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Abstract. We propose a similarity-based prototype reduction algorithm to reduce the
training set size for supervised learning. Training patterns are input to the algorithm
one by one and grouped into blobs through similarity tests. The statistical mean of each
blob is regarded as a prototype representing all the patterns included in the blob. The
collection of such means can then be used to substitute the original training set, and,
consequently, the training set for later supervised learning is reduced. This approach has
several advantages. The distribution of the data contained in each blob is statistically
well described. Each obtained prototype is a good representative of the patterns included
in the corresponding blob. Different numbers of representatives are extracted automati-
cally according to the similarity relationship among and the distribution of the original
training patterns. Furthermore, our method can be applied efficiently to both regression
and classification problems. Experimental results show that the proposed method performs
more effectively than other prototype reduction methods.
Keywords: Large-scale dataset, Similarity measure, Reduction rate, Regression, Clas-
sification, Generalization accuracy

1. Introduction. Due to the rapid development of Internet and advanced database tech-
nologies, the amount of training data collected through text mining, web mining, image
mining, or network auditing has been growing enormously. An automatic learning sys-
tem, e.g., support vector machines and artificial neural networks, may require an unac-
ceptably large amount of memory and execution time for a huge set of training data [1-4].
Therefore, finding an efficient method to reduce the training set size and thus reduce the
complexity for learning, without degrading the generalization accuracy, is an important
job. Prototype reduction techniques, also called data reduction techniques, which aim
to avoid using all the patterns in the training dataset, are therefore very valuable [5] in
machine learning.

Prototype reduction techniques can be divided into two categories. One is instance-
filtering based which selects a subset of the original training dataset as representative
prototypes. The other is instance-abstraction based which, by summarizing the charac-
teristics of similar patterns, generates new prototypes to represent the original patterns
of the training dataset. Most prototype reduction techniques have been developed for
instance-based classifiers [5-13]. Kim and Oommen [11] proposed an adaptive recursive
partitioning algorithm, in which the training dataset is recursively subdivided into smaller
subsets to filter out less useful internal patterns, and then conventional prototype reduc-
tion techniques are applied to the resulting smaller subsets of the training data.

Random sampling is a simple way of instance-filtering, in which a small portion of the
training data is chosen as representative patterns [14-17]. However, this approach may
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fail to work well due to an uneven selection from the training data. Stratified sampling
selects at random a small portion of the training data per class uniformly [18]. For
support vector machines, Lee and Huang [19] implemented a uniform random subset
selection with a space-filling design. Wilson and Martinez [9] proposed a decremental
reduction optimization procedure for instance-based learning. Brighton and Mellish [20]
proposed a two-stage method, called the iterative case filtering, for prototype reduction.
Marchiori [13] proposed a graph-based method for prototype reduction. Three versions
of this method were developed. Several instance-abstraction based prototype reduction
approaches have also been proposed. Datta and Kibler [21] adopted the k-means algorithm
[22] to group similar patterns into clusters and used the cluster means as representative
patterns. Lozano et al. found that the learning vector quantization [23] worked well
with dissimilarity-based classifiers. Sánchez [10] proposed three methods based on space
partitioning for prototype reduction. Lam et al. [5] adopted an agglomerative clustering
approach. Two nearest patterns are merged to form a new pattern at each iteration.
Tabata et al. [24] proposed volume prototypes for streaming data. A volume prototype
has a specific region which enables data compression based on local data distributions.
We propose a similarity-based prototype reduction method to reduce the number of

training patterns for supervised learning. Training patterns are considered one by one
and grouped into blobs. Each blob is characterized by a membership function having a
statistical mean and standard deviation with it. A similarity measure is developed to
judge whether an incoming pattern is similar to the members in an existing blob. If
positive, the pattern is added into the existing blob and the membership function of the
blob is updated. Otherwise, a new blob is created. When all the patterns have been
considered, a desired number of blobs are formed automatically. The statistical mean of
each blob is regarded as a prototype representing all the patterns included in the blob. The
collection of such means is then used to substitute the original training dataset for later
supervised learning. This approach has several advantages. The distribution of the data
contained in each blob is statistically well described. Each obtained prototype is a good
representative of the patterns included in the corresponding blob. Different numbers of
representatives are extracted automatically according to the similarity relationship among
and the distribution of the original training patterns. Furthermore, our method can be
applied efficiently to both regression and classification problems. Experimental results
show that the proposed method performs more effectively than other prototype reduction
methods.
The rest of this paper is organized as follows. Section 2 gives a definition for the

prototype reduction task. Section 3 gives a brief background of several other prototype
reduction methods. Section 4 describes our proposed similarity-based prototype reduction
algorithm, together with a brief analysis on complexity. Two examples illustrating how
the algorithm works are given in Section 5. Some experimental results are presented in
Section 6. Finally, we conclude this work in Section 7.

2. Problem Definition. In a supervised learning problem, we are given a training set,
Str, of ` labeled training patterns, i.e.,

Str = {(x1, y1), (x2, y2), . . . , (x`, y`)}, (1)

where xi = [xi,1, xi,2, . . . , xi,n] and yi denote the n-dimensional input and the output,
respectively, for pattern i, i = 1, 2, . . . , `, and yi and each element in xi can be discrete or
continuous values. If yi ∈ {1, 2, . . . , K}, the problem is a classification problem. In this
case, we have K classes. We say xi belongs to class yi. On the other hand, if yi is real,
the problem is a regression problem. The patterns in Str can be divided into bins. For
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classification, each class corresponds to one bin. For regression, the range of yi values can
be divided into intervals with each interval containing an equal number of patterns. Then
each interval corresponds to one bin. Of course, other forms of bins are possible. For a
training set Str with K bins, we use S1, S2, . . . , and SK to denote the subsets containing
the training patterns included in bin 1, bin 2, . . . , and bin K, respectively.

The prototype reduction task for supervised learning is to find a new training dataset
S ′
tr:

S ′
tr = {(x′

1, y
′
1), (x

′
2, y

′
2), . . . , (x

′
J , y

′
J)} (2)

such that J < ` and S ′
tr is sufficient for generalization. To be specific, the model char-

acterizing the input-output relationship derived from S ′
tr should be commensurable with

that derived from Str. If J is much smaller than `, the computation cost of finding the
model from S ′

tr can be drastically smaller than the computation cost of finding the model
directly from Str. Some criteria can be used to measure the performance of a prototype
reduction technique. Among them, reduction rate and precision are most obvious. The
reduction rate is the ratio (` − J)/`. The measure of precision describes how well the
reduced set S ′

tr works for generalization. It is desirable to require both the reduction rate
and precision be as high as possible. Another measure is the CPU time spent in deriving
S ′
tr from Str. Obviously, we’d like it to be as low as possible.

3. Related Work. As mentioned earlier, prototype reduction techniques can be either
instance-filtering based or instance-abstraction based. Some of them are briefly described
below.

3.1. Instance-filtering based. In case of instance-filtering, a subset of the original
training dataset Str is selected to be the reduced training dataset S ′

tr. One well known
instance-filtering based method is stratified sampling (SS) [18,19] which requires the value
J be specified by the user in advance. To get J patterns from Str, SS selects qj training
patterns uniformly at random from Sj such that

qj =
|Sj|
|Str|

J (3)

where | | denotes cardinality and J = q1 + q2 + . . .+ qK . This ensures that patterns from
different bins are selected with equal probability.

DROP3 [9] is another instance-filtering based prototype reduction method which can
only be used for classification. First, DROP3 removes the patterns which are misclassified
by their k nearest neighbors. Next, the remaining patterns are sorted according to the
distance to their nearest enemy. An enemy is a pattern of other classes. Then DROP3
removes one pattern at a time, in the order of decreasing distance, from the training set,
if the removal does not deteriorate the classification accuracy induced. Another instance-
filtering based prototype reduction method for classification only is the hit miss network
(HMN) proposed by Marchiori [13]. Let x be the nearest neighbor of y. If x and y have
the same class label, x has a hit. Otherwise, x has a miss. The hit and miss degrees of x
represent the number of hits and misses, respectively, x has. There are three versions of
this method, called HMN-C, HMN-E and HMN-EI, respectively. HMN-EI applies HMN-
E iteratively to removing more redundant patterns, and was claimed to perform better
than HMN-C and HMN-E.

3.2. Instance-abstraction based. Using instance-abstraction, a new representative pa-
ttern is obtained by summarizing the characteristics of some of the original patterns.
Therefore, in general, S ′

tr is not a subset of Str. The k-means clustering algorithm [22]
can be used for this purpose. For each Sj, 1 ≤ j ≤ K, the user specifies the number of
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clusters qj to be obtained and an initial centroid for each cluster. Then all the patterns
in Sj are partitioned into qj clusters based on a distance measure. The centroids of the
resulting qj clusters are taken to be the representatives of all the patterns in Sj. Note
that q1 + q2 + . . .+ qK = J and each qj can be set by Equation (3).
Another instance-abstraction based prototype reduction method is RSP3 [10]. RSP3

performs partitioning until all the subsets are class homogeneous, i.e., the patterns in
each subset belong to the same class [10]. Then one representative pattern is obtained
for each subset. Initially, Str itself constitutes a subset. For any subset S that is not
class homogeneous, RSP3 finds two patterns that are farthest apart in S. Let these
two patterns be x1 and x2. Then S is separated into two subsets, one containing those
patterns nearer to x1 and the other containing those patterns nearer to x2. This process
continues until all the subsets are class homogeneous. Obviously, RSP3 can only be used
for classification.

4. Proposed Method. The prototype reduction methods described in the previous sec-
tion are problematic. Some, e.g., SS, perform reduction in a way without taking into
account the characteristics inherently associated with the original training dataset. Some,
e.g., k-means and DROP3, can only apply to classification problems. Some, e.g., DROP3
and RSP3, are very computation-demanding. We propose a similarity-based prototype
reduction algorithm to deal with these problems. Training patterns are considered one
by one and those similar to each other are grouped into the same blob through similarity
tests. Blobs are identified based on the similarity relationship among the original training
patterns. The statistical mean of each blob is regarded as a prototype representing all the
patterns included in the blob. The collection of such means can then be used to substitute
the original training set for later supervised learning.

4.1. Similarity-based prototype reduction. For convenience, we use pi to denote
(xi, yi), i.e.,

pi = [pi,1, pi,2, . . . , pi,m−1, pi,m]

= (xi, yi) = [xi,1, xi,2, . . . , xi,n, yi]

for 1 ≤ i ≤ `, where m = n + 1. The similarity-based prototype reduction algorithm
partitions the members of Str into blobs. Each blob is described by its mean µ, deviation
σ and size s. An existing blob may be expanded to include new members and new blobs
may be created during the reduction process. Let J be the number of existing blobs.
Initially, no blobs exist, so J is zero. For a training pattern pi = [pi,1, pi,2, . . . , pi,m] being
considered, we compute the similarity of this pattern to each of the existing blobs. If pi

is not close enough to any existing blob, a new blob is created and J is increased by 1.
Otherwise, pi is added to the blob to which it is closest. In principle, our algorithm works
like a five-layer network as shown in Figure 1. The five layers are referred to as the input
layer, layer 1, layer 2, layer 3 and the output layer, respectively. The operation of each
layer is described in detail below.

• Input layer. This layer transfers the m components of pi forward to the nodes in
layer 1. Node 1 of this layer passes pi,1 to the first node of all the groups in layer 1,
node 2 of this layer passes pi,2 to the second node of all the groups in layer 1, etc.

• Layer 1. This layer contains J groups of nodes. J is the number of existing blobs.
Each group has m nodes and corresponds to one existing blob. For example, the
first group of m nodes are for blob 1, the second group of m nodes are for blob
2, etc. Each node computes as output the component membership degree of pi in

one dimension to the underlying blob. Therefore, O
(1)
j,1 , O

(1)
j,2 , . . . , O

(1)
j,m denote the
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Figure 1. A five-layer network for generating blobs

component membership degrees of pi to blob j for the first dimension, the second
dimension, . . . , and the mth dimension, respectively, and are defined by

O
(1)
j,k =

 exp

[
−
(
pi,k − µj,k

σj,k

)2
]
, if component k is continuous

δ (pi,k, µj,k) , if component k is discrete

(4)

for 1 ≤ k ≤ m and 1 ≤ j ≤ J , where µj = [µj,1, . . . , µj,m] and σj = [σj,1, . . . , σj,m]
are the mean and deviation, respectively, of blob j, and δ (x, y) is the Kronecker
delta function defined as

δ (x, y) =

{
1, if x = y
0, otherwise

(5)

The Gaussian function is adopted for each continuous component, as shown in Equa-
tion (4), due to its superiority over other functions [25]. As usual, the power in
Equation (4) is two. Its value has an effect on the number of blobs obtained. A
larger value will make the boundary of the Gaussian function sharper and more
blobs will be obtained in the end. Each component membership degree is a real
number between 0 and 1. One condition imposed on the use of Equation (4) is that
the blobs concerned cannot be slanted ones. A slanted blob may sometimes fit a
set of patterns better than a non-slanted one. We’ll investigate one improvement in
Section 7. For discrete components, the component membership degree is 1 if the
two involved values match and is 0 otherwise.

• Layer 2. This layer contains J nodes, each node corresponding to one existing
blob. The output of each node in this layer denotes the similarity degree of pi to
the underlying blob, defined as the logarithm of the product of all the component
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membership degrees, i.e.,

O
(2)
j = log

m∏
k=1

O
(1)
j,k = logO

(1)
j,1 + logO

(1)
j,2 + . . .+ logO

(1)
j,m (6)

for 1 ≤ j ≤ J . Taking the logarithm avoids the presence of underflow when m is
large. We define log 0 to be −∞. A larger similarity degree indicates that pi is more
similar to the underlying blob.

• Layer 3. This layer contains only one node. This node, labeled C, performs compet-
itive learning. The inputs to this node are the similarity degrees provided from all
the existing blobs. The output of this node, O(3), takes the largest of its inputs, i.e.,

O(3) = max
1≤j≤J

O
(2)
j . (7)

Let blob a be the winner blob, i.e.,

a = arg max
1≤j≤J

O
(2)
j . (8)

• Output layer. The layer contains a single node. It applies its input through a hard
limit function as follows:

O(4) = hardlim
(
O(3)

)
=

{
1, if O(3) ≥ ρ
0, otherwise

(9)

where ρ is a predefined threshold. A smaller value of ρ may result in larger blobs,
and, therefore, as ρ increases, the number of blobs may also increase. Two cases
may occur:
Case I . If O(4) = 0, there are no existing blobs to which pi is similar enough. In
this case, we add a new blob by

J = J + 1, (10)

µJ = pi, (11)

sJ = 1 (12)

and

σJ,k =

{
σ0, if component k is continuous
0, if component k is discrete

(13)

for 1 ≤ k ≤ m. Note that blob J contains pattern pi only, and, obviously, its
deviation is 0. Since we cannot use zero deviation in the calculation of the component
membership degrees in Equation (4) for continuous components, we set it to be σ0

which is a user-defined constant. For discrete components, only match or no-match
is allowed. Therefore, we set the deviation of discrete components to be zero.
Case II . If O(4) = 1, we regard pi to be most similar to blob a. Then we assign pi

to blob a, and µa and σa of blob a are modified to include pi as its member:

µa,k =

{ sa×µa,k+pi,k
sa+1

, if component k is continuous
µa,k, if component k is discrete

(14)

σa,k =


√

(s2a−1)(σa,k−σ0)2+sa(pi,k−µa,k)
2

sa(sa+1)
+ σ0, if component k is continuous

0, if component k is discrete
(15)

for 1 ≤ k ≤ m. Finally, we update the size of blob a:

sa = sa + 1. (16)

Note that J is not changed in this case.
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The above process is iterated for all the patterns in Str. In the end, we have J blobs.
Note that the training patterns in a blob have a high degree of similarity to each other.
We regard the statistical mean of each blob, µj, 1 ≤ j ≤ J , as a prototype representing
all the patterns included in the blob. Let

S ′
tr = {(x′

1, y
′
1), (x

′
2, y

′
2), . . . , (x

′
J , y

′
J)} (17)

where

x′
j = [µj,1, µj,2, . . . , µj,m−1],

y′j = µj,m (18)

for 1 ≤ j ≤ J . We have reduced the training dataset Str with ` patterns to another
training dataset S ′

tr with J patterns. Obviously, J ≤ `. Then we may construct a
classification or regression model from S ′

tr instead of directly from Str. Since S
′
tr is smaller

than Str, the computation cost of model construction can be less. The proposed prototype
reduction method can be summarized in Algorithm 1.

As for the specification of ρ, the threshold for a discrete component should be 1, dic-
tating a total match for discrete components. A threshold for a continuous component
can be any value in (0, 1]. For simplicity, the user can specify the same threshold for all
continuous components, as shown in the examples later.

4.2. Complexity comparison. For SS, J out of the ` patterns are sampled, and thus
the time complexity involved with SS is O(J). So SS is fast. However, SS does not take
into account the characteristics inherently associated with the original training dataset.
Next, we estimate the complexity for the k-means algorithm. For convenience, assume
that each bin contains p patterns which are to be divided into t clusters and each cluster
contains v patterns. Therefore, we have p = `/K, t = J/K and v = `/J . In each iteration
involved in a bin, t distances have to be computed and t− 1 comparisons have to be done
for each pattern. Also, v − 1 additions and one division are performed to obtain the new
centroid mean for a cluster. Therefore, [p(t+ t−1)+ tv]I computations are required for a
bin, where I indicates the number of iterations to be performed before convergence. Then
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the total number of computations required for k-means is K[p(t + t − 1) + tv]I which is
of order O(J`I/K).
For DROP3, it first checks if any patterns are misclassified by their k nearest neighbors.

For each pattern, `− 1 distances are computed and its k nearest neighbors are obtained,
costing a time proportional to 2` + k log `. So, the time is `(` − 1 + 2` + k log(`)) in
total for this step. Next, a decreasing list of distances to the nearest enemies are created,
costing a time proportional to ` log `. Finally, a pattern is removed if its removal does
not deteriorate the classification accuracy induced. This takes a time proportional to
`Tc where Tc is the time required for classification. Therefore, the total time complexity
involved with DROP3 is `(`−1+2`+k log `)+` log `+`Tc which is of order O(`2+`Tc). For
RSP3, the distance between any two patterns has to be computed in order to determine
the two patterns that are farthest apart. Obviously, the time complexity involved is at
least of order O(`2). For HMN-EI, the time complexity is O(`2) [13]. For our algorithm,
we only have to process each pattern once. Since there are J blobs to be considered, the
time complexity involved in our algorithm is O(J`).

5. Examples. We give two examples here to illustrate how the proposed method works
for prototype reduction.

5.1. Example 1. Let Str contain 10 patterns (x1, y1), (x2, y2), . . . , (x10, y10) as listed
below:

x1 = [0.85, 0.88], y1 = 0.266;

x2 = [0.73, 0.86], y2 = 0.227;

x3 = [0.78, 0.83], y3 = 0.310;

x4 = [0.18, 0.19], y4 = 0.018;

x5 = [0.25, 0.12], y5 = 0.023;

x6 = [0.09, 0.21], y6 = 0.005;

x7 = [0.32, 0.37], y7 = 0.094;

x8 = [0.64, 0.72], y8 = 0.316;

x9 = [0.82, 0.77], y9 = 0.445;

x10 = [0.13, 0.24], y10 = 0.012.

All the components in a pattern are continuous.
We run the proposed algorithm, by setting ρ = log(0.83) = 3 × log(0.8) = −0.6694

and σ0 = 0.35, on the patterns of Str. Note that the same threshold, 0.8, is set for all
continuous components. Firstly, we consider the pattern

p1 = [0.85, 0.88, 0.266], (19)

corresponding to (x1, y1), and create the first blob by

µ1 = [0.85, 0.88, 0.266],

σ1 = [0.35, 0.35, 0.35]

and we have J = 1. Then, we consider the second pattern p2, corresponding to (x2, y2).
The operations performed are shown below.

• Layer 1. The component membership degrees are

O
(1)
1,1 = 0.889, O

(1)
1,2 = 0.997, O

(1)
1,3 = 0.988.
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• Layer 2. The similarity degree is

O
(2)
1 = log(0.889) + log(0.997) + log(0.988) = −0.133.

• Layer 3. The winner blob is blob 1 and

O(3) = −0.133 > ρ.

• Output layer. Since O(3) > ρ, p2 is assigned to blob 1, and µ1 and σ1 are modified
to become

µ1 = [0.790, 0.870, 0.247],

σ1 = [0.435, 0.364, 0.378].

When all the training patterns in Str have been considered, we obtain 2 blobs as shown
in Table 1. The reduced dataset S ′

tr then contains the following two patterns:

Table 1. Two blobs obtained for Example 1

blob size sj mean µj standard deviation σj

j = 1 5 [0.764, 0.812, 0.313] [0.433, 0.416, 0.432]
j = 2 5 [0.194, 0.226, 0.031] [0.443, 0.442, 0.386]

x′
1 = [0.764, 0.812], y′1 = 0.313;

x′
2 = [0.194, 0.226], y′2 = 0.031.

That is, S ′
tr = {(x′

1, y
′
1), (x

′
2, y

′
2)}. Note that Str contains 10 patterns, while S ′

tr contains
only 2 patterns. Then we can build a regression model from S ′

tr instead of directly from
Str. Since S ′

tr is smaller than Str, the modeling process involved with S ′
tr requires less

memory and time than that involved directly with Str.

5.2. Example 2. Let Str contain 10 patterns (x1, y1), (x2, y2), . . . , (x10, y10) of two
classes, as listed below:

x1 = [0.82, 0.69, 0.73, 0.92, 0.58, a, d, h], y1 = 1;

x2 = [0.53, 0.49, 0.18, 0.37, 0.89, a, f, k], y2 = 2;

x3 = [0.78, 0.82, 0.75, 0.88, 0.63, a, d, h], y3 = 1;

x4 = [0.81, 0.68, 0.76, 0.87, 0.62, a, d, h], y4 = 1;

x5 = [0.52, 0.47, 0.25, 0.33, 0.65, a, f, k], y5 = 2;

x6 = [0.51, 0.32, 0.33, 0.49, 0.29, b, e, g], y6 = 1;

x7 = [0.50, 0.45, 0.22, 0.35, 0.62, a, f, k], y7 = 2;

x8 = [0.48, 0.39, 0.31, 0.51, 0.25, b, e, g], y8 = 1;

x9 = [0.25, 0.31, 0.41, 0.19, 0.28, c, e, g], y9 = 2;

x10 = [0.27, 0.30, 0.40, 0.20, 0.30, c, e, g], y10 = 2.

The first five components of a pattern are continuous and the remaining ones are discrete.
We run the proposed algorithm with ρ = log(0.85×14) = 5 × log(0.8) = −1.116 and

σ0 = 0.25 on Str. Note that the same threshold, 0.8, is set for all continuous components,
and the threshold 1 is set for all discrete components. The first blob created from p1 =
(x1, y1) has the mean

µ1 = [0.82, 0.69, 0.73, 0.92, 0.58, a, d, h, 1]
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and deviation

σ1 = [0.25, 0.25, 0.25, 0.25, 0.25, 0, 0, 0, 0].

The operations performed for the second pattern, p2 = (x2, y2), are:

• Layer 1. The component membership degree vector is

O
(1)
1 = [0.260, 0.527, 0.008, 0.007, 0.215, 1, 0, 0, 0].

• Layer 2. The similarity degree is

O
(2)
1 = log(0.260) + log(0.527) + log(0.008) + log(0.007)

+ log(0.215) + log(1) + log(0) + log(0) + log(0))

= −∞.

• Layer 3. The winner blob is blob 1 and

O(3) = −∞ < ρ.

• Output layer. Since O(3) < ρ, we have O(4) = 0. Thus, a new blob is created for p2:

µ2 = [0.53, 0.49, 0.18, 0.37, 0.89, a, f, k, 2],

σ2 = [0.25, 0.25, 0.25, 0.25, 0.25, 0, 0, 0, 0].

Then, we consider the third pattern, p3 = (x3, y3), giving:

• Layer 1. The component membership degree vector is

O
(1)
1 = [0.975, 0.986, 0.994, 0.961, 0.961, 1, 1, 1, 1],

O
(1)
2 = [0.368, 0.429, 0.006, 0.016, 0.339, 1, 0, 0, 0].

• Layer 2. The similarity degrees are

O
(2)
1 = log(0.975) + log(0.986) + log(0.994) + log(0.961)

+ log(0.961) + log(1) + log(1) + log(1) + log(1)

= −0.1264,

O
(2)
2 = log(0.368) + log(0.429) + log(0.006) + log(0.016)

+ log(0.339) + log(1) + log(0) + log(0) + log(0)

= −∞.

• Layer 3. The winner blob is blob 1 and

O(3) = −0.1264 > ρ.

• Output layer. Since O(3) > ρ, we have O(4) = 1. Thus, p3 is assigned to blob 1, and
µ1 and σ1 are modified to become

µ1 = [0.800, 0.705, 0.740, 0.905, 0.605, a, d, h, 1],

σ1 = [0.278, 0.271, 0.264, 0.285, 0.285, 0, 0, 0, 0].

When all the training patterns in Str have been considered, we obtain 4 blobs, i.e., J = 4,
and the reduced dataset S ′

tr contains the following four patterns:

x′
1 = [0.803, 0.697, 0.747, 0.893, 0.610, a, d, h], y′1 = 1;

x′
2 = [0.517, 0.470, 0.217, 0.350, 0.720, a, f, k], y′2 = 2;

x′
3 = [0.495, 0.355, 0.320, 0.500, 0.270, b, e, g], y′3 = 1;

x′
4 = [0.260, 0.305, 0.405, 0.195, 0.290, c, e, g], y′4 = 2.
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That is, S ′
tr = {(x′

1, y
′
1), (x

′
2, y

′
2)}, S ′

tr = {(x′
1, y

′
1), (x

′
2, y

′
2), (x

′
3, y

′
3), (x

′
4, y

′
4)}. Note that Str

contains 10 patterns, while S ′
tr contains only 4 patterns. Then we can build a classification

model from S ′
tr instead of directly from Str. Since S ′

tr is smaller than Str, the modeling
process involved with S ′

tr requires less memory and time than that involved directly with
Str.

6. Experimental Results. In this section, we present some experimental results to
show the effectiveness of our proposed prototype reduction method. We also compare it
with three instance-filtering based methods, SS [18,19], DROP3 [9], HMN-EI [13], and
two instance-abstraction based methods, k-means [26-28] and RSP3 [10], using several
classification and regression datasets. As described in Section 3, DROP3, HMN-EI and
RSP3 can only be applied to classfication problems. Support vector machines (SVM)
[14,15,29] and support vector regression (SVR) [29] are adopted to construct classification
and regression models, respectively, from given training datasets. We use a computer
with Intel(R) Core(TM)2 Quad CPU Q6600 2.40GHz and 4GB of RAM to conduct the
experiments. The software used is C#.

For convenience, our proposed similarity-based prototype reduction method is abbre-
viated as SBPR in the following presentation. Note that the order in which the training
patterns are considered influences the blobs obtained. We use a heuristic for the entry
of the training patterns. We sort all the patterns, in decreasing order, by their largest
continuous components, and enter the patterns in this order. In this way, more significant
patterns will be entered first and likely become the core of the underlying blob. For ex-
ample, let p1 = [0.1, 0.3, 0.6], p2 = [0.3, 0.3, 0.4] and p3 = [0.8, 0.1, 0.1] be three patterns.
The largest components in these patterns are 0.6, 0.4 and 0.8, respectively. The sorted
list is 0.8, 0.6, 0.4. So the order of entry is p3, p1 and p2. We will show later the effect
of other possible orderings.

6.1. Experiment I. In this experiment, we compare different reduction methods on three
classification datasets. The datasets used are letter and shuttle from the Statlog collections
[30], and the 1999 KDD Cup from the 1998 DARPA Intrusion Detection Evaluation
Program administered by the MIT Lincoln Lab [31]. The letter dataset contains 20,000
unique letter images composed of the uppercase letters A to Z in 20 different fonts. Each
image was distorted both horizontally and vertically but still remained recognizable to
humans. Each image was converted into 16 primitive numerical features. We use 15,000
patterns for training and the rest for testing. The shuttle dataset contains 58,000 patterns
composed of 7 classes. Each pattern consists of 9 numerical features. This dataset has
a skewed distribution and approximately 80% of the patterns belong to class 1. We use
43,500 patterns for training and the rest for testing. In the 1999 KDD dataset, 4,898,431
connection records are used for training and 311,029 connection records are used for
testing. Both training and testing datasets contain one normal network traffic (Normal)
and four major attack categories: Denial-of-Service (DoS), Probing (Prob), User-toRoot
(U2R) and Remote-to-Local (R2L). Each pattern consists of 34 continuous components
and 7 discrete components. This dataset has a skewed distribution, approximately 20% of
the patterns belonging to class Normal and approximately 80% of the patterns belonging
to class DoS.

Note that SS and k-means require the number of representatives to be set in advance.
To meet this requirement, we ran SBPR first and then set the number of representatives
for SS and k-means to be that obtained by SBPR. DROP3, HMN-EI and RSP3 do not
require the number of representatives to be specified in advance. Since SS and k-means
are sensitive to random selection, we repeated 10 times for each dataset and then averaged
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Table 2. Comparison on letter for Experiment I

WO-red SBPR SS DROP3 HMN-EI k-means RSP3
#-rep 15000 4371 4371 5097 11573 4371 5821
R-rate (%) 0.00 70.86 70.86 66.02 22.85 70.86 61.19
PR-time (sec) 0.000 5.313 0.018 498.520 637.751 97.473 152.412
MG-time (sec) 81.141 18.719 17.453 20.281 55.859 17.953 25.500
C-acc (%) 97.98 97.06 94.07 95.36 95.26 96.71 97.66

Table 3. Comparison on shuttle for Experiment I

WO-red SBPR SS DROP3 HMN-EI k-means RSP3
#-rep 43500 280 280 15466 28435 280 279
R-rate (%) 0.00 99.36 99.36 64.45 34.63 99.36 99.36
PR-time (sec) 0.000 6.334 0.014 3301.833 3359.776 37.517 1477.325
MG-time (sec) 137.297 0.719 0.797 38.781 88.172 0.688 0.797
C-acc (%) 99.79 99.72 96.68 99.86 99.90 99.32 98.54

the results. The results for the letter dataset are summarized in Table 2 in which “#-rep”
stands for the number of representatives obtained, “R-rate” for reduction rate, “PR-time”
for prototype reduction time, “MG-time” for model generation time by SVM, and “C-acc”
for classification accuracy of the obtained model. The column marked with “WO-red”
in the table indicates that the results are obtained without prototype reduction. The
reduction rate is the ratio (` − J)/` where ` is the number of original patterns and J
is the number of representatives obtained. For letter, the number of original patterns is
15,000, so the number of representatives indicated in the “WO-red” column is 15,000.
The reduction rate for letter by SBPR is (15000− 4371)/15000 = 70.86%. The accuracy
for letter achieved by SBPR is 97.06% which is better than 94.07% by SS, 95.36% by
DROP3, and 95.26% by HMN-EI. SBPR gets higher accuracy than k-means, i.e., 97.06%
vs. 96.71%. RSP3 gets higher accuracy than SBPR, i.e., 97.66% vs. 97.06%, but SBPR
runs over 25 times faster than RSP3. Note that SBPR spent 5.313 seconds in prototype
reduction and SVM spent 18.719 seconds in generating a classification model from the
prototypes obtained by SBPR. So the total time by SBPR is 5.313 + 18.719 = 24.032
seconds which is lower than the 81.141 seconds by WO-red. This indicates that SBPR
is effective in reducing the computation time for classification in this case. However, the
prototype reduction time taken by any of DROP3, HMN-EI, k-means, and RSP3 is larger
than the model generation time without reduction. The application of these methods
increases, rather than decreases, the computation time for classification in this case.
The results for the shuttle dataset are summarized in Table 3. For shuttle, SBPR,

DROP3 and HMN-EI have comparable accuracies, but are more accurate than SS. SBPR
runs much faster than DROP3 and HMN-EI. SBPR takes 6.334 seconds, while DROP3
and HMN-EI take 3301.833 and 3359.776 seconds, respectively. SBPR and k-means get
equally good accuracies. However, SBPR runs over 6 times faster than k-means. SBPR
gets a higher accuracy than RSP3, i.e., 99.72% vs. 98.54%. Furthermore, SBPR runs over
230 times faster than RSP3. Note that SBPR spent 6.334 seconds in prototype reduction
and SVM spent 0.719 seconds in generating a classification model from the prototypes
obtained by SBPR. So the total time by SBPR is 6.334 + 0.719 = 7.053 seconds which is
much lower than the 137.297 seconds by WO-red. This indicates that SBPR is effective
in reducing the computation time for classification in this case. However, the prototype
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Table 4. Comparison on 1999 KDD Cup for Experiment I

WO-red SBPR SS DROP3 HMN-EI k-means RSP3
#-rep 4898431 3126 3126 — — — —
R-rate (%) — 99.94 99.94 — — — —
PR-time (sec) — 1595.921 0.925 — — — —
MG-time (sec) — 13.828 10.295 — — — —
C-acc (%) — 92.55 86.19 — — — —

Table 5. Comparison on 10% 1999 KDD Cup for Experiment I

WO-red SBPR SS DROP3 HMN-EI k-means RSP3
#-rep 494021 1515 1515 — — 1515 —
R-rate (%) 0.00 99.69 99.69 — — 99.69 —
PR-time (sec) 0.000 443.168 0.083 — — 5214.800 —
MG-time (sec) 4478.359 4.843 4.109 — — 4.672 —
C-acc (%) 92.51 92.04 81.05 — — 92.09 —

reduction time taken by any of DROP3, HMN-EI, and RSP3 is larger than the model
generation time without reduction.

The results for the 1999 KDD Cup dataset are summarized in Table 4. Since the 1999
KDD Cup dataset contains about 5 million training patterns, all the methods, except
SBPR and SS, have troubles in loading the whole dataset into the memory and get a
“out of memory” error. Therefore, they cannot be applied to this dataset, as indicated
by “—” in this table. In practice, prototype reduction is required before a classification
model can be built for such a huge training dataset. DROP3, HMN-EI, k-means and
RSP3 demand a huge amount of memory and are not applicable for this case. SBPR and
SS are applicable, and SS runs much faster than SBPR. However, the accuracy obtained
by SS is much lower than that obtained by SBPR. SBPR gets 92.55% in accuracy, while
SS gets only 86.19% in accuracy. To avoid the “out of memory” error, we use 10% of the
original training patterns, as that commonly done in other research works, and run the
experiment again. The results for this 10% 1999 KDD Cup dataset are shown in Table 5.
Note that RSP3, DROP3 and HMN-EI still have troubles in this case. They ran over
100,000 seconds without termination. The corresponding entries are marked with “—”.
Apparently, SS runs much faster but has much lower accuracy than the other methods.
SBPR and k-means get equally good accuracies. However, SBPR runs much faster than
k-means. SBPR takes 443.168 seconds while k-means requires 5214.800 seconds. Besides,
the prototype reduction time taken by k-means is larger than the model generation time
without reduction.

6.2. Experiment II. In this experiment, we compare different reduction methods on
two regression datasets. The datasets used are houses from the StatLib datasets archive
[32] and comp-activ from the Delve datasets archive [33]. The houses dataset contains
20,640 patterns for predicting the price of houses in California. The input variables
include median income, housing median age, total rooms, total bedrooms, population,
households, latitude and longitude. The output variable is the median house value. The
comp-activ dataset contains 8,192 patterns for predicting a computer system activity in
a multi-processor, multi-user computer system. As that commonly done in research, we
select the “cpuSmall” subset which contains 12 input variables. The output variable is
the proportion of the CPU time spent in the user mode. For each dataset, threefold
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Table 6. Comparison for Experiment II

houses comp-activ
WO-red SBPR k-means SS WO-red SBPR k-means SS

#-rep 13760 162 162 162 5461 247 247 247
R-rate (%) 0.00 98.83 98.83 98.83 0.00 95.48 95.48 95.48
PR-time (sec) 0.000 1.796 20.762 0.006 0.000 0.914 38.717 0.002
MG-time (sec) 1136.651 0.792 0.635 0.589 346.865 2.089 1.927 1.323
MSE 0.0168 0.0212 0.0219 0.0249 0.0039 0.0054 0.0062 0.0081

Table 7. Results by SBPR with different settings of ρ for classification

letter shuttle 1999 KDD Cup
t = 0.80 t = 0.90 t = 0.80 t = 0.90 t = 0.80 t = 0.90

#-rep 4371 10108 280 463 1515 2703
R-rate (%) 70.06 32.61 99.36 98.94 99.69 99.45
PR-time (sec) 5.313 20.624 6.334 7.488 443.168 513.745
MG-time (sec) 18.719 51.500 0.719 1.219 4.843 9.219
C-acc (%) 97.06 97.96 99.72 99.86 92.04 91.88

cross-validation is applied, i.e., two-thirds of the patterns are used for training and the
remaining one-third for testing.
We compare SBPR with SS and k-means, since RSP3, DROP3 and HMN-EI are not

applicable to regression datasets. The results are summarized in Table 6 in which the num-
ber of representatives, reduction rate, prototype reduction time, model generation time
by SVR, and mean square error (MSE) are listed. We repeated 10 times for each dataset
and then averaged the results for SS and k-means. Note that SS runs much faster than
the other methods. However, it selects inappropriate patterns to be representatives which
result in lower accuracy than the other methods. SBPR performs slightly better than
k-means in MSE. Also, SBPR runs much faster than k-means. SBPR takes 1.796/0.914
seconds while k-means requires 20.762/38.717 seconds for houses/comp-activ. Note that
SBPR spent 1.796 seconds in prototype reduction and SVR spent 0.792 seconds in gener-
ating a regression model from the prototypes obtained by SBPR for the houses dataset.
So the total time by SBPR is 1.796+0.792 = 2.588 seconds which is much lower than the
1136.651 seconds by WO-red. Furthermore, the total time taken by either k-means or SS
is much less than the model generation time without reduction. This indicates that any
of SBPR, k-means, and SS is effective in reducing the time requirement for regression in
this case.

6.3. Experiment III. We investigate the effect of different settings for SBPR. As men-
tioned earlier, the setting of ρ may affect the number of blobs SBPR generates. As ρ
increases, the patterns in a blob are required to be more similar to each other and thus
the number of blobs obtained also increases. However, the performance of the obtained
representatives does not vary significantly as ρ changes. Table 7 shows the results ob-
tained by SBPR with different settings of ρ for the three classification datasets used in
Experiment I. In this table, ρ is set to be D× log(t) where D is the number of continuous
components, i.e., D = 16 for letter, D = 9 for shuttle, and D = 34 for 1999 KDD Cup.
By changing t we can have different settings for ρ and thus obtain different numbers of
representatives. However, the resulting accuracies do not differ significantly. For exam-
ple, SBPR gets 4,371 representatives and 97.06% in accuracy with t = 0.80, and 10,108
representatives and 97.96% in accuracy with t = 0.90 for the letter dataset. For 1999
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Table 8. Results by SBPR with different settings of ρ for regression

houses comp-activ
t = 0.70 t = 0.80 t = 0.90 t = 0.70 t = 0.80 t = 0.90

#-rep 73 162 674 114 247 732
R-rate (%) 99.47 98.83 95.10 97.92 95.48 86.60
PR-time (sec) 1.610 1.866 3.345 0.697 0.754 1.141
MG-time (sec) 0.286 0.828 5.333 0.667 2.208 9.589
MSE 0.0284 0.0212 0.0187 0.0080 0.0054 0.0046

KDD Cup, SBPR gets 1,515 representatives with t = 0.80 and 2,703 representatives with
t = 0.90, but the accuracies for both cases are almost the same.

Table 8 shows the results obtained by SBPR with different settings of ρ for the two
regression datasets used in Experiment II. Note that D = 9 for houses and D = 13 for
comp-activ. Again, by changing t we can have different settings of ρ and thus obtain
different numbers of representatives. However, the MSE values obtained do not differ
significantly. For example, SBPR gets 162 representatives and 0.0212 in MSE with t =
0.80, and 674 representatives and 0.0187 in MSE with t = 0.90 for the houses dataset. For
comp-activ, SBPR gets 247 representatives with t = 0.80 and 732 representatives with
t = 0.90, but the MSE values only differ slightly.

The order in which the patterns are considered in SBPR may also affect the number of
blobs generated. However, the performance of the obtained representatives does not vary
significantly. To investigate the influence imposed by the order, we arrange the presenta-
tion of training patterns to SBPR in ten different sequences, labeled by seq#1 to seq#10.
Figure 2 shows the results for the three classification datasets used in Experiment I. The
ten different sequences are indicated horizontally in the figure. From this figure, we can
see that the classification accuracy is not sensitive to the presentation order in which
training patterns are considered in SBPR.

7. Conclusion. We have presented a similarity-based prototype reduction (SBPR) meth-
od to reduce the number of training patterns for supervised learning. Training patterns
are considered one at a time and those similar to each other are grouped into the same
blob. Each blob is characterized by a membership function with a statistical mean and
standard deviation. When a pattern is assigned to an existing blob, the membership
function of that blob is updated. If a pattern is not similar to any existing blob, a
new blob is created. When all the patterns have been considered, a desired number of
blobs are formed automatically. Then the statistical mean of each blob is regarded as a
prototype representing all the patterns included in the blob. The distribution of the data
contained in each blob is statistically well described. Each obtained prototype is a good
representative of the corresponding blob. Blobs are generated automatically based on the
similarity relationship among the original training patterns. The proposed method can
be applied efficiently to both classification and regression problems.

SBPR, unlike k-means, goes through each training pattern only once. Therefore, it is
efficient and can work on very large training datasets. Different numbers of representatives
are extracted according to the distribution of the original training patterns. For those
patterns with a dense distribution, SBPR extracts a small number of representatives. On
the contrary, SBPR extracts more representatives out from the patterns with a sparse
distribution. For example, class Normal in the 10% 1999 KDD Cup dataset has a sparse
distribution, while class DoS has a dense distribution. Among the 494,021 original training
patterns, 97,278 ones belong to class Normal and 391,458 ones belong to class DoS.
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Figure 2. Results by SBPR with different presentation orders for classification

However, SBPR extracts 938 representatives for class Normal in Experiment I. On the
contrary, SBPR extracts 324 representatives for class DoS.
The blobs obtained by SBPR cannot be slanted ones. A slanted blob may sometimes

fit a set of patterns better than a non-slanted one. We are investigating the possibility
of incorporating principal component analysis (PCA) [34] with SBPR to generate slanted
blobs. The original training patterns are transformed to another space and the similarities
are calculated in that space. In this way, the locations, orientation, and the number
of blobs obtained can reflect more truthfully the characteristics of the original training
dataset. For example, Figure 3 shows the results of applying SBPR without and with
PCA, respectively, on a synthetic dataset which contains 270 two-dimensional patterns.
By SBPR only, with ρ = log(0.52) and σ0 = 0.08, 5 blobs are generated, each marked
with a cross, as shown in Figure 3(a). Therefore, five representatives are obtained. On
the contrary, by incorporating PCA with SBPR, only 2 blobs are generated, as shown in
Figure 3(b), and thus two representatives are obtained for the same original dataset. Note
that the distribution of the data can be better described by the oblique hyper-ellipsoidal
blobs with the help of PCA. However, incorporating PCA with SBPR requires extra time.
How to incorporate PCA with SBPR to generate slanted blobs efficiently may become a
major computation issue.
We have applied SBPR to reducing the dimensionality of the features involved in su-

pervised learning [35]. In some areas, e.g., text processing, the dimensionality of the
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Figure 3. Blobs obtained by SBPR without and with PCA

feature vector is usually very large. Feature reduction algorithms are highly demanded
for dealing with high-dimensional document datasets efficiently. We are investigating the
possibility of incorporating feature reduction and prototype reduction together to further
reduce the train set size for machine learning. We are also interested in applying SBPR
to other problems, such as image segmentation, fuzzy modeling and web mining.
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