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Abstract. The problem of delay-dependent exponential stability is investigated for sin-
gular systems with state delay. In terms of linear matrix inequality (LMI) approach,
some improved delay-dependent conditions are presented to ensure the considered system
to be regular, impulse free and exponentially stable via an augmented Lyapunov func-
tional and integral inequalities matrix. Numerical examples are given to illustrate the
effectiveness and the benefits of the proposed methods. These results are shown to be less
conservative than those reported in the literature.
Keywords: Singular systems, Time-delay systems, Delay-dependent, Exponential sta-
bility, Linear matrix inequality (LMI)

1. Introduction. Time delay is commonly encountered in various engineering systems,
such as manufacturing system, turbojet engine, telecommunication, economic system and
chemical engineering system. It is generally regarded as a main source of instability and
poor performance. Therefore, the study of stability problem for time-delay systems is
of theoretical and practical importance [1-26]. Singular systems, which are also known
as descriptor systems, semi-state-space systems and generalized state-space systems are
dynamic systems whose behaviors are described by both differential equations (or differ-
ence equations) and algebraic equations. Recently, there has been a growing interest in
the study of such more general class of delay singular systems [1-3,5,9,10,14,22,25], and
singularly perturbed systems [20,21,24] and the references therein. The existing stability
criteria for singular time-delay systems can be classified into two types: delay-independent
[25] and delay-dependent [2,3,6-9,19,22,23,26]. Generally, delay-dependent conditions are
less conservative than the delay-dependent ones, especially when the time delay is small.
It should be pointed out that the stability problem for singular systems is much more
complicated than that for regular systems because it requires to consider not only sta-
bility, but also regularity and absence of impulses (for continuous singular systems) or
causality (for discrete singular systems) simultaneously, while the latter two do not arise
in the regular ones [5].

All of the above-mentioned stability conditions for time-delay systems are concerned
with asymptotic stability instead of exponential ones. But it is very important to esti-
mate the decay rates (i.e., exponential stability degrees) of time-delay systems in many
dynamical systems. The issue of exponential stability for delay systems has received
considerable attention in recent years. For example, based on the concept of matrix mea-
sure, decay rate estimates were investigated in [16], but these conditions are difficult to
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test. The delay-dependent stability problem was considered in [11-13,18] via linear ma-
trix inequality (LMI) approach and several stability conditions were established. To the
best of our knowledge, the problem of delay-dependent exponential stability for singular
delay systems has not been fully studied in the literature and still remains open. Moti-
vated by the above-mentioned analysis, in this paper, by using integral inequality matrix,
a new delay-dependent criterion for the time-delay singular system to be admissible is
established.
In this paper, we revisit the problem of exponential stability analysis for time delay sin-

gular system and find the results in [2,3,6-9,19,22,23,26] leave much room for improvement.
Based on the fact that such stability conditions are derived via the Lyapunov-Krasovskii
functional combining with LMI techniques, simple and delay-dependent exponential sta-
bility criteria are derived. The LMI optimization approaches are used to obtain a sufficient
condition that is very easy to be checked by using the LMI Toolbox in Matlab. From the
illustrated examples, if the delay time lengthens, the decay rate becomes conservative.
We claim that the sharpness of the upper bound delay time h varies with the chosen
decay rate α. The stability conditions obtained are dependent on the delay values, and
are generally less restrictive than those previously presented in the literature.

2. Stability Analysis. Consider the following continuous-time singular system with
time delay in the state

Eẋ(t) = Ax(t) + Bx(t− h) t > 0 (1a)

with the initial condition

x(t0 +θ) = Φ(θ), −h ≤ θ ≤ 0, h > 0, (1b)

where x(t) ∈ Rn is the state vector of the system; A, B ∈ Rn×n are constant matrices. The
matrix E ∈ Rn×n maybe singular, without loss generality, we suppose rankE = r ≤ n;
h > 0 denotes time delay. Φ(θ) is a continuous vector-valued initial function. Many
papers provide delay-dependent criteria to evaluate the allowable delay magnitude for
the asymptotic stability of time delay singular systems (1). When the time delay is
unknown, how long time delay can be tolerated to keep the system stable. To do this,
one fundamental lemma is reviewed.
The main objective is to find the range of h and guarantee stability for the time delay

singular systems (1). Here, definitions and fundamental lemmas are reviewed.

Definition 2.1. [5] The pair (E,A) is said to regular if det(sE − I) is not identically
zero.

Definition 2.2. [5] The pair (E,A) is said to be impulse free if deg(det(sE − I)) =
rank E.

Definition 2.3. For a given scalar h > 0, the singular delay system (1) is said to be
regular and impulse free for any constant time delay h satisfying 0 ≤ h ≤ h, it the pairs
(E,A) and (E,A+B) are regular and impulse free.

Remark 2.1. The regularity and the absence of impulses of the pair (E,A) ensures the
system (1) with time delay h 6= 0 to be regular and impulse free, while the fact that the
pair (E,A+B) is regular and impulse free ensures the system (1) with time delay h = 0
to be regular and impulse free.

Lemma 2.1. [10] The singular system Eẋ(t) = Ax(t) is regular, impulse free, and stable,
if and only if there exists a matrix P such that

P TE = E
T P ≥ 0 (2a)
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A
T P + PA < 0 (2b)

Lemma 2.2. [13] For any positive semi-definite matrices

X =

 X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

 ≥ 0 (3a)

the following integral inequality holds

−
∫ t

t−h

ẋT (s)X33 ẋ(s)ds ≤

∫ t

t−h

[
xT (t) xT (t− h) ẋT (s)

]  X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 0

 x(t)

x(t− h)

ẋ(s)

 ds

(3b)

We now present a delay-dependent criterion for asymptotic stability of the systems (1).

Lemma 2.3. [4] The following matrix inequality[
Q(x) S(x)

ST (x) R(x)

]
< 0 (4a)

where Q(x) = QT (x), R(x) = RT (x) and S(x) depend affinely on x, is equivalent to

R(x) < 0 (4b)

Q(x) < 0 (4c)

and

Q(x)− S(x)R
−1(x)S

T (x) < 0 (4d)

Theorem 2.1. For a give scalar h > 0, the time-delay singular system (1) is regular,
impulse free and asymptotically stable if there exist positive-definite symmetric matrices
P = P T > 0, Q = QT > 0, R = RT > 0, and matrix S of appropriate dimensions and a

positive semi-definite matrix X =

 X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

 ≥ 0 such that the following LMIs

hold:

P
T E = E

T P ≥ 0 (5a)

Ω =

 Ω11 Ω12 Ω13

ΩT
12 Ω22 Ω23

ΩT
13 ΩT

23 Ω33

 < 0 (5b)

and

ET (R−X33)E > 0 (5c)

where Z ∈ Rn×(n−r) is any matrix satisfying ETZ = 0 and

Ω11 = ATP + PA+ ATZST + SZTA+Q+ ET (hX11 +X13 +XT
13)E,

Ω12 = PA1 + SZTB + ET (hX12 −X13 +XT
23)E,

Ω13 = hATR, Ω22 = −Q+ ET (hX22 −X23 −XT
23)E,

Ω23 = hBTR, Ω33 = −hR.

Based on that, a convex optimization problem is formulated to find the bound on the
allowable delay time h which maintains the delay-dependent stability of the time delay
singular system (1).
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Proof: Consider the time-delay singular system (1), using the Lyapunov-Krasovskii
functional candidate in the following form, we can write

V (xt) = xT (t)PEx(t) +

∫ t

t−h

xT (s)Qx(s)ds+

∫ 0

−h

∫ t

t+θ

ẋT (s)ETREẋ(s)dsdθ (6)

The time derivative of (6) along the trajectory of (1) is given by

V̇ (xt) = xT (t)(PA+ ATP )x(t) + xT (t)PBx(t− h) + xT (t− h)BTPx(t) + xT (t)Qx(t)

− xT (t− h)Qx(t− h)+ẋT (t)hETREẋ(t)−
∫ t

t−h

ẋT (s)ETREẋ(s)ds

=xT (t)(PA+ ATP +Q)x(t) + xT (t)PBx(t− h) + xT (t− h)BTPx(t)

− xT (t− h)Qx(t− h)+ẋT (t)hRẋ(t)−
∫ t

t−h

ẋT (s)ET (R−X33)Eẋ(s)ds

−
∫ t

t−h

ẋT (s)ETX33Eẋ(s)ds

(7)

Using the Leibniz-Newton formula x(t) − x(t − h) =
∫ t

t−h
ẋ(s)ds, and Lemma 2.2, we

obtain

−
∫ t

t−h

ẋT (s)X33ẋ(s)ds

≤
∫ t

t−h

[
xT (t) xT (t− h) ẋT (s)

]  X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 0

 x(t)

x(t− h)

ẋ(s)

 ds

≤xT (t)hX11x(t) + xT (t)hX12x(t− h) + xT (t)X13

∫ t

t−h

ẋ(s)ds+ xT (t

− h)hXT
12x(t) + xT (t− h)hX22x(t− h) + xT (t− h)X23

∫ t

t−h

ẋ(s)ds

+

∫ t

t−h

ẋT (s)dsXT
13x(t) +

∫ t

t−h

ẋT (s)dsXT
23x(t− h)

=xT (t)[hX11 +XT
13 +X13]x(t) + xT (t)[hX12 −X13 +XT

23]x(t− h)

+ xT (t− h)[hXT
12 −XT

13 +X23]x(t) + xT (t− h)[hX22 −X23 −XT
23]x(t− h)

(8)

Furthermore, noting ETZ = 0, we can deduce

0 = 2ẋT (t)ETZSTx(t) (9)

Substituting the above Equations (8) and (9) into (7), we obtain

V̇ (xt) < ξT (t)Ξξ(t)−
∫ t

t−h

ẋT (s)ET (R−X33)Eẋ(s)ds (10)

where ξT (t) =
[
xT (t) xT (t− h)

]
and Ξ =

[
Ξ11 Ξ12

ΞT
12 Ξ22

]
, with

Ξ11 = ATP + PA+ ATZST + SZTA+Q+ ET (hX11 +X13 +XT
13)E + hATRA,

Ξ12 = PB + SZTB + ET (hX12 −X13 +XT
23)E + hATRB,

Ξ22 = −Q+ ET (hX22 −X23 −XT
23)E + hBTRB.
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Finally, using the Schur complement of Lemma 2.3, with some effort we can show that
(10) guarantees of V̇ (xt) <0. In condition (5) of the present Theorem 2.1 is satisfied, if
V̇ (xt) <0, then Ξ < 0 and ET (R − X33)E ≥ 0, if and only if (5) holds. Therefore, the
time delay singular system (1) is asymptotically stable.

3. Extension to Exponential Stability for Time Delay Systems. We now present
a delay-dependent criterion for exponential asymptotic stability of the time delay singular
systems (1).

Theorem 3.1. For any given positive scalars h > 0 and α > 0, the time delay singular
system (1) is regular, impulse free and exponential asymptotically stable with decay rate
α if there exist symmetry positive-definite matrices P = P T > 0, Q = QT > 0, R =
RT > 0, and matrix S of appropriate dimensions and positive semi-definite matrix X = X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

 ≥ 0 which satisfy the following inequalities:

P TE = ETP ≥ 0 (11a)

Ψ =

 Ψ11 Ψ12 Ψ13

ΨT
12 Ψ22 Ψ23

ΨT
13 ΨT

23 Ψ33

 < 0 (11b)

and

ET (R−X33)E ≥ 0 (11c)

where Z follows the same definition as that in Theorem 2.1, and

Ψ11 =(A+ 0.5αE)TP + P (A+ 0.5αE) + ATZST + SZTA

+Q+ e−αhET (hX11 +X13 +XT
13)E,

Ψ12 =PB + SZTA+ e−αhET (hX12 −X13 +XT
23)E, Ψ13 = hATR,

Ψ22 = e−αh[ET (hX22 −X23 −XT
23)E −Q], Ψ23 = hBTR, Ω33 = −hR.

Based on that, a convex optimization problem is formulated to find the bound on the al-
lowable delay time h and delay decay rate α which maintains the delay- dependent stability
of the time delay singular system (1).

Proof: Consider the time-delay singular system (1), using the Lyapunov-Krasovskii
functional candidate in the following form, we can write

V (xt) = eαtxT (t)PEx(t)+

∫ t

t−h

eαsxT (s)Qx(s)ds+

∫ 0

−h

∫ t

t+θ

eαsẋT (s)ETREẋ(s)dsdθ (12)

The time derivative of (12) along the trajectory of (1) is given by

V̇ (xt) = eαt{xT (t)αEPx(t) + ẋT (t)Px(t) + xT (t)Pẋ(t) + xT (t)Qx(t)− xT (t

− h)e−αhQx(t− h)+ẋT (t)hETREẋ(t)−
∫ t

t−h

eα(s−t)ẋT (s)ETREẋ(s)ds}

= eαt{xT (t)[P (A+ 0.5αE) + (A+ 0.5αE)TP ]x(t) + xT (t)PBx(t− h)

+ xT (t− h)BTPx(t) + xT (t)Qx(t)− xT (t− h)e−αhQx(t− h)

+ẋT (t)hETREẋ(t)−
∫ t

t−h

eα(s−t)ẋT (s)ETREẋ(s)ds}

(13)
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Obviously, for any a scalar s ∈ [t− h, t], we have e−αh ≤ eα(s−t) ≤ 1, and

−
∫ t

t−h

eα(s−t)ẋT (s)Rẋ(s)ds ≤ −e−αh

∫ t

t−h

ẋT (s)Rẋ(s)ds (14)

Applying the proof of Theorem 2.1, we obtain

V̇ (xt) < eαt{ξT (t)Υξ(t)−
∫ t

t−h

ẋT (s)e−αhET (R−X33)Eẋ(s)ds} (15)

where ξT (t) =
[
xT (t) xT (t− h)

]
and Υ =

[
Υ11 Υ12

ΥT
12 Υ22

]
with

Υ11 =(A+ 0.5αE)TP + P (A+ 0.5αE) + ATZST + SZTA+Q

+ e−αhET (hX11 +X13 +XT
13)E + hATRA,

Υ12 =PB + SZTB + e−αhET (hX12 −X13 +XT
23)E + hATRB,

Υ22 = e−αh[ET (hX22 −X23 −XT
23)E −Q] + hBTRB.

Finally, using the Schur complement of Lemma 2.3, with some effort we can show that
(15) guarantees of V̇ (xt) <0. In condition (11) of the present Theorem 3.1 is satisfied, if
V̇ (xt) < 0, then Υ < 0 and ET (R −X33)E ≥ 0, if and only if (11) holds. Therefore, the
time delay singular system (1) is exponential stable.

Remark 3.1. Theorem 3.1 provides delay-dependent asymptotic stability criteria for the
time delay singular systems (1) in terms of solvability of LMIs [4]. Based on them, we can
obtain the maximum allowable delay bound (MADB) h such that (1) is stable by solving
the following convex optimization problem:{

Maximize h
Subject to (11) and P > 0, Q > 0, R > 0, α > 0.

(16)

Inequality (16) is a convex optimization problem and can be obtained efficiently using
the MATLAB LMI Toolbox.

4. Illustrative Examples. To show usefulness of our result, let us consider the following
numerical examples.

Example 4.1. Consider the following time delay singular systems

Eẋ(t) = Ax(t) +Bx(t− h) (17)

where

E =

[
1 0
0 0

]
, A =

[
0.5 0
0 −1

]
, B =

[
−1.1 1
0 0.5

]
.

Now, our problem is to estimate the bound of delay time h to keep the stability of system
(17).

Solution: Choosing Z =
[
1 0

]T
and applying the LMI Toolbox in MATLAB (with

accuracy 0.01), this above time delay singular system (17) is asymptotically stable for
delay time satisfying h ≤ 1.0660. The upper bounds on the time delay form Theorem
2.1 is shown in Table 1, in which “–” means that the results are not applicable to the
corresponding cases. Note that the results of [2,3,22] fail to deal with this system since the
matrix describing the relationship between the slow and fast variables can not be deter-
mined beforehand. For comparison, the table also lists the upper bounds obtained from
the criteria in [2,3,6-9,19,22,23,26]. It can be seen that our methods are less conservative.
The simulation of the system (17) for h = 1.06 is depicted in Figure 1.
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Table 1. Comparison of delay-dependent stability condition of Example 4.1

Methods [2,3,22] [23,26] [9] [7] [6,8] [19] Example 4.1
h – 0.5567 0.8708 0.9091 0.9680 1.0423 1.0660

Figure 1. The simulation of Example 4.1 for h = 1.06 sec

Example 4.2. Consider the following time delay singular systems

Eẋ(t) = Ax(t) +Bx(t− h) (18)

where

E =

[
2 0
0 0

]
, A =

[
1 0
0 −2

]
, B =

[
−2.4 2
0 1

]
.

Now, our problem is to estimate the bound of delay time h to keep the stability of system
(18).

Solution: Choosing α = 0, Z =
[
1 0

]T
and applying the LMI Toolbox in MATLAB

(with accuracy 0.01), this above time delay singular system (17) is asymptotically stable
for delay time satisfying h ≤ h = 0.9897. Furthermore, by taking the decay rate α,
and from Theorem 3.1, we obtain the upper bound of delay time h as shown in Table
2. From the above results of Table 2, if the decay rate α increases the delay time length
decreases. As shown in Figure 2, the simulation of system (18) for h = 0.98. As the
diagram indicates, system (18) would be asymptotically stable if the delay time h is less
than 0.98.

Example 4.3. Consider the following time delay singular systems

Eẋ(t) = Ax(t) +Bx(t− h) (19)
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where

E =

 1 0 0
0 1 0
0 0 0

 , A =

 −2 0 0
0 −0.5 0
0 0 1

 , B =

 −1 0 1
−1 −1 −0.1
−1 1 −0.1

 .

Now, our problem is to estimate the bound of delay time h to keep the stability of system
(19).

Table 2. Bound of delay time h for various decay rates α

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Theorem 3.1 0.9292 0.8761 0.8278 0.7830 0.7407 0.6999 0.6565 0.5056 0.3847

Figure 2. The simulation of Example 4.2 for h = 0.98 sec

Solution: Choosing Z =
[
0 0 1

]T
and applying the LMI Toolbox in MATLAB

(with accuracy 0.01), this above time delay singular system (19) is asymptotically stable
for delay time satisfying h ≤ 2.3619. The upper bounds on the time delay form Theorem
2.1 is shown in Table 3. The result in this paper is less conservative.

Table 3. Comparison of delay-dependent stability conditions of Example 4.3

Method Maximum h allowed
Gao et al. [9] 1.06
Zhu et al. [26] 1.274
Theorem 2.1 2.3619
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5. Conclusion. The objective of this paper is to obtain exponential stability condition
that provide better insights into the effects of delay terms on the singular system behavior,
and to use these conditions and insights in control problems. The proof is based on the
Lyapunov-Krasovskii functional techniques, and the conditions are expressed in terms of
linear matrix inequality. From the obtained results, if the delay time lengthens, the decay
rate becomes conservative. We claim that the sharpness of the upper bound delay time h
varies with the chosen the decay rate α. The stability conditions obtained are dependent
of the delay values, and are generally less restrictive than those previously presented in
the literature. Many complex systems with uncertainties and neutral types, as well as
time-varying or state-dependent delays are still inviting further investigation.
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