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ABSTRACT. This paper investigates a real time integrated filter system that measures
and estimates a relative motion of mobile vehicles based on a newly presented vision pro-
cessing algorithm. For this, the relative motion information is processed and computed
by an INS/vSLAM integrated system that recognizes environment variation surrounding
the vehicle and uses an image-based SLAM algorithm to provide auxiliary navigation in-
formation. The presented image processing algorithm improves the tracking performance
by combining the conventional SIFT with a newly suggested geometric matching filter.
Also, in an effort to manage feature points loss during the process of motion under an
unstructured environment, a real time algorithm that dynamically selects feature points
based on geometric criterion is considered. For experiment, a low graded IMU sensor
and a single vision sensor are chosen and the integrated inertial SLAM system is im-
plemented on a PC based virtual instrumentation platform. With the use of Cartesian
robot, two dimensional motion tests are done to verify the performance of the feature
tracking algorithm and integrated filter system for an accurate motion estimation.
Keywords: Integrated filter, Relative motion, INS/vSLAM, Feature point, Geometric
matching, Tracking

1. Introduction. Measuring sensors data and estimating vehicle’s dynamic information
such as relative motion is one of the essential requirements for most mobile vehicles,
especially for 6 degree-of-freedom (DoF) systems. For instance, aerial vehicles widely
use an inertial navigation system (INS) or other dead-reckoning sensors in estimating
the position and attitude information for their standalone operation. In particular, INS
calculates vehicle’s position, velocity, and attitude based on the acceleration and angular
velocity information, but it increasingly fails to estimate accurate positions over long
periods as integration errors become greater [7-10,13,20,25]. For this reason, an INS/GPS
integrated filter system is generally used to avoid accumulation errors resulting from the
INS-only system [11,16]. Affected by geographic features and jamming signal, on the
other hand, GPS may fail to provide accurate navigation information on a regular basis.
To address this problem, active research has recently been underway on an integrated
measurement system that uses a vision sensor as the auxiliary sensor [2-6,12,19-24]. A
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vision sensor can use geographic information on the surroundings, and as such may provide
improved motion estimates where GPS cannot be utilized.

The core principle for implementing vision-based simultaneous localization and mapping
(vVSLAM) is the use of feature points [1,6]. Major algorithms for extracting and track-
ing such feature points include Harris Corner, SUZAN, and KLT (Kanade-Lucas-Tomasi)
[18,22]. Meanwhile, the scale-invariant-feature-transform (SIFT) algorithm — widely used
in object recognition and tracking in computer vision system — can extract feature points
that are invariable with change of image size and rotation [1,14,15,17]. Therefore, this
algorithm can better extract and match feature points in relatively complicated environ-
ments than the aforementioned algorithms, despite its computational complexity. How-
ever, as mentioned, using SIFT as the image processing algorithm is greatly limited in a
real time application like UAV since the detector and descriptor stages involve quite large
dimension in feature point extracting process.

This paper seeks to develop an improved vision-aided relative motion estimation method
through a newly proposed geometrically matching filter-combined SIFT (GMF-SIFT).
The proposed method contains the following steps. First, feature points that are robust
against changes in image size and rotation are extracted to implement feature track-
ing function through a reduced dimension SIFT algorithm [6]; then a new feature point
matching filter based on image’s geometric conditions is applied to extracting feature
points that remain more consistent and robust against external disturbance and other er-
ror factors. With the geometric matching process, the presented tracking performance is
revealed to be better than a typical SIF'T despite a smaller dimension at descriptor stage,
which in turn reduces computational time. Eventually, the suggested GMF-SIFT track-
ing algorithm is applied to the INS/vSLAM integrated filter system to verify its motion
estimation performance. To demonstrate the performance of the suggested algorithm, a
comparative analysis is made with an INS-only solution and the KLT algorithm-based in-
tegrated filter solution using experimental data. In Section 2, it presented the principle of
the proposed GMF-SIFT, which is followed by a real time implementation result. Section
3 describes the construction of inertial SLAM integration filter and Section 4 illustrates
the experiment result. Finally, Section 5 provides summary and conclusion.

2. Geometric Matching Filter Combined SIFT for Real Time Feature Point
Tracking.

2.1. The proposed geometric matching filter combined SIFT. Suggested by D.
Lowe, SIFT [15] is widely used in detection and object recognition in image processing
[27]. The algorithm can be broadly divided into two phases of detection and descriptor. In
the detection phase, images are divided into a predefined size and Gaussian smoothing is
carried out to find extreme points using difference of Gaussian (DOG) [14]. Therefore, the
feature points obtained in the detection phase are relatively robust against scale changes.
On the other hand, feature points that are robust against rotation are mainly extracted
during the descriptor phase. Here, each feature point generates a descriptor consisting of
128 dimensions. The well-known KD tree is generally used to compare descriptors and
consequently match feature points.

Accurate matching of feature points between consecutive image frames is essential to
obtain meaningful navigation information from feature point information through the
image sequences. For this purpose, this paper devises a robust feature point matching
filter method to eliminate feature points that may be inaccurately matched during the
KD tree process in the descriptor phase. The suggested matching filter compares relative
geometric angles between feature point pairs in continuous image frames to eliminate
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F1GURE 1. Block diagram illustrating the geometrically matching filter principle

FIGURE 2. Matching performance comparison before and after application
of GMF

tentative mismatched points. Figure 1 shows the conceptual diagram about the proposed
matching filter. In the figure, note that a longitudinal and lateral expansion is drawn
with respect to the original image by using the next image frame. Then each angle
deviation from paired points is analyzed to determine the sound feature points. The
process of implementation is given in detail as follows: first, the descriptors of feature
points extracted in the detection phase are compared to match feature points between
the current and previous frames. Then the geometric angles of the 2 and y axes (i.e., «;
and ;) are collected for each corresponding pair. Normally, continuous image frames are
assumed and therefore consecutive geometric angles involve little variation in measured
angles. Therefore, more accurate sets of feature pairs can be obtained in the descriptor
phase if a critical threshold (ar, fr) is appropriately set to discriminate the induced angle
pair («;, ;) of every matched point. The threshold is heuristically chosen such that the
total number of acquired feature points is controlled.

The improved performance of the GMF-SIFT algorithm is demonstrated in Figure 2.
Assumed a general unstructured vision environment, target images of low contrast level
are used. On the left side of the figure, the feature point pairs of two continuous images
are visualized using the conventional SIFT algorithm. In the right side, it is shown feature
point pairs after the newly proposed matching filter is applied, where a lower descriptor
dimension of 64 and the critical threshold of (ar, fr) with 5 deg are used. The figure shows
that more accurate feature point pairs can be obtained by removing feature points having
excessive geometry deviation, after applying the geometric matching filter augmentation.
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TABLE 1. Comparisons between original KD tree method and the GMF method

Original Matching Filter | Modified Matching Filter
Total Matching Point (TMP) 70 67
Miss Matching Point (MMP) 2 0
TMP/MMP (%) 2.8% 0%

Besides, despite a lower descriptor dimension, the proposed method provides a superior
matching performance. This suggests an advantage in the real time implementation with
better tracking performance. Table 1 compares matching performances from the original
KD tree method and the proposed method. In the GMF algorithm, the total matching
point is slightly decreased while the mismatched points are completely removed.

2.2. Feature point tracking principle and configuration. The enhanced perfor-
mance in obtaining good feature point set also results in better tracking performance.
Unlike feature point matching part through comparison of available feature points in the
previous and current frames, tracking part usually takes advantage of fewer feature points
to observe relative displacements between image frames. For this, the feature point in-
formation of initial images ought to be persistently preserved and compared per frame
during tracking process.

In a real time environment, independent matching part alone between image frames
cannot provide displacement information on the feature point of interest. This is because
the reference position information from the initial frame is not transferred through iter-
ation. Therefore, it is crucial to construct a feature tracking algorithm that continues to
hold local feature point information from the initial image frame. Maintaining candidate
feature points for tracking function is realized by indexing uniquely each candidate point
from initial step. The appended index for feature point continues to remain during the
image processing time with a limitation of total number, until it is no longer used for nav-
igation as it disappears in the image. Thus the sequential tracking of candidate feature
points in the suggested GMF-SIFT algorithm is realized with the independent indexing
function for data association.

Figure 3 shows an overall block diagram containing the structure of the real time feature
matching and tracking algorithm. First, a consecutive image pair is fed into the matching
part to select candidate to-be-tracked feature points in the initial stage, and the tracking
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Ficure 3. Conceptual diagram of real time feature points tracking algorithm
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part generates and matches descriptors of these feature points to associate with those
of the previously determined feature points. Tracking can be undertaken repeatedly to
keep track of feature points via indexing; when the number of to-be-tracked feature points
decreases, additional feature points are selected from the candidate group and added to
the feature points group of interest to fill up a pre-defined number. For each iteration, the
X-Y coordinate values and indices of the tracked feature points are returned as output
values, and this information is restored and converted into azimuth and elevation angles
in the integrated filter system.

2.3. Real time implementation and tracking loss management. This section illus-
trates the implementation of the proposed GMF-STFT method under real time embedded
system environment. Figure 4 shows block diagram of the GMF-SIFT algorithm imple-
mentation. The reduced SIFT core part and geometric matching filter part is realized

// =\ Modified Matching Filter \
SIFT Detector

|

SIFT Descriptor
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| Labview Real Time environment I

FiGure 4. Matching block diagram of the GMF-SIFT algorithm imple-
mentation in real time platform
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FI1GURE 5. Picture of the user interface of the developed real time features tracking
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through C code and converted into the x.dll execution file, which is downloaded in the
real time embedded computer. For user friendly interface, the image and other inter-
face parameters including threshold, feature points number, the X-Y coordinate on the
selected feature points in image frame are shown in the front panel of desktop. Figure
5 illustrates the real-time user interface and communications for real-time tracking are
realized by Labview graphical programming while the computationally heavy GMF-SIFT
algorithm is embedded by a complied C code.

For a visualization of the acquired image and tracked feature points, a VGA-sized
central image frame marked with concurrent feature points is provided along with the
pixel position data, number of candidate points, frame rate, etc. For the implementation
of filter system with GMF-SIFT algorithm, a desktop PC installed with 2.6 GHz, dual
core CPU is used. The used image size is 640 x 480 pixels and feature points managed
during each epoch are set to 50.

Notation and descriptions of each interface are provided in Table 2. In the table, each
interface variable provides user interactive platform for real time feature point tracking
function. For instance, the indices of the initially tracked feature point P(z,y) and the
currently tracked feature point P(x,y)2 are compared to identify feature points that are
lost in the course of tracking. In addition, when the number of feature points currently
being tracked, i.e., number of P(z,y)2 falls below threshold, feature points kept in the
candidate group are retrieved to be added to the to-be-tracked feature points. In Figure
5, the threshold of feature point number is set to 15. Other information for the tracking
function is reserved like loop time spent, iteration number, frame rate and camera setting
related parameters.

TABLE 2. Interface for real-time feature tracking environment

Parameters Note
Number of feature points to-be-tracked
N . .
in the particular loop
P(z,y) Coordinate and index of the initial feature point
Pz, )2 Coordinate and index of the currently
’ tracked feature point
loop time Time spent in the current loop
iter Number of iterations made thus far
Frame Rate Image frame output speed
Camera Camera setting
X Resolution, .
Y Resolution Camera pixel
AVI Path Image storage path

Admittedly, feature point matching at each epoch is performed independently from
previous matching information, as it only utilizes a pair of the latest two images alone for
matching process. This has apparently no relation to the dynamic state of the aircraft;
thus as long as the quality of image information is guaranteed, robust information should
be provided continuously regardless of any abrupt movement. Feature point tracking,
however, is dependent upon the initial information of feature points, and thus a large
number of feature points may be lost instantly when the dynamic state of the aircraft
changes abruptly, consequently discontinuing the supply of sufficient information to the
integrated filter. To address this problem, feature points used through the tracking process
are managed and stored according to their quality grades each time the algorithm is
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FIGURE 6. SIFT-based real-time tracking of feature points

executed. The sub-features kept in the candidate group are added to the to-be-tracked
feature points when it is concluded that some part of current to-be-tracked feature points
have been lost.

Finally, Figure 6 demonstrates real-time tracking performance based on the matching
filter-combined SIFT method. As observed from the figure, if some of the feature points
disappear in the frame — as exemplified in upper left and upper right in the figure —
or tracking loss occurs, the process of finding feature points in sub-features set is re-
peated attempting to hold the number of feature points transmitted from the matching
stage. However, if there are limited candidates, the algorithm only provides geometrically
matched points less than the threshold value. And when the target appears back, the
maintained index information is again applied for tracking. From experimental result un-
der PC environment, the real time tracking performance has been verified with an update
rate of 1Hz, with 30 feature points.

3. Integrated Filter System for Inertial SLAM.

3.1. Integrated filter structure and system modeling. The integrated filter system
for inertial SLAM uses the indirect filter structure of leveraging navigation information
through INS (inertial navigation system) and vision sensor. In this, the vision sensor based
position error information is used as the filter measurement. In an effort to efficiently
deal with variation of the number of feature points, it also adopts a distributed filter
structure. A brief conceptual diagram of the filter is provided in Figure 7 [4]. Unlike the
direct method that uses the system state vector as a filter variable, the indirect method
sets the error as the filter state variable for estimation purposes [5]. Thus, the navigation
information of the INS, provided at 100Hz, is ultimately generated as a navigation solution
after correction of estimation errors offered by the integrated filter. Meanwhile, as for
information on feature points in the image frame, the measured azimuth and elevation
angles and the delayed initialization technique are used to provide information on the
initial positions of those feature points with respect to the navigation coordinate system.
The state variable of the filter is then estimated using the initial positions of the feature
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FIGURE 7. Algorithm process and structure of the adapted INS/vSLAM
indirect filter

points and the measured line-of-sight vector information between the aircraft and feature
points [6,21]. Note that the measured data is expressed as a non-linear function of azimuth
and elevation angles.

3.2. System and observation model. The system and observation models for the
configuration of the inertial SLAM integrated filter are introduced in the following. The
system model uses the simple INS error model assuming little effect from earth rotation.
Also sensor error models are not included in the filter state vector for computational
simplicity. Thus, the system model used in the integrated filter is depicted by

z(k+1) =Pz (k) + Guy, (1)
where state transition matrix and input matrix are given by
I I-At 0 0 0
0 I [fox] - At e 0
=10 o I =0 o | 2)
Inxn Onxl Onxl
In deriving (2), state variables are defined as x (k) := [ 0=, daf, --- daf, ]T with

0x, as the vehicle’s error state vector position, velocity and attitude. Thus 0z, is defined
as 0z, = [ opL ovl oyl ]T. Input vector in the system model is given by

o= Vs, | <~°>>

where f, and w!, represents specific force and angular velocity in the body axis, respec-
tively. Coordinate system transformation matrix from body to navigation frame is denoted
by Cy. Next, the observation model uses the equation for calculating the elevation and
azimuth angle of the vision sensor, which is expressed in the following nonlinear equation

(k) = h(z(k), v(k)), (4)
where z is the observed value and x the state vector, which includes the INS state error
vector on the aircraft as well as the position of feature points. For simplicity, the angle
measurement noise v, can be assumed as an additive Gaussian random process as in the
following equation:

z(k) = h(zy(k), x (k) + v(k), (5)
where its unit is converted into radian and stochastic property is described by a normal
distribution with the covariance of R, i.e., v ~ N(0, R) . Finally, the position of feature
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points in the navigation coordinate system can be converted in the sensor coordinate
frame as delineated in (6)

vy =Gy (Co (2% —py) —ps) (6)
where T, T, and p, are feature point position vector in sensor frame and navigation
frame and camera lever arm vector, respectively. The formulating equation between the
positions of feature points and the measured values in the sensor coordinate frame is

written as follows:
tan ! (¥
T

Z;‘P = P ) (7)
tan™! (71)
Vi +
where measurement vector is defined by 2%, := [¢/* #)]" and x;, y;, 2 represent each
element of LOS vector in the sensor frame, i.e., z},. In this configuration, note that 1

and 6@ indicate feature point’s azimuth and elevation angle of the local horizontal plane in
the sensor frame, respectively.

3.3. Nonlinear integration filter algorithm. Given the use of non-linear model and
non-gaussian noise characteristics, this paper employs a particle filter as an integrated fil-
ter implementation. The particle filter is a recursive Bayesian filter based on Monte Carlo
technique that directly takes advantage of probability distribution functions to estimate
the state with the help of point mass computation. Owing to its adaptive performance
against a nonlinearity and random noise distribution, it is expected to show robust es-
timation performance for a nonlinear system model and non-gaussian noise distribution
considered in this paper.

[ Step 11 Initialize particles ]'-
!
[ Step 22 Particle generation ]
!
([ Step3:  Weight computation |
e [ Output estimates ]
[ Step 4. Normalize weights ] |
| ( Output )
[ Step 5: Resampling ]
: h(
; es
[ Step 6 More observation? ]—
Nol
Exit

FiGURE 8. Implemented particle filter algorithm flow diagram

A typical sequential importance resampling (SIR) filter approach is taken for the fil-
ter implementation as given in [9,12]. The SIR algorithm can be derived from the SIS
algorithm by an appropriate choice of the importance sampling and modification of the
resampling step as follows. (i-1) the importance density g(zy/z% |, 21.) is chosen to be
the prior density p(zy|zr_1) and (i-2) the resampling step, which is to be applied at
every time index. ii-1) generate and initialize particles with equal weight, ii-2) using mea-
surement, update the weights by the importance function w! = w! p(z;/x!), then with
normalization of weight, ii-3) apply resampling for modified weight and particles, ii-4)
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Ns
compute estimate via #(t) = > wix], ii-5) predict state by computing system model,
j=1
ii-6) return to the initialize step, if continued. In a sequential framework, the particles are
first drawn from the proposal distribution, and the particle weights are evaluated based
on the system transition prior and measurement update. Next, the resampling is applied
to avoiding the degeneracy problem. Considered the nonlinear model characteristics, this
paper implements a SIR type particle filter as depicted in the process outlined below.
Notably in estimating errors via the suggested nonlinear integrated filter configuration,
angle measurement for every feature point plays a significant role as it involves a dominant
nonlinear model. The elaboration on the detailed particle filter implementation algorithm
is out of the focus of the paper and skipped.

4. Imertial SLAM Test and Discussion.

4.1. Test environment. In order to demonstrate the performance of the proposed in-
tegrated filter system, laboratory tests are done such that comparative estimation results
using other algorithms like INS-only and KLT based INS/vSLAM are obtained simulta-
neously. For this, the following testing device and environment is built. Basler’s A601f is
used as the vision sensor. The used mono-type sensor provides a resolution performance
of 640 x 480. The pixel size is 9.9um x 9.9um, and IEEE 1394 is employed as a commu-
nication link interface. Micro Infinity’s GA3350M is used as the employed IMU with a
gyro bias stability of 30deg/h, which supports an RS-232 serial communication interface.
Tri-axial Cartesian coordinate robot is used to travel three times around a circle with a
diameter of 50cm. Here, the measured value renewal cycle is 50Hz for the IMU, and the
vision sensor data transmit rate is 10Hz. The distance between the vision sensor and the
image realizing the testing environment is around 2.1m. Camera is built on a tri-axial,
orthogonal coordinate motion robot to rotate at a scheduled speed. In the experiment,
it provides the programmed circular trajectory during 220 seconds for image acquisition.
After obtaining individual data from the IMU and the vision sensor, the suggested fea-
ture point matching filter-combined SIFT and the competing KLT algorithm are applied
to finally deriving inertial SLAM position estimation as the navigation solutions. The
KLT algorithm used for relative comparison of estimation performance is presented by
Clemson University [26]. Here, note that both tracking algorithm provides a real time

i
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FIGURE 9. Indoor test hardware equipments for vision-aided motion estimation
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FiGure 10. Test environment build-up using three cases with different
image frames

feature point measurement update to the filter, yet the final integrated filter result in the
form of motion estimation is acquired via a post-processing method for computational
convenience. Figure 9 shows the equipment arranged on the stabilized platform of the tri-
axial Cartesian coordinate robot for testing purposes. The X-axis of the IMU coordinate
system is in line with the optical axis of the vision sensor; misalignment errors from sensor
arrangement are assumed to be negligible. In an endeavor to verify the performance of
vision-aided integrated filter system under wide-ranging unstructured environments, the
testing environment is altered using three sets of image conditions. Figure 10 shows the
initial images of each test environment.

The images gradually become more complicated as the test proceeds (i.e., from Test
1 through Test 3) to distinguish the inertial SLAM integrated filter's motion estimation
performance under various environments. A total of six trajectory tests are carried out
— two in each of the three testing environments. In deriving trajectory solutions of in-
ertial SLAM integrated filter through post-processing, 10 Monte Carlo simulations are
performed for each image.

4.2. Analysis of test results. To verify the performance of the proposed integrated
filter system, a circular trajectory data provided by the Cartesian robot is taken as accu-
rate reference data. The robot can generate navigation error under sub-centimeters as it
rotates along the pre-determined trajectory. Figure 11 visualizes the results of selecting
first data set from each case and performing INS-based pure motion estimation. As the
robot moves with the circular trajectory perpendicular to the X-axis, the result is drawn
with respect to the Y-Z plane. The red cross-shaped lines represent the reference tra-
jectories obtained through the Cartesian robot and the dotted lines are the trajectories
obtained from the pure INS navigation algorithm. As shown in the figures, the conver-
gence characteristics of position estimation results based on an INS-only estimation are
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FIGURE 12. Estimated trajectory of INS/vSLAM — Test B-2 (KLT vs.
proposed GMF-SIFT)

quickly degraded over time. This mainly results from bias error accumulation of IMU
gyro and accelerometer used in the test — caused by bias with random constant model.

Next, the estimation results of the INS/vSLAM integrated filter system are reviewed by
investigating data set of each test case. The presented data set are as follows: the second
data set for test A and test B (A-2, B-2), and the first data set for test C (C-1). In each
case, INS/vSLAM estimation results of two competing tracking algorithms are compared
to demonstrate the performance of the proposed matching filter integrated navigation
algorithm. For this purpose, 10 Monte Carlo simulations are performed on the feature
point matching filter-combined SIFT and the KLT algorithm to show their cumulative
trajectory errors, respectively.

As shown in the figure, both KLT and feature point matching filter-combined SIFT
demonstrate estimation results that are close to the reference trajectory when compared
with the previous INS-only navigation result. However, with the help of more accurate and
robust tracking property of feature points presented by the proposed tracking algorithm,
the estimated trajectories provides better consistency and repeatability than KLT based
one during 10 times Monte Carlo simulations, which is observed in Figure 12.

With respect to estimation results based on each of the Monte Carlo simulations, the
initial filter solutions differ by random bias, causing offset errors in the actual values ac-
cordingly. The average estimated trajectory, however, is shown to be very close to the real
circular trajectory in both cases. This demonstrates that correction of relative position
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errors in image-based motion estimation significantly reduces the extent of divergence
compared with INS-only case. Meanwhile, the positions estimated by INS/vSLAM are
not as smooth as those estimated by INS alone. This is because the update frequency
of corrected values in image-based estimation (approximately 1Hz) is considerably lower
than that of INS.

A performance analysis can be considered from the perspectives of accuracy and pre-
cision. To analyze accuracy levels, the error between the reference trajectory and the
INS/vSLAM estimated trajectory is analyzed together. For this, a comprehensive illustra-
tion is given statistically by comparing the INS/vSLAM integrated navigation trajectories
using the proposed tracking algorithm and KLT, respectively. Particularly, the error and
standard deviation between the trajectory obtained from 10 Monte Carlo simulations and
the reference trajectory are calculated per test set. The consequent estimation results are
summarized in Table 3.

As demonstrated in Table 3, the solution of INS/vSLAM integrated filter — derived
using KL'T and the proposed matching filter-combined SIFT — is much better than that
obtained with INS only. The error of INS-only estimation ranges from 10cm through
40cm, but the error range of the modified SIF'T and KLT is relatively small, below 5cm in
most cases. Next, performance comparison between the modified STF'T and KLT shows
that the enhanced STF'T excels in all of the six tests. Especially in Tests B-2 and C-2, the
mean error of SIFT is about half of KL'T’s error. This implies that the INS/vSLAM filter
solution using the proposed matching filter-based SIFT is superior to the other algorithm
with KLT.

The performance of each estimation method can also be compared in terms of precision.
In this test, positions are estimated by traveling around a circle with a diameter of 50cm
repeatedly, and thus a dense distribution of position trajectory values equates with greater
precision. The standard deviations of the trajectories can be used to compare their
precision levels. As demonstrated in Table 3, not only the mean error but also the
standard deviation of the feature point matching filter-combined SIFT are smaller than
those of KLT. In other words, in the INS/vSLAM-based comparison of estimated position
values, the estimates of feature point matching filter-combined SIFT provide trajectory
solutions with a denser distribution and therefore ensure more reliable estimation result.

Further result follows for the performance demonstration. Figures 13 and 14 visualize
the estimated trajectories of INS/vSLAM for Tests A-2 and C-1 among the results. As

TABLE 3. Mean error and standard deviation by test set

INS-only | KLT | GMF-SIFT
Test A1 Mean error (rn) 0.0861 | 0.0536 0.0340
Standard deviation | 0.1301 | 0.0672 0.0417
Test A9 Mean error (m) 0.1459 |0.0271 0.0234
Standard deviation | 0.1985 | 0.036 0.0253
Test B.1 Mean error (m) 0.1299 | 0.0276 0.0157
Standard deviation | 0.1619 | 0.0325 0.0182
Test B2 Mean error (m) 0.2359 | 0.0295 0.0165
Standard deviation | 0.3070 | 0.0371 0.0185
Test C-1 Mean error (m) 0.3289 | 0.0230 0.0208
Standard deviation | 0.3739 | 0.0281 0.0246
Test (9 Mean error (m) 0.4439 |0.0528 0.0261
Standard deviation | 0.4457 | 0.0596 0.0295
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Ficure 13. Estimated trajectory of INS/vSLAM — Test A-2 (KLT vs.
GMF-SIFT)

INS/VSLAM (SIFT)

FIGURE 14. Estimated trajectory of INS/vSLAM — Test C-1 (KLT vs.
GMF-SIFT)

shown in the figures, the KLT trajectory is, overall, widely stretched, centering on the
cross-shaped reference trajectory, while that of matching filter-combined GMF-SIFT is
distributed along the reference trajectory with a relatively narrow width. The estimated
trajectory of the suggested feature point matching filter-combined SIF'T demonstrates the
improved data repeatability, implying better precision than KLT’s estimation results.

Meanwhile, the estimated trajectory’s starting points are distributed differently accord-
ing to the initial posture of the aircraft (i.e., image and IMU module). Also, the perfor-
mance of trajectory estimation is significantly undermined by such factors as change in
the number of feature points — caused by the dynamic generation and loss of feature points
observed during rotating movements — and the jump of feature points. Besides, the bias
in estimated values, induced by misalignment between the optical axis of the image sensor
and the coordinate axis of the IMU, is also considered to be a non-negligible defect, and
thus the performance of relative navigation could be further enhanced if a more accurate
initial alignment algorithm among sensors were used.

Finally, Table 4 compares the performance of INS-only estimation, KLT integrated
filter, and the proposed GMF-SIFT based integrated filter. For the ease of comparison, the
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TABLE 4. Comparison of relative errors from estimation results

INS-only | KLT | GMF-SIFT

Test A-1 _ 2.53 1.57 1
Test A-2 £ 6.23 1.15 1
Test B-1| = 8.27 1.75 1
Test B-2 § 14.29 1.78 1
Test C-1 = 15.81 1.10 1
Test C-2 = 17.00 2.02 1

Average 10.68 1.56 1

mean error of the proposed method derived in Table 3 is set as 1, while each corresponding
error multiplications from the INS-only and KLT based integration filter methods are
computed on this basis. In the comparison of error multiplications, INS-only navigation
shows roughly 10 times greater estimated error multiplication than the modified SIFT
while the error multiplication of KLT-based motion estimation is around 56% greater
than that of the modified SIFT during 3 times rotation.

5. Conclusion. This paper has suggested an integrated filter system that measures and
estimates a relative motion of mobile vehicles through a newly developed feature point
tracking algorithm. The main idea of the proposed tracking method is to incorporate a
geometric variation criterion for candidate feature point matching process. In addition
to the matching concept, the algorithm and hardware implementation on a real time
platform is presented. Based on this algorithm, an inertial SLAM filter system that can
dynamically estimate the motion of the moving vehicles is developed. For the experiment,
a low- to mid-end IMU and a single vision sensor have been used to realize the test bed.
Using the feature point matching filter-combined SIFT and the KLT algorithm as the
image tracking function, three experimental environments have been created to carry out
repeated tests and analyze the system’s performance based on the estimated trajectory
solutions. The test and analysis results show that the proposed tracking algorithm and
the KLT-based INS/vSLAM outperform IMU-only estimation result. Moreover, the newly
proposed, enhanced GMF-SIFT estimation demonstrates relatively better performance in
terms of robustness and reliability.
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