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ABSTRACT. In this paper, an integrated relative position and attitude control scheme
is proposed for a pursuer spacecraft approaching a spatial target in prorimity operation
missions. Relative translation and rotation dynamics of spacecraft are both presented,
and further integratedly considered due to mutual couplings, which leads to a six degrees-
of-freedom (6-DOF) control system with input saturation. To simultaneously achieve
relative position and attitude requirements, an adaptive backstepping control law is de-
signed, where an auxiliary signal is employed to cope with control saturation, and a first
order filter is introduced to overcome the “explosion of terms” problem. Within the Lya-
punov framework, the controller guarantees the stability of the closed-loop system in the
presence of bounded disturbances and unknown system parameter. Numerical simulation
demonstrates the effect of the proposed control law.

Keywords: Integrated relative position and attitude control, Filter-based adaptive
backstepping, Control saturation

1. Introduction. With worldwide growing space activities, autonomous spacecraft prox-
imity operations have received increasing attention in recent years. Especially, their great
application prospect and values have been gradually shown in missions including space
debris removing, in-orbit satellite maintenance, spatial refueling, spacecraft formation fly-
ing and space station installation. It is noticeable that, to ensure these missions success,
autonomous rendezvous with precise position and attitude control is the key technology.

Following these advantages, come various challenges as well. To be specific, the transla-
tion dynamics and the attitude dynamics of spacecraft are highly nonlinear and meanwhile
mutually coupled in essence. In view of control system design in early missions, orbital and
attitude motions of spacecraft were usually separately considered and controlled, where
the couplings were often ignored [4]. However, taking into account future proximity oper-
ations in need of high maneuverability and control accuracy, the aforementioned way may
not be applicable and in fact an integrated position and attitude 6-DOF control strategy
is required for a maneuverable spacecraft. One example of such missions is the in-orbit
satellite repair mission, and the pursuer spacecraft (also called servicing spacecraft) is
controlled to approach the target spacecraft with simultaneous attitude synchronization,
so as to eventually have no relative motion with respect to the target, which specifically
involves: 1) the relative position of two spacecraft is performed in the admissible range,
and 2) the docking component of the pursuer is aligned with the counterpart of the target.
Subsequently, the service operations can be thus safely carried out by using the capture
mechanism. The space debris removal is another example, which in fact can be described

3537



3538 F. ZHANG, G. DUAN AND M. HOU

by the similar explanation. It can be seen that the pursuer in proximity missions is ex-
pected to be able to simultaneously perform large angle and position maneuvers with
respect to the target, such that the mission objective can be fast and precisely achieved.
This also forms the motivation and the background of the present study.

In recent years, some researchers have focused on this challenging control problem [2-
8]. Wong et al. [2] put forward an output feedback tracking control to ensure the global
asymptotic convergence of the relative translational and attitude position tracking errors.
Based on the same model, an adaptive nonlinear tracking control law was addressed in [3].
Xu et al. [4] designed a globally stable chattering free sliding mode robust controller, where
a thruster layout was taken into account. Xin and his colleagues presented a nonlinear
integrated position and attitude suboptimal control method, namely #-D technique, to
cope with space debris capture [5] and in-orbit spacecraft servicing [6]. Kristiansen et
al. [8] utilized three nonlinear state feedback control, involving passivity-based PD+
controller, sliding surface controller, and backstepping controller.

Due to the cascaded-like structure of the coupled kinematics and dynamics of the
spacecraft, backstepping is prone to be the preferable technique to proceed with the
control system design, as utilized in [8]. In fact, backstepping technique, which recursively
utilizes Lyapunov functions in each design step, is regarded as a powerful nonlinear control
method leading to a wide application [9-11]. However, it is important to note that the
standard backstepping method easily suffers from “explosion of terms” caused by the
repeated differentiations of desired virtual controllers [12]. To surmount this flaw, dynamic
surface control (DSC) technique was proposed and developed, in which a simple first order
filtering of the synthesized desired virtual control law was introduced at each step of the
backstepping design procedure [12-15]. Consequently, the filtered-backstepping technique
will be used here to synthesize the integrated control strategy for the relative position
and attitude motions of two spacecraft.

For controller design, another important issue should be taken into account is control
saturation. In practice, thrust generated by propulsion units is limited. Without consid-
ering the influence of input constraints, the actual thrust would not match up with the
anticipated control input, which may deteriorate the system performance, or even cause
the system unstable. Although various studies are undertaken to deal with this problem
either for some nonlinear systems [16-20] or linear systems [21,22], few works have been
done on the integrated translation and rotation control of the spacecraft.

Besides, unknown system parameters and external disturbances also should not be ig-
nored in the proximity operation missions. Specifically, system unknown mainly comes
from the inertia matrix of the target, while disturbances largely result from spatial pertur-
bation forces and torques [23]. Hence, it is extremely necessary to guarantee the system
robustness in the controller design, which will be considered herein as well.

In this paper, relative translation and rotation dynamics are both stated, and further
the coupled dynamics is formulated in view of mutual couplings and a thruster configu-
ration [4] providing directional forces and attitude control torques. Based on this model,
an integrated position and attitude control strategy is designed by using adaptive back-
stepping technique. In the proposed control law, motivated by [17-20], an auxiliary signal
is introduced to cope with the control saturation; meanwhile, a first order filter in DSC
technique [12-15] is employed to facilitate the derivation of the virtual control and thus
overcome the “explosion of terms”. By using Lyapunov Theory, the ultimate boundedness
of relative position and attitude states is guaranteed in spite of unknown parameters and
disturbances. A numerical simulation illustrates the effect of the proposed control law.
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The rest of this paper is organized as follows. In Section 2, the translational and
rotational coupled dynamic model of the spacecraft is stated. Then, an integrated trans-
lational and rotational adaptive backstepping control law is developed for the coupled
system in Section 3. Next, numerical simulation results applying the proposed control
law to a spacecraft to pursue a space target are presented in Section 4. Finally, Section
5 draws the conclusions.

2. Problem Formulation. Since the problem considered herein is to make a pursuer
spacecraft approach a spatial target in proximity with simultaneously attitude manoeu-
vring, it is necessary to first state the relative translational and rotational dynamics
modeling of two spacecraft. To this end, several frames should be given, and then, the
relative position and attitude coupled dynamics is formulated.

As shown in Figure 1, the inertial frame is represented by the standard Earth-Centred
Inertial (ECI) frame F;. The pursuer and target body frames F, and F; are formulated
respectively, with origin in the corresponding center of mass and unit vectors coincide
with their principal axes of inertia. The relative position vector between two spacecraft
is represented in the frame F, as, p = r} , — R{r},, where rj, denotes the inertial position
of the pursuer represented in the frame Fp; while rth denotes that of the target in the
frame F; R} represents the transformation matrix from the frame F; to F,.
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According to the basic equation of the two-body problem [24], the nonlinear relative
dynamics can be represented in the F; frame as

P =v-—Sw,)p (1)
3 m m
mpv = _mps(wzp)v - I;,Iu (p+ Rfrf,t) + T—I;MRfrf,t +F.+Fy (2)
P

where w? ;.p denotes the inertial angular velocity of the pursuer expressed in the frame F;
S(wf,) = wi,x is the cross product operator; v denotes the relative velocity; m,, is the
mass of the pursuer, F,,F,; € R? are the control force vector and disturbance, respectively.

On the other hand, the relative attitude kinematics can be expressed as [25]:

1= T, T =5 | i %) | ®)
4= 2w =5 gI+S(q,)

where q''= [ 0 q, ] is the relative attitude quaternion between the pursuer and the
target, satisfying ¢ + q,q, = 1, with ¢y € R, q, € R?, and w represents the relative
angular velocity between the frames F, and F, expressed in the frame F,, governed by
w = w;, — Rjw},, where w;, denotes the inertial angular velocity of the target expressed
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in the frame F;. Meanwhile, the transformation matrix R} can be represented by using
the relative attitude quaternion q as

R} = (5 — dy 40)I + 2000 — 200S(a). (4)
Furthermore, the relative attitude dynamics can be obtained in the frame F, as
Jwo+Cr(ww+n,(w) =14+ 7, (5)

where J), is the inertia matrix of the pursuer; 7,, 74 are respectively the control torque
and the disturbance; C,(w), n,(w) yield

C(w) = J,S(Rjw;,) + S(Rjw] )T, — S(J,(w + Rjw;))) (6)
n,(w) = S(Ri)wf,t)JprWf,t - JprJ;IS(Wf,t)Jth,t (7)
where J; denotes the inertia matrix of the target.
Defining
\4
X1:|:g:|ER7, X2:|:w:|€R6 (8)

and combining (1), (3) and (5) lead to

}.(1 = A(Xl)Xg + Cl(wf,p)xl (9)
My%; =F+W — Cg(wﬁp,w)x2 — D(rp)x1 —n(w,q,7p,71)
where
I 0 by [ =S@?) 0 C[mI 0

AGa) =1 g T(a) ] - Gl = { 0 o]w M=1 J, |’

[ TEET 0 mpS(w?f ) 0
= rg p = p tP
F = _Fa}, n(w,q,rp, )= mpRIT (%_%> , W= [Fd].

L Ta n,(w) Td

From dynamics (9), the coupling effect of the orbital and the attitude systems is clearly
reflected from the terms C,(w},), Ca(wj,,w) and n(w,q,r,,;); therefore, the relative
translation and rotation motion of the spacecraft should be in fact taken into account in a
uniform framework, which leads to a 6-DOF control problem. Before problem statement, a
thruster layout is considered herein. According to [4], suppose that the pursuer spacecraft
poses a cuboid shape, and total six thrusters are fixed on the body frame F, as shown in
Figure 2. Given that each thruster generates a force f;, 7 =1,2,...,6, with the following
constraints

where f,, is the maximum thrust. Define thrust vector as f = [ fi fo .. fe ]T € RS
and the saturated one as sat(f) = [ sat(fi) sat(fy) ... sat(fs) ]T, where sat(-) is the

standard saturation function, satisfying

Sat(fi):{ jfn(fi)'f’" ! I}[szgz . i=1,2,....6. (11)

Hence, the control input F in (9) can be expressed as

F— [ Fo } _ Asat(f) (12)

Ta
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where the thruster installation matrix A is given by

0 0
0 0

1 -1

A=\ 1,2 I,
102 —L1)2

o 0

1 -1 0 0 ]
0 0 1 -1
0 0 0 0
0 0 L3/2 Ls/2
Ly/2 Ly/2 0 0

“Ly/2 —Ly/2 L/2 L2 ]
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(13)

Meanwhile, it is worth noticing that, considering some of targets are non-cooperative,
the inertia matrix J; is not measurable, which results in that J,R{J, 'S(w!,)Jw!, in
(9) is unknown. To facilitate the parametrization of the term n(w,r,, ;) in (9), with
the definition of a linear operator £ : R* — R3**® acting on an arbitrary vector a =

[ a; as das ]T such that

a1 0 0 0 a3 Qa9
L@)=]0 a 0 a3 0 a |,
0 0 a3 a2 ap 0
the transformation [6]
JprJ;IS(Wf,t)Jth,t = U0 (14)
where
f =U,0 € R U=U,U;e R
0= Ju1 T2 Jiss Jios Jus Juo ]T eR’,
AT d; O1x3
U1 — : c R324><6 A = . c RGXIS
B Arlrg 01><3 5z
6 = row;(Uy) € RV, i =1,2,...,18, U, =TU3J, ' € R!®?,
[ Hp Oﬁxl Oﬁxl ¢ 01><18
U3 — 06><1 ep 06><1 c RISX?’, U5 — : c R18X324,
i 06><1 06><1 ep 01><18 ¢
0, = [Jpn Jpoo Jp3s Jpos Jpiz Jpio ]T € RS,
U4 = [ E(Rl) E(RQ) E(Rg,) ] € RSXIS, Rk = COlk(RIt)) € Rg, k= 1,2,3,
¢=[0of o5 ¢ ] ERVE ¢y =col; (S(wi)Ll(wiy) ERY, j=1,2,....6
transforms the nonlinear term n(w, rp, r;) into
n(qawa Tp, ’I"t) = nO(qawa Tp, Tt) + N(w)g (15)
where
mpuRYL, (= { 0 ]
ng(q,w,r,,ry) = P\ T , N(q,w) = .
o ) [ S(Ri)wf’t)Jprwf’t (@) U

Besides, the disturbance W, including gravitational variations, atmospheric drag, solar
radiation and third-body effects [23,25], can be bounded as ||W|| < d,, with an unknown
bound d,,.

Since we aim to make the pursuer have no relative motion with respect to the target,
the desired relative position and attitude quaternion should be, respectively, p = 0, q.
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[ 1000 ]T. Then, the relative position error and attitude error can be respectively
obtained as e, =p —p.=p, A=q.; ' oq=q. Let

m:[jq’]ew, Witheq:[qoq_vl]. (16)
Meanwhile, define
% =[p" aq |]eR, (17)
and notice an important property which will be utilized later
AT(x))%, =Tx, (18)

where I' =diag{I5x3, $I5x3}; then, combining (12), (15) and (16), coupled dynamics (9)
can be rewritten as

{ 5.&1 = A(Xl)Xg —+ Cl(wfp)il

. : 19
M, %, = Asat(f) + W — Cg(u)ﬁ.ip,u))x2 — D(rp)x,; — ng(w,q,rp,7) — N(q,w)8. (19)

Based on the control objective, the problem can be formulated as follows.

Problem 1. For the coupled dynamics described by (19), synthesize a control input £
such that the relative states X1, X9 converge to zero as closely as possible in spite of the
presence of the unmeasurable term 0 in (14) and the bounded disturbance W.

Remark 2.1. [t is worth mentioning that, the relative attitude quaternion q = q =
[qg q, ]T has two equilibrium points, i.e., [:I:l 0 00 ]T, representing the same
physical orientation. According to [8|, to minimize the path length, the selection of
equilibrium point can be determined by the given initial condition. Specifically, choose
[ 1 000 ]T as the equilibrium point when qy(0) > 0, and [ -1 0 0 0 ]T is chosen
for qo(0) < 0; meanwhile, it is further assumed that the scalar part of the error quaternion
does not change sign, i.e., sgn(qo(0)) = sgn(qo(t)), ¥t > 0. Thus, without loss of general-

ity, this paper only considers the case qo(0) > 0, equivalently, [ 1 000 ]T s chosen
as the equilibrium of @ and qo(t) > 0.

3. Controller Design. Since the system in (19) performs a cascade-like structure, which
makes the backstepping technique a preferable approach [27]. Hence, a modified backstep-
ping method is utilized herein to control system (19). Assume that the target spacecraft
position vector rf, and angular velocity wf, are available and bounded. To proceed with
the development of the control system design, a necessary assumption and a Lemma are
given as follows.

Lemma 3.1. [28] Let the partitioned matriz

S11 Si2
S —
{ Si, Sa ]
be symmetric. Then S > 0 if and only if
Si; >0 (20)
S92 — S1,S:1'S12 > 0. (21)

In view of kinematic equation (19), i.e., X; = A(x1)xy + C(wj,)X1, the virtual control
« is constructed as
a = —KlAT(Xl)il — X (22)
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where K, K, € R*® are positive definite matrices to be designed; the auxiliary signal
x €RS is used here to deal with control saturations and submitted to

M, x = —Kyx + A(sat(f) — f). (23)

If the standard backstepping is further adopted, the derivative of the virtual control
& will be contained in the final controller. Since it is hard to analytically compute ¢,
motivated by DSC technique, the following first order filter is utilized

H)OCQC + X9 = ¢ (24)
where x,, is the estimate of the virtual control a; H =diag{r,7,...,7s} € R%*6 is the
filter parameter matrix and the components 7;, « = 1,2,...,6, are positive scalars to be

selected. Furthermore, define the system error X, as
Xo = X3 — X — Xy, (25)
Based on (22) and (23), a control strategy is proposed as follows
f = A7 [Cy(x,, + x) + Dx, +np+NO + M,%s, — AT%) — Ky(Xy + x) —sgn(Xs)d,] (26)
with adaptation laws

B = —ko(NTRs + kpoh)

R 1 o N (27)
dy = k—(sgnT(XQ)xg — kaody)
d
where kg, koo, kq, kgo are positive scalars to be designed; for an arbitrary vector p =
[p1 P2 - pe ]T € R%, the vector signum function sgn(p) is defined as sgn(p) =

T
[Sgn(m) sgn(p2) -+ sgn(pe) ]

Before the stability analysis is given, let & = [%T %I 0T d, yT X7 ]T, ¢ =
[xf %7 y© X" ]T, where 6, d,,, y are the estimation errors defined as

0=0-0, dy,=dy—dy, y=Xo—a. (28)

b9,
Then, construct a function V() as

1 1
o+ §yTy+§XTMpX- (29)

1_+_ 1._ - 1 ~r~ ky

Obviously, for any r > 0, the set B, = {£ :V(£) < r} is a compact set.

Theorem 3.1. For system (19), if the filter matriz H, and diagnose positive definite gain
matrices Ky, Ko are chosen such that
1 1 1
H'--I--T'K;'>0, K,>-:I 30
2 4 1 ) 2 9 ) ( )
then, for any initial states in B,, the control strategy in (22)-(27) guarantees that the
system signals X1, X9 are ultimately bounded.

Proof: In view of definitions (23) and (25), system (19) can be transformed into

{ %1 = A(x1) (Xoe + %2 + x) + Ci%y (31)

M, %, = Asat(f) + W — Cyx, — Dx; — ng — NO — M, %5, — M, .
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Substituting control law (22)-(27) into (31) leads to the closed-loop error system
(% = A(x)(xge + X2 + x) + Cixy _
MpiQ = —CQiQ + W — Sgn(i2)dw + N@ — ATil — KQiQ
M, x = —Kox + Au(é, 1)
s y=-H'ly—& (32)
é - _kQ(NTiZ + kggé)

X 1 o o
dw = k—(SgnT(Xg)Xg - kd2dw)
\ d

where Au(€,t) = A(sat(f) —f).
Then, differentiating V' with respect to time gives

. . . 1 ~-2 ~ A
Vo= %% + % M,X, + k—90T9+kddwdw +yy + xTM,x
= %TA (%00 + %o + y) + XT (—02522 +W — sgn(Xa)dy + NI — A%, — K2i2>
S (VRS .
+%, C1%; + k—9T9+kddwdw +y (~H 'y — &) + x"(—Kax + Au). (33)
/]

Noting Xo. +Xo + Y =y +a+ Xy + x =y + Xy — K;ATX; and ilTCp'il =0, i;FCQSEZ =0
transform (33) into
. 1 ~ 2 ~ X
V=—xITTKI TS + 5Ty - $]Ko% 4+ 07 (9 v ngTi2> +d, (kddw . igsgn(i2)>
+%5 (W —sgn(%,)dy) — x"Kox —y ' H 'y -y a+ x"Au (34)

where the property (18) is utilized. Then, noticing X; (W — sgn(X,)d,,) < 0, and inserting
adaptive laws (27) into (34) results in

V < —xITTK g, + %0 Ty — 21T K%, — X TKox —yTH 'y — yTé + xTAu
1. =~ 1 =~ 1 1
—§kd2di, — §k929T0 + §kd2dﬁ, + §k929T0. (35)
According to (22), by using (18) and (32), & can be expanded as
O.é(f, t) = —KIF);CI — ).( = —Kero(y + ig — KIATil) + M;l (K2X — AU(&, t)) (36)

where Ay =diag{I,; (qI + S(q,))}. It is worth mentioning that, on the set B,, [|Au(&,t)]|
has the maximum, denoted by e1; thus, ||&(,t)|| also has the maximum value e, which
leads to 2y Té < y'y+e2, 2xTAu < xTx+¢e?2. Then, noting that kgd?, < £4, kgpafT0 < g4
on the set B, and using (2), one has

V< —xITTK g, + % Ty — %7 Ko%s — X Koy —y TH™ 'y

1 5 1 = 1 1
—ikﬂdi - §k920T9 + iny +=xTx+e¢

2
< —€TS¢ 4 ¢ (37)
where
1A 0
_ | Su Si2 _ 0 0
S—|:S’11"2 S22:|7 812_ 0 0 )
0 0

1 1 1 1
Si1 = diag {PTK1F2, Ko, §kd2’ 5’%21} ,  Sop = diag {H_l - 51, K, — 51} ;
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and € = 1 (7 +¢e3 + 9+ ¢e4). According to Lemma 3.1, to make S > 0, (20) and (21)
should be guaranteed. Since K; is positive definite, S;; > 0; meanwhile SZQ—SlTZSfllslg >
0 can be ensured by condition (30). Thus, if condition (30) holds, S > 0 is guaranteed,
which results in that V' < 0 on the boundary of the set B, = {¢ : ||£]| < \//n}, where
N = Omin(S). This implies that if the signal £(0) belongs to the set B,, then X;(t), X2(t),
y(t), x(t),dy(t), 6(t) are all ultimately bounded. Further, due to (18), one can deduce
that [|xof| = [|%2 +y — KiATR || < %, where A\ = oy, (diag{ —K ;AT I}). In summary,
it is concluded that X;, x, are ultimately bounded.

Remark 3.1. The theorem states that when initial state errors are too aggressive such
that magnitude limits will come into effect; then, the signals X1, Xo will enter and remain
in an operating envelope. Moreover, it is noticeable that when error states converge into
a small ball around the equilibrium, the input saturations may be no longer in effect,
equivalently, Au(&,t) = A(sat(f) — f) = 0 which makes (36) become & = —K; T'Ao(y +
x, — K I'xy) + M;lKgx. In this case, adaption laws (27) can be further changed into

0 = —kyNT%,
1

; 38
dw = —SgnT(ig)ig. ( )
ka
Thus the derivative of the Lyapunov function V (£, t) in (84) can be derived as
V< —TQs (39)
where
ITK,T 0 _LT—TK,AITK;) 0
B 0 Ko —1AJTK, 0 10
Q=1 _1r-K,PAK ) —LKTA,  HT-KTA MK, (40)
0 0 LK,M, T K,

Hence, if the filter matriz H and the gain matrices Ky, Ko are properly chosen to satisfy
not only the condition (30), but also Q > 0; then, by using Lyapunov theorem, it can be
concluded that signals X1, xo will asymptotically converge to zero when Au(&,t) = 0.

Remark 3.2. It is worth mentioning that, gain matrices Ky, Ko, H may not be easily
chosen to satisfy the condition (39) due to the complex structure of the matriz Q. How-
ever, using Lemma 3.1 will facilitate this problem. To be specific, the condition Q > 0
can be equivalently transformed into

Qi = diag{T"K ', K,} > 0, (41)
_ Q IM-'K
Qo2 — Q1T2Q111Q12 = %KQI{/II;T 2 1%2 1 >0 (42)

where
_ 1 1
Qu=H"'-KI'A— il K TAK))K (I -K A TK) — ZKIFAUKQIAOTFKL

Since condition (41) is easily to be satisfied due to Ki, Ko > 0, the condition (39) can
be in fact guaranteed by the reduced-dimensional condition (42), which greatly facilitates
the selection of the gain matrices. Moreover, if Ky, Ko, H are set with special structures,
condition (42) can be further dealt with by using Lemma 3.1, but on the other hand, the
conservatism will also appear to some extent.
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Desired relative state Adaptive a,dw w:“ritt
¢ » law Yy

X o Command
Target — O P Controller pr— v
Qrbltal aqd attitude First order || Xy, Xzo’ M, Thrusters
information of the filter
target Pursuer
Orbital and attitude sat(f)

information of the pursuer Disturbangﬁ

FIGURE 3. Structure of the closed-loop system

Remark 3.3. Notice that the signum function sgn(-) in (26) and (27) may incur chatter-
ing of control input. To avoid this phenomenon, for a variable x € R, the function sgn(z)
can be replaced by the following smooth function sgne(x), sgne(xr) = %=, where k is a

[+ 7
small positive scalar.

4. Numerical Simulation. In this section, a simulation scenario is considered to show
the effect of the proposed controller. The scenario aims to make a pursuer approach an
in-orbit spacecraft in need of repair or refueling, and meanwhile to make the attitude of
the pursuer perform nearly stationary relative to the Earth. This proximity rendezvous
and docking operation is extensively reflected in most of space missions, such as refueling a
nadir-pointing communication satellite on a geosynchronous orbit [6], capturing a spacial
debris or constructing the International Space Station. Assume that the target is nadir-
pointing and flying in a low round orbit with the altitude 250 km. Thus the orbit angular
velocity of the target is obtained as wy = /p/r3. Without loss of generality, the target

body frame F; is considered to be coincide with the LVLH frame; so, r! = [ re 0 0 ]T,

wfyt = [ 0 0 w ]T. Figure 3 gives the whole structure of the closed loop system.

Suppose the mass of the pursuer is m, = 10 kg, and the initial inertia matrix J, =
diag{4, 4,3} kgm?. Allowing for thrusters, the maximum of the thrust magnitude f,, = 10
N. The mass and inertia matrix of the target is assumed to be m; = 10 kg, and

10 25 3.5
J,=125 10 45 | kgm?
35 4.5 10

For relative information between the pursuer spacecraft and target, the initial relative
position, velocity, attitude, angular velocity are respectively set as p(0) = [10 —10 20]"

m, v(0) = [5 —4 4] m/s, q(0) = [ 0.3772 —0.4329 0.6645 0.4783 |", w(0) =
[0.01 —0.02 0.01 ]T rad/s. The disturbance are considered as WT=[ Fj 7, |, where

Fy=[ 001 0.02 0.03] sin(wt) N, 75 =1[ 0.001 0.002 0.003 ]" sin(wt) Nm.

Taking the integrated control into account, we choose K; = diag{0.25I3,0.5I3}, Ky =
diag{1.213,1.913}, kg = 10000, ky = 1 x 105, k = 0.001, kga = kgo = 0.00001. As for the
filter (24), choose H = 71I; furthermore, to investigate its effect on the system response,
set, 7 = 0.006, 0.06, 0.6, respectively. It can be verified that, according to Theorem 3.1 and
Remark 3.1, the selection of these system parameters is able to ensure that condition (30)
holds and the matrix Q in (40) is positive definite, which could lead to the relative position
and attitude states: 1) are ultimately bounded when control saturations take effect, and
2) asymptotically converge to equilibrium point once control saturations disappear.
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Figures 4-7 show the relative position and attitude maneuver in cases that the filter
parameter 7 = 0.006, 0.06, 0.6, respectively. Figures 8 and 9 illustrate thrust histories
under the corresponding 7. It can be observed from these figures that the relative posi-
tion and attitude states converge to the desired states in spite of external disturbances,
unknown system parameters and input saturation. Specifically, from Figures 8 and 9,
we can see that the control inputs are saturated in the initial transient phase, during
which the variations of the system states show overshoot to some extent and moreover,
this phenomenon performs more obviously when 7 gets smaller. After this period of time,
that is, the control saturation no longer takes effect, the states can be seen to converge
to the equilibrium with a good performance. It can be verified from the system response
in these figures that: 1) at initialization time, the proposed control law could only guar-
antee the ultimate boundedness of the system states due to Theorem 3.1 such that the
relative position and attitude move to a neighborhood of the equilibrium with a small ra-
dius; furthermore, 2) if the ultimate bound is so small that the variation of system states
makes the control input become less than the limit, then the asymptotic convergence (not
just ultimate boundedness) can be further achieved by the designed controller owing to
Remark 3.1.

Besides the influence on the system response as depicted in Figures 4-7, it can be further
inferred from Figures 8 and 9 that smaller value of the filter parameter 7 more easily leads
to control saturation. As mentioned in [12], smaller value of 7 requires larger control
force; nevertheless, this can not be satisfied herein due to the input limitation (10), which
consequently results in the longer control saturation. In summary, the filter parameter
matrix H certainly influences the response performance of the closed-loop system. On one
hand, in order to reduce the input saturation and overshoot, larger filter parameter should
be chosen; on the other hand, excessively large value of the filter parameter may conflict
with conditions (30) and (39). Hence, in application, according to control requirements,
it is necessary to choose a proper diagonal matrix H to make a trade-off between the
system performance and physical realization.

Figures 11 and 12 illustrate the variations of components of estimate vector 6 and
components of estimate error  with the case 7 = 0.6. Meanwhile, Figures 13 and 14 show
the time histories of estimate Jw and estimate error Jw. As figures illustrate, with the
effect of adaption law (30), the components of the estimate vector 0 and d,, are bounded,
and so do the components of the estimate error 6 and d,,. Nevertheless, the estimated
parameters do not converge to their true value, which is mainly due to sufficient frequency
components in the tracked states is not guaranteed, i.e., the persistent excitation (PE)
condition is not satisfied [28].

Another important thing should be noted is the selection of design parameters. Ac-
cording to Theorem 3.1 and Remark 3.1, the gain matrices K;, K5 and filter matrix H
should not only ensure conditions (30) and (39) hold, but also take into account that:
1) the filter parameter matrix H could guarantee enough tracking ability of the linear
filter (24) with a high bandwidth, and 2) the gain matrices K;, K, can be adjusted to
guarantee a higher control accuracy. Subsequently, a large value of ky and k4 can be set
to adjust the dynamical response of the estimate vector é, czw, respectively.

5. Conclusion. In this study, a filter-based backstepping adaptive control law is devel-
oped to deal with the relative 6-DOF translation and attitude motion of the spacecraft
in space proximity operation missions. In view of the 6-DOF coupled translational and
rotational dynamics of pursuer spacecraft relative to the target, an integrated position
and attitude control strategy is designed by using adaptive backstepping technique. To
cope with the input saturation, an auxiliary signal motivated by [17-20] is introduced into
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9. Control

the control law; meanwhile, a first order filter in DSC technique [12-15] is also employed
to overcome the “explosion of terms”. Within Lyapunov framework, stability analysis for
the closed-loop system guarantees the ultimate boundedness of relative position and at-
titude signals in the presence of the disturbances, unknown system parameters and input
saturations; besides, for the case that the control saturations no longer take effect, the
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asymptotic convergence of relative position and attitude signals is further analyzed. The
numerical simulation illustrates the effect of the proposed control law. Meanwhile, the
influence of the filter parameter on the system is discussed in detail as well.

On the other hand, it should be pointed out that, since the asymptotic convergence
can be obtained when control saturations take no effect, it is meaningful to give a definite
condition to ensure the control inputs become less than their limit in an available time.
This may be the limitation of our results and thus become one of our future works; besides,
our future research directions also include: 1) extensions of the proposed controller to the
case without velocity measurement; and 2) digital implementation of the control scheme
on hardware platforms for 6-DOF translation and rotation control experimentation.
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