variables.

• Missing Not at Random (MNAT) – The missing value has relation to other missing
values and so missing data estimation cannot be performed by using the existing
variables.

In this paper we assume that the data is MAR, which implies that the missing values
are deducible in some complex manner from the remaining data [7]. In Table 1, we see a
section of a dataset with missing values. In this paper, we aim to estimate missing values
with artificial neural network and k-nearest neighbors. We will use the notations; ‘X1,
X2, X3, X4, X5, X6’; ‘Y1, Y2, Y3, Y4, Y5’; ‘X2, X5, X6’ and ‘X1, X3, X4’ which refer to
records; attributes; records without missing values; that is, ‘complete’ rows; records with
missing values; that is, ‘incomplete’ rows, respectively.

2.2. Neural networks. A neural networks (NN) objective acts like human nervous sys-
tem and target the learning process. NN contain input, hidden and output layers. Neurons
construct a layer and every neuron connects the next layer’s neurons with weight values.
After training the optimization of weight values, a trained neural network (NN) can be
accepted as a specialist in the category of trained information it has been given to learn.
This specialist system can then be used to provide predictions for new situations. Neural
networks (NN) have been widely implemented to pattern recognition, signal processing,
time series prediction, non-linear control, identification problems, and so on. The class
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Table 1. A subset of dataset with missing values

X/Y Y1 Y2 Y3 Y4 Y5
X1 0,113524 0,084785 ? 0,625473 0,06385
X2 0,112537 0,138211 0,15942 0,625473 0,068545
X3 0,110563 ? 0,144928 0,624212 0,083568
X4 0,110563 0,170732 0,146998 0,623581 ?
X5 0,108588 0,129501 0,144928 0,624212 0,076056
X6 0,108588 0,082462 0,112836 0,626103 0,015023

of networks consists of multiple layers of computational units interconnected in a feed-
forward way [18]. Neural network classification, which is supervised, has been proved to
be a practical approach with lots of success stories in several classification tasks [17].

2.2.1. Auto-associative neural networks. An auto-associative Neural Network also known
as auto-encoder is a relevant neural network; it is trained to recall its inputs [2,19]. A set
of existing inputs, the model in Figure 1 predicts these inputs as outputs which have the
equal number of output and input nodes [2,19]. This means that the difference between
input and output can be used an optimization problem’s fitness function and also can be
used in missing data estimation methods [2-5,7,8,10-12,15,19].

Figure 1. Auto-associative neural networks: Input ≈ Output

2.3. Genetic algorithm (GA). In 1975, John Holland considered the genetic algo-
rithm (GA) as a robust computational model for optimization. The basic concept of GA
is choosing better species from the parent generation and randomly interchanging gene
information in order to produce a better generation [20]. The aim of GAs is that they
mimic the principle of natural selection to guide the search in the problem space so as to
find a “better” solution [21]. After several generations, the inappropriate genes are elim-
inated and more appropriate genes are produced. In general, GA is applicable to a wide
range of optimization problems. There are two important issues in searching strategies
for optimization problems: exploiting the best solution and exploring the search space.
GA makes a balance between the exploitation and exploration of the search space [22].
Therefore, in recent years, GA has been used to estimate missing data problems [23].

Basically GA pseudo code:

Step 1: Generate initial population;
Step 2: Calculate fitness function and select the best population;
Step 3: Generate new population with crossovers and mutations;
Step 4: Go Step 2 until the termination criteria are met.
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Figure 2. Missing value estimator using auto-associative neural network
and genetic algorithm (NN-GA)

2.4. Missing data estimate by auto-associative neural network and genetic al-
gorithm. Abdella and Marwala used the NN-GA model in Figure 2 to estimate missing
values. The Auto-associative Neural Network consists of input (X), output (Y ) and
weights (w).
Mathematically the neural network can be written as (1):

Y = f(X,w) (1)

Since the network is trained to predict its own input vector, the input vector X will
approximately be equal to output vector Y (2):

X ≈ Y (2)

In reality, the input vector X and output vector Y will not always be perfectly the
same; hence, we will have an error function expressed as the difference between the input
and output vector. Thus, the error (3) can be formulated as:

e = X − Y (3)

Y is formulated as (1) and error (e) can be written (4) as:

e = X − f(X,w) (4)

It is preferred that the minimum error (e) must be non-negative. Hence, the error
function (5) can be rewritten as the square of the equation:

e = (X − f(X,w))2 (5)

Missing data occurs when some of the input vectors (X) values are not available. Thus,
the input vector (X) can categorize elements in to X known values represented by (Xk)
and X unknown values represented by (Xu). The rewritten equation in terms of Xk and
Xu error (6) is;

e =

((
Xk
Xu

)
−
(
f

(
Xk
Xu

)
, w

))2

(6)
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The equation was supplied to the GA as fitness function (6). Thus, the final error
function was minimized using the genetic algorithm. This is the fundamental equation
required to relate the problem to the GA and to promote successful data estimation.

2.5. K-nearest neighbors (KNN). Missing values are estimated by combining the
columns of K-nearest records chosen based on a given similarity measure [1]. Thus,
KNN predictions are based on the sensitive supposition that objects close in distance are
potentially similar. Both the measure to use for computing similarities between records
and the number of nearest neighbors (K) must be determined [1,24].

Euclidean distance dik (7), calculates the distance between the nearest (K) complete
records xi and incomplete record yi:

dik =

√√√√ n∑
j=1

(xkj − y2ij) (7)

where j is the element in the ith row and jth column of the missing indicator in complete
record. The missing entry j of complete record i is then estimated by the weighted average
of the column values of the neighbors (K) most similar records, rows:

wik =
1/dik∑K
k=1 1/dik

(8)

where wik is the weight for the kth neighbor record of complete data i normalized by the
sum of the inverse weighted Euclidean distance for all K neighbors [24]:

yij =
K∑
k=1

wikxkj (9)

Missing value yij is estimated from most similar (K) neighboring values and (K) neighbors
weighted distance average (9). For the best accuracy of estimation (K) number of near-
est neighbors must be determined. (K) neighbor size can change depending on dataset
records, attribute counts and missing ratio. In this paper we aim to generate a fitness
function to determine the best optimal (K) number of nearest neighbors.

3. Proposed Method.

3.1. Data. We used the four datasets in Table 2, frequently used in related works in
literature. The first dataset was the data of a 120-MW power plant in France 19, under
normal operating conditions. This dataset comprises five inputs. Sampling of the data
was done every 1228.8 s and a total of 200 instances were recorded [3,5,7,10,15]. The
second one, named Ogawa data, was initially composed of N = 827 records and n = 8
attributes, column conditions about the phosphate accumulation and the polyphosphate
metabolism of the yeast Saccharomyces cerevisiae [25]. The third dataset comes from a
study of the cell cycle regulated genes in Saccharomyces cerevisiae and consists of time
series cDNA microarray data. The data set called cdc28 contains data from a cdc28-based
synchronization [26]. And, the fourth dataset represents a test set-up of an industrial
winding process. The full dataset has 2500 instances, and 5 inputs sampled every 0.1 s
[15].
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Table 2. The used datasets

Dataset Name Records Attributes
Power plant 200 5

Ogawa 827 8
Cdc28 1370 17
Winding 2500 5

3.2. The proposed method for estimating missing values with auto-associative
neural network (NN) and k-nearest neighbors (KNN). We can estimate missing
values with weighted k-NN where k is the number of neighbors. To achieve the best
accuracy, we should find optimal (K). Auto-associative Neural Network error function is
error = (X − Y )2; X is input, and Y is output of Auto-associative neural network.
Thus, we use fitness function where minimum error gives optimal (K) size. For example, a
typical dataset can be divided into two sections: Dataset [complete], Dataset [incomplete]
rows. It can be described that incomplete record is a row of the dataset in which one or
more attributes are missing values; on the other hand, complete record is a row of the
dataset in which all attributes are known not missing. Figure 3 illustrates the proposed
method.

Proposed Method NN-KNN imputation pseudo code:

1. Train Auto-associative Neural Network with Dataset [complete], Input (X) ≈ Out-
put (Y );

2. From k = 1 to Dataset [complete] rows size, estimate missing values with k-NN (X);
a. Get Auto-associative Neural Network output (Y ) corresponding k-NN (X) esti-

mation results and calculate error e = (Y − (k −NN(X)))2;
b. Find optimal k neighbors number corresponding minimum error (e).

3. Impute missing Dataset [incomplete] records with optimal observed k neighbors num-
ber.

Motivation of the practical use of the theoretical results obtained can be addressed with
this practical example in Figure 4.

Figure 3. Proposed method NN-KNN imputation
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Figure 4. An example of practical use of theoretical results

We can assume that ‘?’, ’A’, ’B’, ’C’ are records of the dataset. ‘?’ demonstrates
record containing a missing value; ‘A’, ‘B’, ‘C’ are the nearest three neighbors, values
are xAi = 3, xBi = 2, xCi = 4 and euclidean distances dik (7), between ‘?’ and ‘A’,
‘B’ , ’C’ are, d?-A = 13.43, d?-B = 9.43, d?-C = 10.13, and computation of weights (8)
are w?-A = 0.2792, w?-B = 0.3798, w?-C = 0.3536. Estimation ‘?’ missing value (9) is
y?i = 3 ∗ 0.2792 + 2 ∗ 0.3798 + 4 ∗ 0.3536, ‘?’ = 3.0116. This value can change depending
on k neighbor size. The trained neural network also predict a result for ‘?’; thus, both
proximate prediction result is the best imputation and gives optimal k neighbor size for
the dataset used.

4. Experimental Implementation.

4.1. Data implementation. The attributes of some records were artificially deleted to
check performance and compare the results of our proposed method and those of works
in the literature.

Table 3. Implemented datasets

Dataset Name Records Attributes
Records with

Missing Values
Records with

Complete Values
Power plant 200 5 20 180

Ogawa 827 8 82 745
Cdc28 1370 17 137 1233
Winding 2500 5 250 2250

All datasets were transformed using a min-max normalization (10) to {0, 1} before use,
to ensure that they fall within the active range of the activation function of the neural
network.

xi,norm =
xi − xi,min

xi,max − xi,min

(10)

4.2. Auto-associative neural network implementation. We used Matlab R2009b
version 7.9, which has neural network toolbox and a Matlab code was written. The
neural network has one hidden layer with the same number of neurons of input and output.
‘Trainscg’ is the network training function that updates weight and bias values according
to the scaled conjugate gradient method, as transfer functions hyperbolic tangent sigmoid
transfer function (tansig) for hidden layer and linear transfer function (purelin) were used
for output layer. Dataset records [complete] were divided into 60% train, 20% validate
20% test data, and the network was trained until Performance goal = 0.0001 was met.
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4.3. Genetic algorithm implementation. Similarly, we used MatlabR2009b version
7.9, which has genetic algorithm toolbox and Matlab code was written. The genetic
algorithm used a population size of 20 and 40 generations, a crossover fraction of 60%
and a mutation fraction of 3%.

4.4. Proposed method ANN-KNN imputation. We used MatlabR2009b version 7.9
and Matlab code was written based in Section 3.2 new proposed method pseudo code and
flow diagram in Figure 3.

4.5. Performance evaluation. The efficiency of the missing data estimation system is
evaluated using the Root Mean Standard Error (RMSE), the Correlation Coefficient (r)
and the relative prediction accuracy (A). The Root Mean Standard Error measures the
error between the real values and the estimated values and can refer to the capability of
prediction [1,4,9,15,24]. It is given by (11), where xi is the real value, x

∧ is the estimated
value and n is the number of missing values.

RMSE =

√∑n
i=1(xi − x∧

i )
2

n
(11)

The Correlation Coefficient (r) measures the linear similarity between the estimated
and real data [4,9,15,24] r ranges between −1 and 1, where its absolute value relates to the
strength of the relationship while the sign of r indicates the direction of the relationship.
Hence, a value close to 1 indicates a strong predictive capability. The formula is given by
(12), where mx is the mean of the data.

r =

∑n
i=1(xi −mxi)(x

∧
i −mx∧

i )

[
∑n

i=1(xi −mxi)2
∑n

i=1(x
∧
i −mx∧

i )
2]

1/2
(12)

The relative prediction accuracy (A) is a measure of how many estimations are made
within a certain tolerance [4,9,15]; tolerance is set to 10% as done by Nelwamondo et
al. The accuracy is given by (13), where n is the total number of predications, nT is the
number of correct predications within certain tolerance.

A =
nT

n
× 100 (13)

5. Experimental Results and Discussion. The comparisons of the Root Mean Stan-
dard Errors, Correlation Coefficients and Relative prediction accuracies between NN-GA,
NN-KNN methods are illustrated in Figure 5.
Figure 5 shows the actual value versus estimated with different methods, power plant

dataset has 20 missing values (Table 4), and estimation NN-KNN shows better estimation
accuracy rather than NN-GA.

Figure 5. Power plant dataset real vs. estimated values
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The conditions imposed to develop the main results can be tracked in Figure 5, artifi-
cially deleted values to be estimated are actual data in Table 4. NN-GA method was used
to estimate missing values, but as it is seen in Figure 5, some of values (1, 4, 6, 9, 11, 14,
16, 19) have less imputation accuracy because some of them may be outliers, noisy or the
neural network may not have trained enough. A problem with GAs is; the genes which
are highly fit, but not optimal may rapidly come to dominate the population causing it
to converge on a local minimum. Once the population has converged, the ability of the
GA to search for better solutions is effectively eliminated: the crossover of almost iden-
tical chromosomes produces little that is new. Another GA deficiency is that using only
mutation to explore entirely new ground results in a slow, random search [27]. On the
other hand, one of the advantages of the proposed KNN hybrid method used with neural
network is that some noise reduction techniques that work only for KNN can be effective
in improving the accuracy of the computations. It provides weighted mean on noisy or
deficient of neural network training output values which can be seen in Figure 5 (1, 4, 6,
9, 11, 14, 16 and 19).

Table 4. Power plant dataset real vs. estimated values

Actual NN-GA
NN-KNN
(Proposed)

Actual NN-GA
NN-KNN
(Proposed)

1 0.006 − 0.120 0.092 11 0.109 − 0.108 0.093
2 0.062 0.368 0.367 12 0.082 0.482 0.475
3 0.121 0.250 0.250 13 0.123 0.229 0.229
4 0.627 0.712 0.626 14 0.624 0.651 0.625
5 0.077 0.090 0.090 15 0.124 0.099 0.099
6 0.118 − 0.178 0.093 16 0.103 − 0.160 0.093
7 0.085 0.471 0.471 17 0.083 0.464 0.446
8 0.159 0.234 0.233 18 0.121 0.244 0.244
9 0.624 0.666 0.625 19 0.622 0.645 0.626
10 0.070 0.092 0.092 20 0.072 0.100 0.100

Figure 6 shows Root Mean Standard Errors (RMSE) comparison of two methods on
four datasets. RMSE indicates error of predictions, and a low error value indicates a
better performance.

Figure 6. Root mean standard errors (RMSE)

Figure 7 shows correlation coefficients (r) of two methods on four datasets. The cor-
relation calculates a similarity between actual data and predicted data; a high value of
correlation indicates a better performance.

Figure 8 shows relative prediction accuracies (A) of two methods on four datasets. (A)
is the calculation of actual data versus predicted data number with a tolerance of 10%, a
high value of accuracy indicates a better performance.
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Figure 7. Correlation coefficients (r)

Figure 8. Relative prediction accuracies (A)

The examples used to demonstrate the main results in Figure 6, Figure 7, Figure 8
indicate that Ogawa, Cdc28 microarray datasets produce better results than industrial
time series datasets power plant and winding, it is quite clear in this paper that microar-
ray datasets are more suitable data for neural network training progress and KNN is very
sensitive to irrelevant or redundant features because all features contribute to the similar-
ity, and thus, to the imputation. This can be ameliorated by careful feature selection or
feature weighting [28]. Both GAs and neural nets are adaptive; they can learn and deal
with highly nonlinear models and are robust, ”weak” random search methods. They do
not need gradient information or smooth functions. In both cases their flexibility is also
a drawback, since they have to be carefully structured and coded and are fairly dataset
specific [29]. One of advantages of KNN is that it is well suited for multi-modal classes
as its classification decision is based on a small neighborhood of similar objects i.e., the
major class. So, even if the target class is multi-modal i.e., consists of objects whose
independent variables have different characteristics for different subsets, it can still lead
to good accuracy. There are some noise reduction techniques working only for KNN that
can be effective in improving the accuracy of the imputation [28].
As shown in Figure 9, some records of dataset may have more than one missing values.

We tested our method with records which have 1, 2 or 3 missing values in a record. The
empirical results showed that the proposed NN-KNN method still has stable good results
with low RMS error ratio versus NN-GA.

Figure 9. RMS error ratios on different missing values in a power plant row
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Unique features of the approaches proposed and main advantages of the results over
others are shown in Figure 10. Base model KNN imputation has different k value for
each dataset and cannot able to determine the best k value. K size changes depending on
dataset rows, attributes size and type of data; for example, time series or non-time series.

(a) Power plant (b) Ogawa

(c) Cdc28 (d) Winding

Figure 10. Basic model KNN imputation k-neighbor size (axis X) and
RMS error ratio (axis Y)

NN-GA imputation fails in some outliers data and genetic algorithm and this may risk
finding a suboptimal solution unless the whole solution space is searched. This is a local
minimization problem. On the other hand, the NN-KNN approach proposed decides best
k value suitable on data and uses KNN weighted mean result. The proposed method
produces much conservative data estimation on outliers. At the same time there are
some deficiencies of the proposed method; neural network training is a significant subject
choosing neural network type and training until what performance criteria are met, must
be elaborated before imputation. To make further improvement in imputation accuracy,
feature selections; for example, principal component analysis methods can be applied
before neural network training. Another deficiency is computation time; in this paper, we
worked on different k neighbor sizes corresponding to each missing value to obtain more
sensitive results, but this extends computation time. For further improvement, a unique
k size can be obtained for whole missing values.

6. Conclusion. This paper has proposed a new approach which utilizes machine learning
and artificial intelligence systems. The results showed that k-nearest neighbors estimation
method adds significant advantages on neural network base model. A number of tests
carried out on different characteristics of the four datasets showed that more efficient
results depend on neural network training performance; therefore, with more complete
training data, NN-KNN estimations are more sensitive and exact. This paper investigates
the estimation of missing data through novel techniques. The estimation system involves
an auto-associative model to predict the input data, coupled with the k-nearest neighbors
to approximate the missing data. The results show that the hybrid NN-KNN can be
applied when the record has more than one missing value in a row. We have studied
and compared the neural network and KNN approach with the neural network and GA
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combination approach for missing data approximation. In both approaches, an auto-
associative neural network was trained to predict its own input space. In basic model GA
was used to approximate the missing data. On the other hand, the KNN algorithm was
implemented for the same problem. The results show that NN-KNN method is able to
produce better imputation accuracy. The findings also show that the method seems to
perform better in cases where there is dependency among the variables.
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