
International Journal of Innovative
Computing, Information and Control ICIC International c©2012 ISSN 1349-4198
Volume 8, Number 7(A), July 2012 pp. 4719–4748

SEMPRE: SECURE MULTICAST ARCHITECTURE USING
PROXY RE-ENCRYPTION

Yun-Peng Chiu1, Chun-Ying Huang2 and Chin-Laung Lei1

1Department of Electrical Engineering
National Taiwan University

No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
frank@fractal.ee.ntu.edu.tw; lei@cc.ee.ntu.edu.tw

2Department of Computer Science and Engineering
National Taiwan Ocean University

No. 2, Peining Rd., Keelung 20224, Taiwan
chuang@ntou.edu.tw

Received February 2011; revised June 2011

Abstract. The goal of a secure multicast communication environment is to ensure that
only valid members belonging to the multicast group can decrypt data. A simple solution
adopted by many previous studies is to use a “group key” that is shared by all group
members. The sender uses the group key to encrypt the multicast data, and the receivers
decrypt the data with the same key. However, the procedure may incur the so-called “1
affects n problem”, whereby the action of one member affects the whole group. This is the
source of scalability problems. Moreover, from an administrative perspective, it is desir-
able to confine the impact of membership changes to a local area. In this paper, we propose
a novel secure multicast architecture that reduces the impact of the 1 affects n problem
significantly by exploiting a cryptographic primitive, “proxy re-encryption”. Therefore,
we call the proposed secure multicast architecture Sempre (SEcure Multicast architec-
ture using Proxy Re-Encryption). Proxy re-encryption allows intermediate routers to
convert the ciphertext encrypted with one key to ciphertext encrypted with another key,
without revealing the private key or the plaintext. If the intermediate routers are given
proper keys, they can provide separation between subgroups and thereby achieve the goals
of scalability and containment. Successful containment reduces the 1 affects n problem
significantly. We also compare several related schemes, and discuss some security prob-
lems that we identified in them. Existing schemes that use similar techniques only use
asymmetric-key algorithms, but the computational costs of the algorithms mean that the
schemes are infeasible in practice. Our scheme combines asymmetric-key and symmetric-
key algorithms, so it is practical for real-world applications.
Keywords: Secure multicast, Multicast key management, Proxy re-encryption

1. Introduction. Since the emergence of multicast communications in the late 1980s [1,
2], the issue of secure multicast communications has been addressed frequently in the lit-
erature. Rafaeli and Hutchison provide a detailed survey of works on secure multicast [3].

Several approaches utilize a group key that is shared by all group members. The sender
uses the group key to encrypt the multicast data, and all valid members use the same
group key to decrypt the data. However, the group-wise key may incur the so-called
“1 affects n problem” [4], which means that the action of one member affects the whole
group. More specifically, because the group key is known by all members, whenever a
member joins or leaves the group, the remaining members of the group must acquire a
new group key.

4719



4720 Y.-P. CHIU, C.-Y. HUANG AND C.-L. LEI

To build a practical and secure multicast architecture, we focus on scalability and con-
tainment issues. Scalability means that the processing overhead of each security operation
should be minimized in terms of the number of group members. Containment means that
a security breach that occurs in one subgroup does not affect other subgroups. We adopt
two techniques to address these issues. The first distributes the computational load to
intermediate routers such that the whole architecture is scalable. The second technique
provides the keying material based on the topology of the multicast network. The depen-
dency ensures that security breaches can be contained.
A naive way to achieve containment is to allow an intermediate router to decrypt traffic

(from an upstream router) with one key and then re-encrypt the same traffic with another
key [4]. This method requires full trust in the routers because they have the ability to
decrypt plain text, which is an undesirable feature.
In this paper, we propose a novel secure multicast architecture for large and dynamic

groups. Specifically, we focus on the one-to-many communication pattern and exploit a
cryptographic primitive called “proxy re-encryption”. By using the primitive, a proxy
can convert the ciphertext for one person into the ciphertext for another person without
revealing the secret decryption keys or the plaintext. Therefore, we call the proposed
secure multicast architecture Sempre (SEcure Multicast architecture using Proxy Re-
Encryption). Our multicast model also considers routers; hence, it is more realistic than
schemes based on logical trees, e.g., LKH-based schemes [5, 6]. In our architecture, routers
play the role of proxies in proxy re-encryption. Because different parts of the network have
different ciphertext and encryption keys, the impact of a security breach can be limited
to a local area. Therefore, the goals of scalability and containment can be achieved.
In multicast security, forward secrecy and backward secrecy are usually considered.

Here, we follow the definitions in [7]. Forward secrecy means that a passive adversary
who knows a subset of old group keys cannot infer subsequent group keys. On the other
hand, backward secrecy means that a passive adversary who knows a subset of new group
keys cannot infer previous group keys. Thus, to achieve forward and backward secrecy,
rekeying is necessary when a member joins or leaves the group.
Mukherjee and Atwood proposed a multicast key management scheme called SIM-KM,

which also exploits proxy re-encryption [8, 9, 10]. However, we found that the scheme
fails to achieve forward secrecy. Further details are provided in Section 3.3. In contrast,
our architecture can achieve forward secrecy.
The remainder of this paper is organized as follows. We introduce basic concepts and

provide a historical perspective of proxy re-encryption in Section 2. Related works are
reviewed in Section 3. Section 4 describes the proposed secure multicast architecture
based on proxy re-encryption. The properties of proxy re-encryption systems related to
our architecture are discussed in Section 5. We also compare the proposed scheme with
similar approaches. Section 6 contains some concluding remarks.

2. Proxy Re-Encryption. Proxy re-encryption is the core technique in our architec-
ture. In Section 2.1, we describe its basic concepts and review some proxy re-encryption
schemes. Section 2.2 discusses symmetric-key based proxy re-encryption schemes.

2.1. Basic concepts and historical review. The notion of proxy re-encryption was
first introduced by Blaze, Bleumer and Strauss in 1998 [11]. The basic idea is that a
proxy, given a proxy key, could convert the ciphertext for one person into the ciphertext
for another person without revealing the secret decryption keys or the plaintext. Figure 1
shows the concept of proxy re-encryption. In this figure, S is the sender, P is the proxy,
and A and B are two users.



SECURE MULTICAST ARCHITECTURE USING PROXY RE-ENCRYPTION 4721

S

EKA

P

πA→B

B

DKB〈m〉
EKA

〈m〉
EKB

Figure 1. Proxy re-encryption

In traditional asymmetric-key encryption schemes, a message m encrypted using A’s
public key EKA could only be decrypted using A’s private key DKA. In contrast, in a
proxy re-encryption scheme, a new role, proxy P , is introduced. P is given a proxy key
πA→B, and P could convert the ciphertext originally for user A to a message which could
be decrypted using user B’s private key, DKB. In Figure 1, the notation 〈m〉k represents a
message m is encrypted by a key k, using an asymmetric-key algorithm. Here A delegates
the right to decrypt the ciphertext for him/her to B; therefore A is called the delegator,
and B is called the delegatee. It is infeasible for P to decrypt the ciphertext, and to gain
information about A’s and B’s private keys.

Assume Enc(m, e) denotes the asymmetric-key encryption algorithm for message m
and encryption key e; Dec(c, d) denotes the decryption algorithm for ciphertext c and
decryption key d; Pre(c, π) is the proxy re-encryption algorithm for ciphertext c and
proxy key π. The correctness of a proxy re-encryption scheme could be expressed as:

Dec(Pre(Enc(m,EKA), πA→B),DKB) = m.

Since the notion of proxy re-encryption was introduced, several works have been pro-
posed in this area. Here we briefly review some of them.

In Blaze, Bleumer and Strauss’s work [11], they defined the term “atomic proxy cryp-
tography”, where “atomic” means that the proxy converts ciphertext without revealing
the plaintext. In other words, it is not necessary for the proxy to decrypt and then en-
crypt. “Atomicity” is the central idea of proxy re-encryption. In addition to be more
secure, it is also more efficient than the “decrypt and then encrypt” method.

In Ivan and Dodis’s work [12], they provided generic solutions for proxy re-encryption
and proxy signature. The notions of unidirectional and bidirectional proxy cryptography
are discussed.

In [13], Ateniese et al. discussed various security properties of proxy re-encryption
schemes. Their scheme is pairing-based.

Green and Ateniese extended the notion of proxy re-encryption to the area of identity-
based encryption [14], that is, the identity of the receiver is used as the public key when
the sender encrypts messages. They also discussed multi-use proxy re-encryption, that is,
ciphertext could be re-encrypted for many times.

2.2. Symmetric-key based proxy re-encryption. Although currently most proxy re-
encryption schemes are based on asymmetric-key algorithms, there are also few studies
based on symmetric-key algorithms [15, 16]. They provided general ways to construct
proxy re-encryption schemes using symmetric-key algorithms. In our architecture, we
need multi-use proxy re-encryption schemes, which could re-encrypt ciphertext for many
times, so here we only describe how to construct a multi-use proxy re-encryption scheme.

As shown in Figure 2, A, B and P represent a sender, a receiver and a proxy, respec-
tively. Assume each pair of P , A and B shares a key between them. More specifically,
assume kAB is the shared key between A and B. Similarly, assume kAP is the shared
key between A and P , and kPB is the shared key between B and P . The notation {m}k
represents a message m is encrypted by a key k, using a symmetric-key algorithm.

When user A wants to transmit some data to user B with help of proxy P , their
operations are described as follows. A first encrypts a message m using kAB , and then



4722 Y.-P. CHIU, C.-Y. HUANG AND C.-L. LEI

A

kAB

kAP

P

kAP

kPB

B

kAB

kPB
{

{m}
kAB

}

kAP

{

{m}
kAB

}

kPB

Figure 2. Symmetric-key based proxy re-encryption

A

kAB

kA1

P1

kA1

k12
{

{m}
kAB

}

kA1

P2

k12

k23
{

{m}
kAB

}

k12

. . . Pn

k(n−1)n

knB

B

kAB

knB
{

{m}
kAB

}

knB

Figure 3. Multi-use symmetric-key based proxy re-encryption

encrypts again using kAP . A then transmits this doubly encrypted message to P . After
receiving the doubly encrypted message, P first decrypts it using kAP , and then encrypts
it again using kPB . Then P sends this to B. B first decrypts the message using kPB , and
then decrypts it again using kAB . Since P does not have kAB , it is infeasible for P to
decrypt data transmitted from A to B.
We easily extended the above notions to multi-use. Assume now we have n proxies,

P1, P2, . . . , Pn, between A and B, as shown in Figure 3. Keys owned by some entity
are shown above that entity. For example, A have kA1, and P1 also have the same key.
This means kA1 is shared between A and P1. Like the previous single proxy case, A and
B share kAB . A does the same with the previous case. P1 decrypts the message from
A using kA1, and then encrypts it again using k12, which is the shared key between P1

and P2. Similarly, P2 decrypts the message from P1 using k12, and then encrypts it again
using k23, which is the shared key between P2 and P3. The same operations are repeated
until Pn, Finally, B first decrypts the message using, kBn, the shared key between B and
Pn, and then decrypts it again using kAB . Thus, a multi-use symmetric-key based proxy
re-encryption scheme could be implemented.

3. Related Works. Many studies about secure multicast have been published over these
years. In this section, we review some existing studies in this problem area. Logical
key hierarchy (LKH) may be the most representative research in this area; many studies
followed their methodology and tried to enhance it. The cipher sequences (CS) framework
tries to solve the multicast security problem using a different methodology. The most
important advantage of CS is containment. Containment allows easy management and
scalability. We also discuss SIM-KM, which also makes use of proxy re-encryption. In the
last part of this section, we briefly describe some other schemes with different approaches.

3.1. Logical key hierarchy. Logical key hierarchy (LKH) was separately proposed by
Wallner et al. [5] and Wong et al. [6]. In this approach, all group members form a logical
tree. The root node represents the group key shared by all group members, the leaf nodes
are members, and each inner node represents a key encryption key (KEK). Besides the
group key, a member also has a set of KEKs, including the KEK of each node in the path
from its parent to the root. For example, in Figure 4, member u5 has k5, k56, k58, and
the group key, k. Therefore, in a balanced binary tree, a member has (log2N ) + 1 keys,
where N is the group size, and log2 N is the height of the tree. When rekeying is needed,
these KEKs are used to encrypt new KEKs. For example, if member u5 leaves the group,
the keys it knows should be changed. Therefore, new KEKs k′

5, k
′
56, k

′
58 and the new

group key k′ are generated. These new keys are encrypted using KEKs and transmitted



SECURE MULTICAST ARCHITECTURE USING PROXY RE-ENCRYPTION 4723

k

k14

k12

k1

u1

k2

u2

k34

k3

u3

k4

u4

k58

k56

k5

u5

k6

u6

k78

k7

u7

k8

u8

Figure 4. An LKH tree

to the remaining members. The key server encrypts new k′
56 using k6, and encrypts new

k′
58 using k′

56 and k78, respectively. Then k′ is encrypted using k′
58 and k14, respectively.

Finally, these encrypted keys are multicast to the whole group. All remaining members
could get new KEKs and the group key from these encrypted keys.

In LKH-based schemes, they only consider logical trees, and the relationship between
routers and members is not considered. Thus, it is difficult to provide containment in
LKH-based schemes.

3.2. Cipher sequences. The cipher sequences framework (CS) was proposed by Molva
and Pannetrat [17]. By distributing secret functions to intermediate nodes, the keying
material has a dependency on the multicast network topology. Therefore, containment of
security exposures is assured. Intermediate nodes could be routers or application proxies,
and this depends on how multicast is implemented. Since in this paper we focus only on
network level multicast, an intermediate node of CS is a router.

For example, Figure 5 depicts a simple tree with five cipher sequences. S is the sender,
Ri is an intermediate node, and Mi is a leaf node connected to Ri. Assume S0 is the
information to be multicast. Each intermediate node Ri is assigned a secret function fi.
A node Ri receives multicast data from its parent node Rj, computes Si = fi(Sj), and
forwards the result Si to its children. A leaf eventually receives Si

n. Each leaf is given
a reversing function hi, and it uses hi to get the original multicast data by calculating
S0 = hi(S

i
n).

We follow one cipher sequence from the root node to leaf M5. The sender S multicasts
message S0. The router attached to the sender, R0, computes f1(S0) and sends the result
to its children inner nodes, R1 and R2. R2 receives S4

1 = f1(S0), computes and sends
f5(S

4
1) to R5. Then R5 receives S

4
2 = f5(S

4
1) and sends f6(S

4
2) to leaf M5. Finally, leaf M4

receives S4
3 = f6(S

4
2) and recovers the original multicast data by computing S0 = h4(S

4
3).

When a member joins or leaves, the key server generates a new secret function and a
corresponding reversing function. The key server sends the new secret function to the last
inner node, which connects to the joining/leaving member. And then the new reversing
function is sent to all remaining members belonging to the same leaf node.

3.3. SIM-KM. Mukherjee and Atwood proposed a multicast key management scheme,
SIM-KM, exploiting the proxy re-encryption technique in [8, 9, 10]. In their scheme, there
are the group manager (GM), group controllers (GCs) and participants (members). When
a group is created, a node is set up as the GM. The GM is configured with group and
access control information, and it generates encryption/decryption keys. Moreover, in a
multicast tree, there may be several GCs, and each GC is associated with a subtree of



4724 Y.-P. CHIU, C.-Y. HUANG AND C.-L. LEI

S R0

f1

R1

f2

M1

h1

R3

f3

M3

h2

R4

f4

M4

h3

R2

S4

1

f5
R5

S4

2

f6

M5

S4

3

h4

M2

h5

root node

Figure 5. A CS tree

the distribution tree. GCs perform key management functions and transform ciphertext
using proxy re-encryption. Participants join the GC nearest to them, and get keys from
the GC. Group controllers are classified as CGCs (control group controllers) and DGCs
(data group controllers). A CGC is fully trusted. It has access to the group lists, and it
could authenticate and grant access to members. It may also transform multicast data.
And a DGC, which is untrusted, could only transform multicast data.
When rekeying is required, the GC “splits” the group decryption key to the “proxy

re-encryption key” and the “proxy decryption key”. For example, in the unidirectional
Elgamal encryption scheme, the group decryption key x is split into x1 and x2, such that
x = x1 + x2. Then the GC applies transformations using proxy re-encryption.
When a member joins, the GC sends the proxy decryption key to the joining participant

over a secure channel protected by a shared key Kg, and multicast the proxy decryption
key to other members. When a member leaves, the GC sends the proxy decryption
key to the remaining participants by one of the following two intuitive methods: (a)
unicasting the proxy decryption key to each participant over separate secure channels, or,
(b) encrypting the proxy decryption key using each participant’s Kg and multicasting an
aggregated message. Compared with LKH, these methods are intuitive, because the costs
of both methods are linear to the number of local participants. Figure 6 shows the basic
operations when a participant joins or leaves the group in SIM-KM.
The GM periodically changes the encryption/decryption keys used. During a periodic

rekeying event, the GM sends the new encryption key to the sender. Meanwhile, it also
sends the new decryption key, which is encrypted by the old encryption key, to all the
participants and trusted controllers by a single multicast.
In this scheme, a group key is still used. Proxy re-encryption is used only between a

membership change and the next periodic rekeying. After a periodic rekeying event, a new
group key is used and transformation is stopped. Please note that when transformation
is stopped, SIM-KM uses the Elgamal encryption algorithm to transmit multicast traffic.
Moreover, in their scheme, intuitive methods are used to deliver the proxy decryption key
to participants and bring a large burden to GCs.
Furthermore, we found some security problems in SIM-KM. When membership changes,

the group key is not changed until the next periodic rekeying. If a member is expelled



SECURE MULTICAST ARCHITECTURE USING PROXY RE-ENCRYPTION 4725

Joining

participant

➯
Unicast the proxy decryption key

to the joining participant

➯ Multicast the proxy decryption
key to other participants

GC splits the key and

applies transformation

(a) A participant joins

➯
Send the proxy decryption key to

remaining participants

Leaving

participant

GC splits the key and

applies transformation

(b) A participant leaves

Figure 6. SIM-KM operations

from the group, it still could use the old group key and decrypt multicast traffic, as long
as it intercepts encrypted multicast data from another subtree which is not involved with
proxy re-encryption. Moreover, according to the above scenario, a more serious problem
happens. During a periodic rekeying event, the GM simply sends the new decryption
key to all participants by a single multicast. Since the expelled member could decrypt
multicast traffic, it could also decrypt the new group key. Therefore, forward secrecy is
not achieved.

The author claimed if perfect forward secrecy is required, rekeying is required imme-
diately after a member leaves. However, with help from an eavesdropper, the expelled
member could still obtain the new group key. This eavesdropper just receives and stores
encrypted multicast data from another part of the multicast tree, and it is not necessarily
a member. Once the eavesdropper stores the rekeying message, which contains the new
group key encrypted by the old group key, the expelled member could decrypt the new
group key from the stored rekeying message.

In order to prevent a member from colluding with a GC, the authors suggested that the
sender itself also transforms ciphertext like a GC [10]. However, this remedy does not fix
the forward secrecy problem. It just prevents a member from impersonating the sender,
but a member still has the right to decrypt.

3.4. Other related schemes. In this subsection, we describe some related schemes.
These schemes may use different approaches or have different focuses, so we only introduce
their basic concepts without delving into details.

Iolus was proposed by Mittra in [4]. Iolus separates the whole multicast group into
independent subgroups. In Iolus, a router decrypts encrypted multicast traffic from its



4726 Y.-P. CHIU, C.-Y. HUANG AND C.-L. LEI

upstream router, and then encrypts again for its downstream routers. Therefore, a router
could read confidential multicast data, which is an undesirable feature.
Huang et al. proposed a key composition framework in [18], and it is fundamentally

different from our scheme. In [18], a group member uses a key composition protocol to
obtain the decryption key, which is contributed by the sender and the proxies. Hence, no
centralized role is required to maintain multicast tree topology and proxy key assignment.
However, it still uses a symmetric key to encrypt messages in the message delivery process.
Therefore, during a periodic rekeying event, this key is also required to change. The 1
affects n problem still exists. So it has the same drawback with SIM-KM, that is, no
containment is provided.
Hur et al. proposed an Elgamal-based scheme [19]. In their scheme, a proxy (router)

shares a proxy key with its downstream proxies and members. And each proxy transforms
ciphertext according to shared proxy keys. This actually violates the proxy re-encryption
model used in asymmetric-key based proxy re-encryption algorithms. Furthermore, their
scheme still uses a group key. When a member joins or leaves, the group key should be
changed. Proxy re-encryption is used to transmit key update messages to all members.
Thus, the 1 affects n problem still exists. They claimed their main contribution is to
eliminate the centralized KMC (key management center), but the fact is that the KMC’s
job is done by the sender and proxies. Moreover, proxies need to trust each other, because
they need communicating the keying material. In our scheme, a proxy just communicates
with the KMC for the keying material. Proxies are only responsible for data transmission,
not key management. This methodology simplifies not only the protocol design and
implementation, but also management. Besides, the task of our KMC could be easily
distributed over several KMCs, and the single point of failure problem could be eliminated.
We will discuss this later. Some weaknesses of this paper were found in [20]. The main
reason of these weakness is that the old group key is encrypted using the new group key.
Therefore, Hur et al.’s paper could not provide forward and backward secrecy.
Some studies, such as [21, 22, 23], exploit secret sharing techniques. Briefly speak-

ing, secret sharing is a technique that a secret being divided into several shares. Each
participant obtains a share. And a set of shares is required to reconstruct the secret.

4. The Proposed Scheme: Sempre. In this section, we describe our secure multicast
architecture making use of proxy re-encryption. First, the multicast model and the system
architecture of our scheme are described in Section 4.1. Then we describe our algorithm
for key assignment in Section 4.2 and the rekeying algorithm in Section 4.3.

4.1. Multicast model and system architecture. In a multicast routing protocol,
routers form a multicast tree to transmit multicast traffic. In this paper, we only consider
source-based multicast trees [24, 25], that is, the routing protocol builds a spanning tree for
each source (sender). And in each tree, the router connected to the sender is the root. Each
spanning tree could be treated independently, because each tree works independently.
Without loss of generality, we only consider one multicast tree in our protocol.
A multicast network could be represented as a graph of routers. Figure 7 depicts an

example of a multicast network. As shown in Figure 7, there are three multicast trees.
Both Tree 1 and Tree 3 belong to group G1. In this group, there are two senders, S1 and
S3. S1 is the sender of Tree 1, and S3 is the sender of Tree 3. Group G2 has only one
sender, S2, and S2’s multicast tree is Tree 2. The notation (G,S) used in Figure 7 is the
identity of the pair (group, sender).
In multicast tree topology, a “node” is a router, and an “edge” is a link between two

routers. Every router has one upstream edge (from the multicast sender), and has zero



SECURE MULTICAST ARCHITECTURE USING PROXY RE-ENCRYPTION 4727

Tree 1

Tree 2

(G
1
, S

1
)

Tree 3

(G
1
, S

3
)

(G
2
, S

2
)

router

Figure 7. Multicast model

or more downstream edges (toward members). Moreover, every router may have group
members directly connected in its local area network. These members are called “local
members”, and the whole of these local members could also be called a “local subgroup”.
For simplicity, local members are not shown in Figure 7.

Figure 8 shows the block diagram of our architecture. The control plane consists of en-
tities that control security related information, and the data plane consists of entities that
transmit multicast data. Separating two planes makes each entity has a clear and simple
role. For example, a sender and routers are only responsible for data transmission, not
key management. Therefore, this simplifies not only the protocol design and implemen-
tation, but also management. Moreover, the key flow shows how keys are distributed or
exchanged between entities, and the data flow shows how multicast data are transmitted.

In the original design of IP multicast, a sender does not have information about re-
ceivers [1, 2, 26]. This relieves a sender of membership management and makes IP mul-
ticast scalable. In our design, a sender only focuses on sending messages, and it does not
involve membership management.

Besides a sender, members, and routers in a multicast network, our architecture intro-
duces a key management center (KMC) and local subgroup controllers (LSCs). A trusted
KMC is responsible for key management. By “trusted” we assume that the KMC fully
follows our protocol and is not compromised. That is, information on the KMC is not
stolen. The KMC generates and distributes keys for entities. The KMC is a part of
infrastructure. It is a particular entity set up by network administrators, and it is neither
a router nor a member node. Moreover, the KMC knows the topology of multicast trees.

For simplicity, we only discuss the KMC as a single entity; however, the task could be
easily distributed among multiple entities in our architecture. Multiple KMCs eliminate
the single point of failure problem, and they are more practical than a single unit. For
example, a multicast tree may cross multiple administrative domains. Each administrative
domain has its own KMC, which is responsible for managing the keys in that domain.
Assume there are secure channels between KMCs. KMCs are parts of the infrastructure
and they are relative minor in number, so it is reasonable to assume that KMCs could



4728 Y.-P. CHIU, C.-Y. HUANG AND C.-L. LEI

KMC

router

LSC

router

membersender

control plane

data plane

key flow

data flow

Figure 8. System architecture

trust each other. Each KMC just securely exchanges the keying material and the topology
information with the KMCs of neighbor domains to generate proper keys.
Assume each local subgroup has its own local subgroup controller (LSC), and it is fully

trusted by its local members. An LSC collaborates with the KMC and is responsible for
key management in its local subgroup. More details are in Section 4.2.

4.2. Two modes and key assignment. Our scheme has two modes: the TEK distri-
bution mode and the data transfer mode. The TEK distribution mode is used to securely
distribute TEKs (traffic encryption keys) only, and the data transfer mode is used to
transfer multicast traffic, which is encrypted by a TEK. The TEK distribution mode
uses asymmetric-key based proxy re-encryption schemes, and the data transfer mode uses
symmetric-key based proxy re-encryption schemes. In the following description, Figures 9
and 10 show examples of the two modes respectively. And Figure 11 shows an example
of key assignment.
First, we describe the TEK distribution mode. In the TEK distribution mode, a sender

transmits an encrypted TEK across its multicast tree. In this mode all encryption and
decryption operations are based on asymmetric-key algorithms. The sender first encrypts
a TEK using a key given by the KMC, and sends the encrypted key to its local router.
Each router in the tree transforms an encrypted TEK according to proxy keys given by
the KMC.
In our scheme, the term “assign a key” means that the KMC generates a key, but

only stores this key in its data structure representing the protocol. This key is not really
distributed to other entities. On the other hand, if a key should be given to some entity,
we explicitly use the term “distribute”.
For easy reference, notations of keys used in our scheme are listed in Table 1. In the

column “Mode”, “TEK” means the key is used in the TEK distribution mode, and “Data”
means the key is used in the data transfer mode. Keys used in the TEK distribution mode
are asymmetric keys, and keys used in the data transfer mode are symmetric keys. A TEK
the only exception, is used to encrypt multicast traffic in the data transfer mode, and it
is a symmetric key. Detailed explanations of these keys are given after simple examples
of two modes.
Consider a simple multicast tree in Figure 9. S is the sender, Ri is an intermediate node

(router), andMi is the local subgroup connected to Ri. A solid line in the figure represents
a router connecting to another router, and a dashed line represents a router connecting to
its local members. Here we just describe the notion of the TEK distribution mode, and the
details of how to calculate keys for routers are described later. For simplicity, we look at
the route from S, along R0, R1, and finally to the local subgroups M1, M3 and M4. First,
the edge between the sender S and its local router R0 is assigned a key KR. And the KMC
distributes KR to S by a secure channel. When the sender S transmits a TEK, which is



SECURE MULTICAST ARCHITECTURE USING PROXY RE-ENCRYPTION 4729

Table 1. Notations of keys used in our scheme

Key Meaning Mode
TEK Traffic encryption key TEK, Data
KR The root edge’s key TEK
K0 The key shared by the sender and R0 Data
DPK Downstream proxy key TEK
DESK Downstream edge set key TEK
LSPK Local subgroup proxy key TEK
PSK Proxy shared key Data

LSKA Local subgroup key, asymmetric-key based TEK

LSKS Local subgroup key, symmetric-key based Data

S

TEK

KR

R0

DPK0

〈TEK〉
KR

R1

DPK1

LSPK1

D
E
S0

〈T
E
K
〉 DE

S
K 0

M1

LSK
A

1〈T
EK

〉 LS
K
A
1

R3

LSPK3

DES1

〈TEK〉DESK1

M3

LSK
A

3

〈TEK〉
LSKA

3

R4

LSPK4

D
E
S
1

〈TEK〉
DESK

1

M4

LSK
A

4

〈TEK〉
LSKA

4

R2

DPK2

LSPK2

D
E
S
0

〈T
E
K〉
D
E
S
K
0

R5

LSPK5

〈TEK
〉DESK2

DES2

M5

LSK
A

5

〈TEK〉
LSKA

5

M2

LSK
A

2

〈TEK〉
LSKA

2

Figure 9. An example of the TEK distribution mode

chosen by S itself, S encrypts the TEK using KR, and then sends to R0. As we mentioned,
routers play the role of proxies in proxy re-encryption in our scheme. R0 is given DPK0,
which is a proxy key calculated based on proxy re-encryption. Due to proxy re-encryption,
the message transmitted on the edge between R0 and R1 is effectively encrypted under
the key DESK0, i.e., 〈TEK〉DESK0

. The notation 〈m〉k represents a message m is encrypted
by a key k, using an asymmetric-key algorithm. R1 has local subgroup M1, so it converts
ciphertext for M1 using LSPK1, which is also a proxy key calculated based on proxy re-
encryption. After proxy re-encryption using LSPK1, traffic is effectively encrypted under
LSKA

1 . The members in M1 use LSKA
1 to decrypt TEK. R1 also has downstream routers

R3 and R4; it converts ciphertext for them using DPK1 and transmits 〈TEK〉DESK1
to R3

and R4. R3 and R4 use their local subgroup proxy keys LSPK3 and LSPK4 respectively to
convert ciphertext for their local members. The members in M3 use the local subgroup
key LSKA

3 to decrypt TEK. And the members in M4 use LSKA
4 to decrypt.

The TEK distribution mode is required in two occasions. One is to periodically rekey
the TEK. And the other is when a new member joins the group and its local router has
not joined yet. The details of these occasions are further described in Section 4.3.

Now we describe the data transfer mode. In the data transfer mode, a sender trans-
mits encrypted multicast data across its multicast tree. In this mode all encryption and
decryption operations are based on symmetric-key algorithms. The sender first encrypts



4730 Y.-P. CHIU, C.-Y. HUANG AND C.-L. LEI

S

TEK

K0

R0

K0

PSK0

{{m}
TEK}K0

R1

PSK0

PSK1

LSK
S

1D
E
S0

{{
m

} T
E
K
} P

S
K 0

M1

LSK
S

1

TEK{{
m
} TE

K
} LS

K
S
1

R3

PSK1

LSK
S

3

DES1

{{m}
TEK

}
PSK1

M3

LSK
S

3

TEK

{{m}
TEK}LSKS

3

R4

PSK1

LSK
S

4

D
E
S
1

{{
m
}
TEK}

PSK
1 M4

LSK
S

4

TEK

{{m}
TEK}LSKS

4

R2

PSK0

PSK2

LSK
S

2

{{
m

}
T
E
K }

P
S
K
0

D
E
S
0

R5

PSK2

LSK
S

5

{{m}TEK
}PSK2

DES2

M5

LSK
S

5

TEK

{{m}
TEK}LSKS

5

M2

LSK
S

2

TEK

{{m}
TEK}

LSKS

2

Figure 10. An example of the data transfer mode

multicast data using a TEK, which is chosen by itself. Routers or the KMC does not know
a TEK. And then the sender encrypts the encrypted data again using a key shared be-
tween the sender and its local router. Finally the sender sends this doubly encrypted data
to its local router. Each router in the tree transforms doubly encrypted data according
to the keys given by the KMC. The transformation executed by routers consists of two
steps. First a router decrypts using a key shared between it and its upstream router, and
then it encrypts again using another key shared between it and its downstream router
and/or the local subgroup.
For example, look at Figure 10, which depicts the same multicast tree with Figure 9.

We also look at the route from S, along R0, R1, and finally to the local subgroups M1, M3,
and M4. The sender S first encrypts multicast data m using the TEK, and then encrypts
again using K0, which is a shared key between the sender and R0. And then S sends
this doubly encrypted data, {{m}TEK}K0

, to R0. The notation {m}k represents a message
m is encrypted by a key k, using a symmetric-key algorithm. R0 shares the key PSK0,
which is given by the KMC, with its downstream routers, R1 and R2. After receiving
doubly encrypted data from S, R0 decrypts it with K0, and then encrypts it again with
PSK0. Then R0 sends {{m}TEK}PSK0

to its downstream routers, R1 and R2. Each router
first decrypts doubly encrypted data using the PSK shared with the upstream router,
and then encrypts again in the following two cases. Case (a), for downstream routers,
a router encrypts multicast traffic using the PSK shared with the downstream routers.
On the other hand, case (b), for local subgroup members, a router encrypts multicast
traffic using its local subgroup key LSKS. For example, R1 decrypts the received data
using PSK0. And then R1 encrypts again using PSK1 for its downstream routers R3 and
R4, and encrypts using LSKS

1 for its local subgroup members, respectively. Finally, a
member in a local subgroup first decrypts multicast traffic using the LSKS shared with
its router, and then decrypts again using the TEK. For instance, members in M5 first
decrypt multicast traffic using LSKS

5, and then decrypt again using the TEK.
Both the data transfer mode and the TEK distribution mode are required. Only one

mode is impractical or unable to work. The data transfer mode is efficient because it is
based on symmetric-key algorithms. However, the data transfer mode needs a TEK to



SECURE MULTICAST ARCHITECTURE USING PROXY RE-ENCRYPTION 4731

work. It is impossible to use the data transfer mode to distribute a TEK, because it needs
another TEK to transfer this TEK. It becomes the chicken or the egg problem of TEKs.

The TEK distribution mode is the answer to the above problem. Because of the nature
of asymmetric-key based proxy re-encryption schemes, no prior TEK is required. The
previous version of our scheme, [27], only has the TEK distribution mode. However, it is
impractical to use asymmetric-key based proxy re-encryption schemes to transfer a large
amount of data because of the high costs of asymmetric-key based schemes. Therefore,
the combination of the two modes is necessary.

The data transfer mode is similar to Iolus [4]. But in Iolus, routers can obtain plaintext
of multicast traffic. In our scheme, the combination of the two modes solves this problem.
It is infeasible for routers to decrypt multicast traffic. More details of security analysis
are described in Section 5.2.

Because of high costs of asymmetric-key based schemes, CS suggested using their
scheme for key distribution, and not for multicast traffic itself. However, if CS is used to
transfer a group key, the 1 affects n problem spoils the benefits of CS. The two modes of
our scheme solve these problems practically.

After seeing simple examples of two modes, now we formally describe our key assign-
ment algorithm. In our scheme, each multicast tree is assigned a set of keys. The key
assignment algorithm is executed by the KMC, and it tells the KMC how to distrib-
ute/assign keys for entities. The pseudo code of the key assignment algorithm is given in
Algorithm 1.

In our design, we let each local subgroup use its own secure key management protocol.
Every subgroup could choose its own key management protocol independent from other
subgroups. Since the size of a local subgroup is much smaller than the size of the whole
group, the impact of group size to key management protocols is alleviated. Therefore,
using LKH schemes, for example, will be acceptable in such circumstances.



4732 Y.-P. CHIU, C.-Y. HUANG AND C.-L. LEI

Because each subgroup has its own key management protocol, each subgroup should
have its own local subgroup controller (LSC). An LSC, who collaborates with the KMC,
is responsible for key management in its local subgroup. The same as LKH, the key
management center in our scheme is fully trusted, because it knows all the keys. Similarly,
an LSC in our scheme is fully trusted by its local subgroup members. This is reasonable
because the trust is only limited in a local subgroup.
The KMC assigns an “edge key” for every edge in the multicast tree. These edges keys

are only stored in the KMC’s data structure, and are not distributed to other entities.
The KMC also assigns and distributes keys for each router in the multicast tree. The
key assignment algorithm begins with the root edge and the root router. The root edge
is the edge connected to the sender. The root router is the root of a multicast tree, and
it is connected to the sender via the root edge. First the KMC assigns KR to the root
edge, and assigns the root router and the sender a shared symmetric key (K0). Then the
KMC securely distributes K0 and KR to the sender, and securely distributes K0 to the
root router. Only the edge key of the root edge is distributed to the sender, and other
edge keys are actually stored in the KMC only.
Because the KMC only processes one router in one iteration of the loop (line 5 in Al-

gorithm 1), the status of downstream routers could not be handled in the iteration of the
current router. Therefore, we only mark them for later processing in later iterations. The
status “PSK-assigned” means a router is assigned a PSK (proxy shared key) by its up-
stream router. When an upstream router marks its downstream routers as PSK-assigned,
it only tells the KMC that the downstream routers will have a PSK. The assignment of the
PSK to downstream routers is actually done when the KMC processes the downstream
routers.
If a router R has downstream routers, all downstream edges of this router (the “down-

stream edge set”, DES), are assigned the same downstream edge set key (DESK). Please
note the DESK is not distributed; it is stored on the KMC. Then the KMC calculates
the DPK (downstream proxy key) according to the upstream edge key and the DESK,
and assigns the DPK to R. A router uses the DPK to convert the encrypted TEK for
its downstream routers in the TEK distribution mode. Because of proxy re-encryption,
the messages transmitted on these downstream edges are effectively encrypted using the
DESK. The KMC also assigns the PSK to R. A router uses the PSK to encrypted multicast
traffic for downstream routers in the data transfer mode. At the same time, the KMC
also marks the downstream routers of R as PSK-assigned for later processing.
Each local subgroup has its own local subgroup keys. Members in the same local

subgroup use these keys to decrypt the TEK and multicast traffic from the attached
router.
If a router R has local subgroup members, the KMC calculates the LSPK (local sub-

group proxy key) according to the upstream edge key and the asymmetric-key based local
subgroup key (LSKA), and assigns the LSPK to R. A router uses the LSPK to convert the
TEK for its local members. And local subgroup members use the LSKA to decrypt the TEK
using proxy re-encryption in the TEK distribution mode. Furthermore, a symmetric-key
based local subgroup key (LSKS) is used for a router and its local subgroup members to
encrypt/decrypt encrypted multicast traffic in the data transfer mode. The LSC securely
distributes the LSKS to the KMC, and then the KMC securely distributes the LSKS to
the router. These local subgroup keys (LSKA/LSKS) are managed by the LSC.
Finally, the assigned proxy keys (DPK and/or LSPK) and the share symmetric keys

(PSK and/or LSKS) are securely distributed to the router.



SECURE MULTICAST ARCHITECTURE USING PROXY RE-ENCRYPTION 4733

S

KR

K0

R0

DPK0

K0

PSK0

R1

DPK1

LSPK1

PSK0

PSK1

LSK
S

1

M1

LSK
A

1

LSK
S

1

R3

LSPK3

PSK1

LSK
S

3

M3

LSK
A

3

LSK
S

3

R4

LSPK4

PSK1

LSK
S

4

M4

LSK
A

4

LSK
S

4

R2

DPK2

LSPK2

PSK0

PSK2

LSK
S

2

R5

LSPK5

PSK2

LSK
S

5

M5

LSK
A

5

LSK
S

5

M2

LSK
A

2

LSK
S

2

Figure 11. Key assignment example

Now we see Figure 11 as an example of how keys are assigned to entities by the KMC.
Figure 11 depicts the same multicast tree with Figure 9 and Figure 10. As mentioned,
the KMC securely distributes K0 and KR to the sender, and securely distributes K0 to the
root router, R0. R0 has two downstream edges, one is connected to R1, and the other
is connected to R2. These edges are the DES of R0; therefore they are assigned DESK0.
Then the KMC calculates and distributes DPK0 to R0, and the KMC also distributes
PSK0 to R0. R1 is already assigned a PSK which is the same with R0; therefore it is
given PSK0. R1 also has two downstream edges, one is connected to R3, and the other
is connected to R4. These edges are assigned DESK1. And R1 itself is given DPK1 and
PSK1. R1 also has local members; thus it is given LSPK1 and LSKS

1. R3 and R4 are
R1’s downstream routers, so they are given PSK1. Moreover, R3 and R4 only have local
members. Therefore, R3 and R4 are given their respective LSPK and LSKS. Other routers
and local members have similar situations; thus we will not go further here.

4.3. Rekeying. Now we describe the rekeying procedures. To provide forward and back-
ward secrecy, a rekeying procedure is required when a member joins or leaves the group.
First we discuss general concepts about rekeying. Then we discuss the procedures when a
member joins or leaves in Section 4.3.1 and Section 4.3.2, respectively. These procedures
maintain the architecture constructed by the key assignment algorithm when member-
ship changes. Furthermore, another type of rekeying, periodic rekeying, is discussed in
Section 4.3.3.

When membership changes, the KMC must change and distribute keys for entities in
the multicast tree. The local subgroup keys (LSKA and LSKS) should be changed when
a member joins or leaves the group. At the same time, the router responsible for this
subgroup should also change new proxy keys according to the new local subgroup keys in
order to convert ciphertext for local members. Related edge keys are also changed. And
the KMC calculates proxy keys according to edge keys.



4734 Y.-P. CHIU, C.-Y. HUANG AND C.-L. LEI

S R0

R2

R4 M4

M2

(a) Without user u

S R0

R1 R3 R5 u

R2

R4 M4

M2

(b) With user u

Figure 12. A special case where some routers have only one downstream
router/member

Moreover, in some cases, a single joining or leaving event may cause one or more
routers also to join or to leave the group. As we mentioned, routers form a multicast
tree to transmit multicast traffic. When there are downstream routers or local members
interested in joining the group, a multicast router should connect itself and its downstream
routers to the multicast tree of this group. More specifically, when a member joins the
group, if its local router is not in the group yet, the router itself must further join the
group. For example, a multicast tree is shown in Figure 12(a), and a user u, who is
distant from the current multicast tree, wants to join the group. First u joins the group
by connecting to its local router R5. R5 is not in the multicast tree yet; therefore, it
connects to its upstream router R3. And then R3 connects to its upstream router R1.
The final result is shown in Figure 12(b). As we can see, a single joining event may cause
a chain reaction, that is, one or more routers also join the group. This case could happen
especially when a group is newly established.
On the other hand, when a member leaves the group, if its local router has no other

local members or downstream routers, this router should also leave the group. Sometimes
a router only has one downstream router, as shown in Figure 12(b). In this case, when the
only user u leaves R5, R5 should also leave the group. Meanwhile, R3 has no other local
members or downstream routers, so it should be also removed from the multicast tree.
Finally R1 also leaves the group. Then the multicast tree is shown in Figure 12(a). This
is a chain reaction (one or more routers leave) when a single member leaves the group.
A single joining or leaving event may cause one or more routers also to join or to leave.

In these circumstances, joining or leaving routers always form a chain. That is, some
upstream router has only one downstream router, which also has only one downstream
router, and so on. As shown in Figure 12(b), R1, R3 and R5 form a router chain. And
the router directly connected to the joining/leaving member is always the lowest-level one
in the chain. The whole chain of routers is handled together in our algorithm. When
a router joins or leaves the group, related edge keys must be changed; routers related
with these edge keys must also change new proxy keys. First the highest-level router (the
router nearest to the sender in the chain) should be found. Since the KMC knows the
topology of multicast trees, it is trivial for it to find the highest-level router in the chain.
Then our algorithm processes these routers from the highest-level router.
Please note transformations of multicast trees are maintained by underlying routing

protocols. Our architecture just responds to changes of an underlying multicast tree, and
it does not change a multicast tree.

4.3.1. Member joining. The procedures of member joining are shown in Procedure
Member-Join and Procedure Router-Join. If the local router has already joined the
group when a member joins, only Procedure Member-Join is executed. Otherwise, if a
member joining causes a chain reaction, that is, one or more routers also join the group,



SECURE MULTICAST ARCHITECTURE USING PROXY RE-ENCRYPTION 4735

Procedure Member-Join would invoke Procedure Router-Join. These procedures are
executed by the KMC to change the key assignment of the new multicast tree. In this
case, the KMC handles these routers one by one from the highest-level router to the
lowest-level router.

In Procedure Member-Join, the LSC generates new keys and securely distributes
them to the joining member and the existing local subgroup members using its local key
management protocol. If the local router has joined the group, the LSC already has
a copy of the TEK. In contrast, if the local router has not joined the group, the LSC
obtains the new TEK from the execution of the TEK distribution mode. Therefore, the
joining member u obtains the TEK from the LSC. The LSC also distributes keys to the
KMC for calculation of the LSPK. And in Procedure Router-Join, first the highest-level
router of the chain (Rh) and its upstream router (Ru) are found. Keys related to Rh are
changed. If Ru has other downstream edges, the edge key, DESK should be changed.
And DPK should be changed accordingly. PSK shared by Ru and its downstream routers
are changed. On the other hand, if Ru does not have other downstream edges, the KMC
just generates DESK, DPK and PSK for Ru and Rh. Then routers along the chain are
processed sequentially. The KMC generates DESK, DPK and PSK for each router in the
chain.

Now we look at an example where a chain of routers joins, as shown in Figure 13. It
is just like the case from Figure 12(a) to Figure 12(b). In this example, user u joins, and
a chain of routers, including R1, R3 and R5, also join the group. Here R1 is Rh, and
R0 is Ru. Because R0 has another downstream edge connected to R2, it is necessary to
change R0’s DESK0 and DPK0. So the KMC changes R2’s DPK2 and LSPK2. The KMC
also changes PSK0 shared by R0 and its downstream routers, and securely distributes
the new PSK0 to R0, R1, and R2. Then the KMC generates new keys for routers in the
chain. First, the KMC assigns DESK1 to R1. Then the KMC calculates and securely
distributes DPK1 to R1. The KMC also generates and securely distributes PSK1 for R1

and its downstream router, R3. Similarly, the KMC securely distributes DPK3 and PSK3

to R3. Finally, R5 is the last router in the chain, that is, it directly connects to the joining
member u. The LSC of u generates a new LSKA and a new LSKS. The KMC securely
distributes LSPK5, LSK

S
5 and PSK3 to R5. The joining member u is given local subgroup

keys LSKA
5 and LSKS

5, which are generated by the LSC. u is also given the TEK from the
LSC. In Figure 13, keys with a star (?) and shown in boldface are keys required to be



4736 Y.-P. CHIU, C.-Y. HUANG AND C.-L. LEI

changed. Please note that R4, M4 and M2 are not affected. That is, they do not have
to change their keys. Here we can see the benefits of containment, and members in other
subgroups do not have to change anything. Only members in the same subgroup, some
upstream and/or neighbor routers are affected. Thus, the 1 affects n problem is reduced
to a much smaller extent.

4.3.2. Member leaving. The procedures of member leaving are shown in Procedure
Member-Leave and Procedure Router-Leave. If the local router still has other members
in the local subgroup when a member leaves, only Procedure Member-Leave is executed.
Otherwise, if a member leaving causes a chain reaction, that is, one or more routers also
leave the group, Procedure Member-Leave would invoke Procedure Router-Leave.
These procedures are executed by the KMC to change the key assignment of the new
multicast tree. In Procedure Member-Leave, like Procedure Member-Join, the LSC
generates new keys and securely distributes them to its remaining local subgroup mem-
bers. The LSC also distributes keys to the KMC. Procedure Router-Leave is similar
to Procedure Router-Join, but is simpler. When a chain of routers leaves, the KMC



SECURE MULTICAST ARCHITECTURE USING PROXY RE-ENCRYPTION 4737

S

KR

K0

R0

⋆DPK0

K0

⋆PSK0

R1

⋆DPK1

⋆PSK0

⋆PSK1

R3

⋆DPK3

⋆PSK1

⋆PSK3

R5

⋆LSPK5

⋆LSKS

5

⋆PSK3

u

⋆LSKA

5

⋆LSKS

5

R2

⋆DPK2

⋆LSPK2

LSK
S

2

⋆PSK0

PSK2

R4

LSPK4

PSK2

LSK
S

4

M4

LSK
A

4

LSK
S

4

M2

LSK
A

2

LSK
S

2

Figure 13. A chain of routers joins

just processes the highest-level router, just like only the highest-level router leaves. The
downstream routers of the highest-level router can be ignored. Keys of lower-level routers
are just discarded because they are not used anymore. In the case of Figure 12(b), the
KMC processes R1 as if only R1 leaves. If Ru does not have other downstream edges,1 Ru

does not need any DESK, DPK, or PSK anymore. Therefore, these keys are just discarded.
Look at Figure 14 for a simple example where one router leaves the group. If all

members in M4 leave the group, R4 will be deleted from the tree. In this example, only
R4 will leave; thus it is Rh in the algorithm. And R4’s upstream router is R1, which is
Ru in the algorithm. Because R1 has another downstream edge connected to R3, first the
KMC changes R1’s DESK1 and DPK1. The KMC securely distributes DPK1 to R1. The old
PSK1 shared by R1 and R4 should be changed, and the new PSK1 is securely distributed
to R1. Since R1’s DESK1 is changed, R3’s LSPK3 should be changed too. R3 gets the new
LSPK3 and the new PSK1 securely from the KMC. The same with the previous figure,
keys with a star (?) and shown in boldface are keys required to be changed. Please note
that R0, the whole R2 branch, and M1 are not affected. That is, they do not have to
change their keys. Members in other subgroups do not have to change anything. Here
we can also see the 1 affects n problem is reduced to a much smaller extent including
members in the same subgroup, some upstream and/or neighbor routers.

1Ru still has local subgroup members, or it is in the chain, which violates the definition.



4738 Y.-P. CHIU, C.-Y. HUANG AND C.-L. LEI

S

KR

K0

R0

DPK0

K0

PSK0

R1

⋆DPK1

LSPK1

PSK0

⋆PSK1

LSK
S

1

M1

LSK
A

1

LSK
S

1

R3

⋆LSPK3

⋆PSK1

LSK
S

3

M3

LSK
A

3

LSK
S

3

R4

LSPK4

PSK1

LSK
S

4

M4

LSK
A

4

LSK
S

4

R2

DPK2

LSPK2

PSK0

PSK2

LSK
S

2

R5

LSPK5

PSK2

LSK
S

5

M5

LSK
A

5

LSK
S

5

M2

LSK
A

2

LSK
S

2

Figure 14. A router leaves

4.3.3. Periodic rekeying. For better security, the TEK needs to be periodically changed.
Here we describe the procedure to change the TEK. The procedure of periodic rekeying
is the same with the TEK distribution mode described in Section 4.2. The procedure is
initiated by the sender after the sender generates a new TEK. The frequency of periodic
rekeying is a tradeoff between security and efficiency. It also depends on the traffic
transmission rate [28, 29]. The choice of the periodic rekeying frequency is out of the
scope of this paper.



SECURE MULTICAST ARCHITECTURE USING PROXY RE-ENCRYPTION 4739

5. Analysis. In this section, first we discuss some properties of proxy re-encryption
schemes related to our architecture in Section 5.1. After that, in Section 5.2 we examine
the security of our scheme. Then we compare the features and costs of related works and
our scheme in Section 5.3 and Section 5.4 respectively.

5.1. Related proxy re-encryption properties. In this subsection, we describe sev-
eral properties of asymmetric-key based proxy re-encryption systems, and discuss their
relationship to our architecture. These properties are originally defined in [13, 14], and
they only apply to asymmetric-key based proxy re-encryption systems, not symmetric-key
based ones. That is, only schemes used in the TEK distribution mode are related with
these properties.

We follow the guidelines defined in RFC 2119, “Key words for use in RFCs to Indicate
Requirement Levels” [30] to classify the requirement levels of these properties in our archi-
tecture. Three terms of RFC 2119 are used in this paper: “REQUIRED”, “MUST NOT”
and “RECOMMENDED”. If a property is “REQUIRED”, that means our architecture
requires that property to work. Without that property, the architecture is not secure.
“RECOMMENDED” means that property is not a must. But with that property, our
architecture has either a higher degree of security if it is a security property, or better
performance if it is a performance property. “MUST NOT” means that a property is
harmful to security and is absolutely prohibited.

In the following discussions, Alice represents a delegator and Bob represents a delegatee.
In our architecture, a delegator means an edge before a router in a multicast tree, and a
delegatee is an edge after the same router. In each item of the following properties, first a
basic definition is given, and then we discuss the requirement level of that property in our
architecture. The following properties which are not specified as performance properties
are security properties.

1. Unidirectional: Delegation from Alice to Bob does not allow delegation from Bob to
Alice. Obviously, “bidirectional” has the opposite meaning. Specifically, unidirec-
tionality means πBob→Alice could be derived from πAlice→Bob by a proxy itself. And
bidirectionality means πBob→Alice could be derived from πAlice→Bob.

According to CS [17], there are two categories of cipher sequences: symmetric
cipher sequences (SCSs) and asymmetric cipher sequences (ACSs). And an ACS has
a higher degree of security than an SCS.

We find that in the context of proxy re-encryption schemes, a unidirectional proxy
re-encryption scheme is an ACS, and a bidirectional proxy re-encryption scheme is
an SCS. Therefore, unidirectionality is RECOMMENDED for better security.

2. Original access: Alice can decrypt the re-encrypted ciphertext that was originally
sent to her.

Our architecture MUST NOT use proxy re-encryption schemes with this property.
Assume an attacker obtains some edge key. For example, it deciphers the ciphertext
on some edge. With original access, the attacker could use this edge key to decrypt
re-encrypted ciphertext on downstream edges. On the other hand, without original
access, the stolen key could be used to decrypt the ciphertext only on this edge.
Therefore, without original access, the damage of a security breach could be confined
to the compromised edge.

3. Key optimal: The size of Bob’s secret storage remains constant, no matter how much
delegation he accepts.

This is a performance property, and it is RECOMMENDED. In a practical en-
vironment, there could be many senders and many groups, so there would be a lot



4740 Y.-P. CHIU, C.-Y. HUANG AND C.-L. LEI

Table 2. Requirement levels of related proxy re-encryption properties

Property Requirement level
Unidirectional RECOMMENDED
Original access MUST NOT
Key optimal RECOMMENDED
Collusion-safe REQUIRED
Non-transitive REQUIRED

Multi-use REQUIRED
Space-optimal RECOMMENDED

of delegation at the same time. Because all edge keys are stored in the KMC, this
property reduces the secure storage required on the KMC.

4. Collusion-safe: It is infeasible for Bob and the proxy to collude to recover Alice’s
private key.

This property is REQUIRED. Assume an attacker steals some edge key and com-
promises the upstream router connected to the edge. Without collusion-safe, the
attacker could derive the edge keys of the upstream edge, because he/she already
has an edge and the proxy key of the upstream router. Therefore, this property is
REQUIRED since it confines the damage of a security breach.

5. Non-transitive: The proxy cannot re-delegate decryption rights by itself.
This property is REQUIRED in our architecture, because routers are not allowed

to re-delegate decryption rights by itself.
6. Multi-use: Ciphertext could be re-encrypted for many times.

This property is REQUIRED. There are many routers (playing the role of proxies
in proxy re-encryption) in the network, and each router transforms ciphertext. Thus
it is natural that our architecture needs this property.

7. Space-optimal: No additional communication costs are incurred to support proxy
re-encryption.

This is a performance property. It is natural that less space consumption is pre-
ferred, so this property is RECOMMENDED.

Table 2 summarizes the requirement levels of these properties in our architecture.

5.2. Security analysis. We analyze the security properties of our architecture in this
subsection. By the definition of proxy re-encryption, it is infeasible for a proxy to derive
traffic decryption keys with only proxy keys. Therefore, it is infeasible for intermediate
routers to decrypt a TEK. Multicast traffic is first encrypted by a TEK, and then is
encrypted by a PSK in transmission. None of routers knows a TEK, so it is infeasible for
any router to decrypt multicast traffic.
As stated in Section 4.2, each local subgroup uses its own secure multicast key manage-

ment protocol. We assume each local subgroup key management protocol satisfies secure
properties like forward secrecy, backward secrecy and collusion-safe.
We begin our security analysis from the simplest case: a member joins or leaves without

changing multicast trees. The local subgroup changes the new local subgroup keys (LSKA

and LSKS) when a member joins or leaves. Under the assumption of using secure local
subgroup key management protocols, when a member joins, it is infeasible for the new
member to infer previous local subgroup keys, LSKAs and LSKSs. Although the joining
member has the current TEK, it still does not have previous LSKSs. Thus it is infeasible for
the new member to decrypt previous multicast traffic. On the other hand, when a member
leaves, the local subgroup keys LSKA and LSKS are changed. Only the remaining subgroup



SECURE MULTICAST ARCHITECTURE USING PROXY RE-ENCRYPTION 4741

members get the new local subgroup keys. Although the left member has the old TEK,
it is still infeasible for the left member to decrypt future multicast traffic, {{m}TEK}LSKS′ ,

where LSKS′ is a new local subgroup key. Because the left member does not have LSKS′.
Moreover, because the LSKA is changed when a member joins or leaves, forward secrecy

and backward secrecy of the TEK are achieved. Accordingly, our protocol is secure when
a member joins or leaves without changing multicast trees.

Due to proxy re-encryption, multicast traffic and a TEK are encrypted by different keys
in different areas. Because each subgroup is independent from each other, subgroup keys
in different subgroups are independent. It is infeasible for members in a group to infer
subgroup keys in other subgroups. Moreover, when a subgroup changes its subgroup keys,
subgroup keys in other subgroups are not affected. Therefore, containment is achieved.
Furthermore, a TEK used in our scheme is different from a group key in existing studies.
Our TEK does not require changing when membership changes. Therefore, the 1 affects
n problem does not occur in our scheme.

Then we discuss a more complex scenario, where a chain of routers joins or leaves
caused by a single member joins or leaves. In this case, the PSKs shared by upstream
routers and their downstream routers are changed. This prevents the changed routers to
transform previous or subsequent multicast data in the data transfer mode. Moreover,
related edge keys are also changed. New proxy keys are calculated according to new edge
keys and are given to related routers by the KMC securely, so it is infeasible for the new
or left routers to infer those keys. Therefore, the new or left routers will not be able to
transform previous or subsequent TEKs in the TEK distribution mode. Accordingly, our
protocol is also secure when routers change.

In SIM-KM, the new encryption key is encrypted by the old encryption key, forward
secrecy is not achieved. But in our scheme, a new encryption key is not related to the old
encryption key. Therefore, forward secrecy is preserved.

According to the above analysis, forward and backward secrecy are ensured in our
protocol. Moreover, because every local subgroup is isolated with each other, members in
the different subgroups gain no more information through collusion.

5.3. Comparisons of features. In this subsection, we compare how intermediate nodes
are trusted in a scheme and whether a scheme provides containment. The comparisons
of features are shown in Table 3. Intermediate nodes mean different entities in different
schemes. In LKH, no intermediate nodes are involved, and no containment is provided
because of the usage of a group key. In CS and our scheme, an intermediate node is a
router. In these schemes, routers are granted limited trust. Because no group key is used
in CS, a security breach in one subgroup is confined to that subgroup. Thus, containment
is provided in CS. The reasons that Sempre has containment are already discussed in the
previous subsection. And in SIM-KM, GCs plays the role of intermediate nodes. For a
CGC, full trust is needed, and for a DGC, only limited trust is required. Because SIM-
KM uses a group key, when membership changes, the group key known by all remaining
members is required to be changed during the next periodic rekeying. The impact of
a membership change is just delayed to the next periodic rekeying. Therefore, we still
consider that no containment is provided in SIM-KM.

5.4. Comparisons of costs. Here we analyze various costs of our scheme, and compare
with related works. First, some assumptions are required. We assume LKH is used as the
local key management protocol in our architecture. Assume the size of the whole group
is N , and the size of a local subgroup is M. Furthermore, N � M. In SIM-KM, the
GM is similar to the KMC in our scheme, and a GC is similar to an LSC (local subgroup



4742 Y.-P. CHIU, C.-Y. HUANG AND C.-L. LEI

Table 3. Comparisons of features

Scheme Trust granted to intermediate nodes Containment
LKH No intermediate nodes NO
CS Limited trust to routers YES

SIM-KM CGC: Full trust, DGC: Limited trust NO
Sempre Limited trust to routers YES

Table 4. Notations used in the cost analysis

Notation Meaning
α Key length of an asymmetric-key algorithm
β Key length of a symmetric-key algorithm
ES Symmetric-key encryption
DS Symmetric-key decryption
EA Asymmetric-key encryption
DA Asymmetric-key decryption
ER Asymmetric-key based proxy re-encryption
N Size of the whole group
M Size of a local subgroup
R Number of routers
S Number of subgroups
H (CS and Sempre) Length of a chain of routers
C (SIM-KM) Number of CGs
T (Sempre) Number of routers who have downstream routers
P (Sempre) Number of downstream routers connected to a router

controller). So we compare similar entities respectively. Therefore, the costs of routers in
SIM-KM are labeled as N/A. Routers and LSCs are not discussed at all in LKH, so their
costs in LKH are labeled as N/A.

5.4.1. Key storage costs. Now we compare the key storage costs. In the following analysis,
α denotes the key length of an asymmetric-key algorithm, and β denotes the key length
of a symmetric-key algorithm. Between symmetric-key and asymmetric-key algorithms,
LKH only uses symmetric-key ones. The examples of secret and reversing functions given
in CS use asymmetric-key algorithms. Moreover, proxy re-encryption schemes used in
SIM-KM and the TEK distribution mode of our scheme currently focus on asymmetric-
key algorithms. Therefore, all three schemes other than LKH rely on combinations of
symmetric-key and asymmetric-key algorithms. Assume secure channels required in each
scheme are built using symmetric-key algorithms. More notations are defined in Table 4.
And the comparisons of key storage costs are listed in Table 5.
In LKH, the KMC needs to store all logical keys. The number of keys stored depends

on the tree structure. For simplicity, here we consider a complete binary tree. The cost
is basically of the same order for binary trees. The sender needs two keys: one key for
encryption and the other key for the secure channel between it and the KMC. Therefore,
the cost of the sender in LKH is 2β. The KMC needs to store 2N − 1 keys. On the other
hand, a member needs to store (log2 N + 1) keys.
In CS, every member needs a reversing function, and the sender and every router need

secret functions. We consider these functions as keys of asymmetric-key algorithms. An
LSC has secure channels with each member in its subgroup; thus M keys are required.



SECURE MULTICAST ARCHITECTURE USING PROXY RE-ENCRYPTION 4743

Table 5. Comparisons of key storage costs

Scheme KMC Sender Router LSC Member
LKH (2N − 1)β 2β N/A N/A (log2 N + 1)β

CS
(1+R+S)α+
(1 +R+ S)β α + β α + β α+ (M+1)β α+ β

SIM-KM α + (1 + C)β 2α+ β N/A α+ (M+1)β α+ β

Sempre
(1 + 2S +

2T )α + (2 +
2S+R+T )β

α + 3β ≤ 2α + 4β α + (2M)β α+(log2M+2)β

The KMC requires storing all secret and reversing functions. Moreover, it also stores keys
for the secure channels with the sender, routers and LSCs, and the result is shown in
Table 5.

In SIM-KM, each member stores two keys. One is a group decryption key or a proxy
decryption key; the other is the key shared with its GC, Kg. The sender has an encryp-
tion key, a proxy key, and a key between it and the KMC, so the cost of the sender is
2α + β. A GC shares Kg with each member, so it stores M keys. It also needs a key
with the GM. During a rekeying event, a GC needs a proxy re-encryption key to apply
transformations. Furthermore, the GM needs C keys to build the secure channels with all
subgroup controllers. It also stores the group key and a key shared with the sender.

In our scheme, assume LKH is used as our local subgroup key management protocol, so a
member requires (log2M) KEKs. And a member uses KEKs to encrypt the local subgroup
keys LSKA and LSKS. Additionally, a member requires a TEK to decrypt multicast traffic.
Because of LKH, our LSC stores 2M− 2 KEKs. An LSC also needs a key for the secure
channel with the KMC. Moreover, an LSC stores an LSKA and an LSKS. Every router
except the root router has a PSK for its upstream router. If a router has downstream
routers, it has a DPK and a PSK. And if a router has local subgroup members, it has an
LSPK and an LSKS. A router also has a key for the secure channel with the KMC. So a
router has at most 2 asymmetric keys and 4 symmetric keys. A difference between our
model and that of CS is, in CS, members only connect to leaf routers. But in our scheme,
members could connect to any router in a multicast tree. Our model is more flexible,
and the tradeoff is that a router in our scheme has more keys than CS. The sender has a
secure channel with the KMC, a TEK, K0 and KR. Therefore, its storage cost is α + 3β.
The KMC stores all the keys for the secure channels with the sender, routers, LSCs. It
also stores all proxy keys (DPKs and LSPKs), all edge keys (the edge key of the root edge
and DESKs), and all LSKAs and LSKSs, the result is shown in Table 5.

After analyzing the key storage costs of related schemes, now we compare them from
views of different entities. In our scheme, LKH is only used in local subgroups, and
M � N . So a member in our scheme stores fewer keys than that in the original LKH
schemes. From the sender’s view, schemes other than LKH do not differ too much.

For LSCs, our scheme has higher key storage costs than other schemes, and that is the
tradeoff of using LKH. As mentioned earlier, a router in our scheme has more keys than
a router in CS. That is due to the difference between our model and that of CS.

In the aspect of the KMC, the storage cost of the KMC in LKH is the highest. Our KMC
has nearly double key storage cost with CS. And the KMC in SIM-KM has the lowest
storage cost. As we can see, the key storage costs of our scheme are higher. Considering
the features provided by our scheme, the higher costs are in an acceptable range.



4744 Y.-P. CHIU, C.-Y. HUANG AND C.-L. LEI

Table 6. Comparisons of transmission costs

Scheme Sender Router LSC Member
LKH ES N/A N/A DS

CS EA EA 0 DA

SIM-KM EA N/A ER/0 DA

Sempre 2ES ES +DS 0 2DS

Table 7. Comparisons of rekeying costs

Scheme KMC Sender Router LSC
Member in
the same
subgroup

Member
in other

subgroups
LKH O(log2N ) O(1) N/A N/A O(log2N ) O(log2N )
CS O(H) 0 or O(1) O(1) O(M) O(1) 0

SIM-KM O(1) 0 N/A O(M) O(1) 0
SIM-KM
(periodic)

O(1) O(1) N/A O(1) O(1) O(1)

Sempre
O(1) or

O(H) +O(P)
0 or O(1) O(1) O(log2M) O(log2M) 0

Sempre
(periodic)

0 O(1) O(1) O(1) O(1) O(1)

5.4.2. Transmission costs. Here we discuss transmission costs of related schemes in terms
of number of encryption/decryption. ES and DS represent symmetric-key encryption
and decryption, respectively. And EA and DA represent asymmetric-key encryption and
decryption, respectively. Of course the cost of one EA is much higher than that of one
ES. ER represents asymmetric-key based proxy re-encryption. And the cost of one ER is
usually lower than the cost of DA +EA [11, 12]. The result is shown in Table 6. Because
the KMC does not involve in the transmission process, we do not list it in the table.
LKH uses symmetric-key algorithms and uses a group key; therefore, the transmission

cost of the sender is ES and that of a member is DS.
Reversing functions and secret functions used in CS are asymmetric-key based; there-

fore, the transmission cost of the sender is EA and that of a member is DA. Each inter-
mediate node uses a secret function to process multicast traffic, so its cost is also EA.
In SIM-KM, asymmetric-key based schemes are used, so the cost of the sender and a

member is EA and DA, respectively. An LSC needs to perform proxy re-encryption during
rekeying, its cost is ER. When transformation is stopped, the cost of an LSC is 0.
In our scheme, multicast data are transmitted in the data transfer mode. So the

costs discussed here are those in the data transfer mode, in which symmetric-key based
algorithms are used. Because the sender encrypts multicast data twice, its cost is 2ES.
Similarly, the cost of a member is 2DS. Each router decrypts and then encrypts, so its
cost is ES +DS. The transmission costs of our scheme are lower than CS and SIM-KM.

5.4.3. Rekeying costs. The comparisons of rekeying costs are listed in Table 7. Assume
the number of downstream routers connected to a router is P . And H denotes the length
of the chain of routers. To show the effectiveness of containment, we consider the costs
of “a member in the same subgroup” and the costs of “a member in other subgroups”
separately.
According to LKH’s paper, RFC 2627 [5], the cost of the KMC is O(log2 N ). The

sender only changes the group key, so its cost is O(1). In LKH, a subtree could be viewed



SECURE MULTICAST ARCHITECTURE USING PROXY RE-ENCRYPTION 4745

as a subgroup. Therefore, we consider members in subtrees which do not include the
joining/leaving member as “members in other subgroups”. But whether or not a member
is in the same subgroup with the joining/leaving member, its cost is the same O(log2 N ).

CS also has the cases of “a chain of routers”, so the rekeying cost of the KMC is O(H).
The rekeying cost of the sender is usually 0. Only when a group is newly created, the
cost is O(1). When a rekeying event happens, the responsible router changes its secret
function, so its cost is O(1). Assume an LSC is responsible for managing local subgroup
keying material, it sends the new reversing function to all remaining members in the
local subgroup. The cost of an LSC is O(M), because M rekeying messages are sent to
local members. The cost of a member in the same subgroup is O(1). Members in other
subgroups are not affected by rekeying events, so their costs are 0.

Because SIM-KM contains periodic rekeying, we discuss the rekeying costs of SIM-KM
separately in two cases: (a) membership rekeying, which happens when a member joins or
leaves, and (b) periodic rekeying, which happens periodically. First, we discuss the case
(a). When a rekeying event occurs, a group controller may contact the GM, and therefore
the cost of the GM is O(1). The rekeying cost of the sender is 0 because the rekeying
procedure is not related with the encryption key held by the sender. The GC notifies its
local members by sending M rekeying messages, so its cost is O(M). Moreover, the cost
of a member in the same subgroup is O(1), and the cost of a member in other subgroups
is 0.

On the other hand, in the case (b), during a periodic rekeying event, the GM multicasts
the new encryption key to all the participants and trusted controllers. Therefore, the cost
of every entity in the group is O(1).

Our scheme also has periodic rekeying, so we also discuss the rekeying costs of our
scheme in two cases: (a) membership rekeying and, (b) periodic rekeying. In the case
(a) of our scheme, if a membership change does not involve changes of routers, that
is, Procedure Router-Join or Procedure Router-Leave is not executed, the KMC’s
rekeying cost is O(1). On the other hand, when a router joins or leaves, the KMC must
change P edge keys and P proxy keys. If a chain of routers also joins or leaves, the
additional cost to process along the chain of routers for the KMC is O(H). Therefore, the
rekeying cost of the KMC is O(H)+O(P). Network topology determines that either O(H)
or O(P) dominates. Since both P and H are small numbers less than 100, the rekeying
cost of the KMC is low. The rekeying cost of the sender is usually 0. The exception
is when a new multicast tree is created, and at that time the edge key of the root edge
is changed. So the cost in this case is O(1). When a rekeying event occurs, a router
changes its proxy keys, and the cost is O(1). In our scheme, assume we use LKH as our
local key management protocol, and therefore the cost of an LSC to rekey a subgroup is
O(log2 M). Moreover, because of using LKH, the cost of a member in the same subgroup
is O(log2 M). Members in other subgroups are not affected by rekeying events, so their
costs are 0.

On the other hand, in the case (b), during a periodic rekeying, the new TEK is dis-
tributed by the TEK distribution mode. Therefore, the cost of every entity in the group
is O(1). The KMC does not know a TEK, so its cost is 0 in periodic rekeying.

Now we compare rekeying costs from views of different entities. In the aspect of the
KMC’s cost, LKH has the highest cost because no containment is provided. CS and our
scheme have comparable costs. SIM-KM’s cost of the KMC is the lowest. The costs
of the sender are basically the same for all four schemes discussed. CS and our scheme
grant limited trust to routers, and their costs of a router are about the same. Assume
LKH is used as our local subgroup key management protocol, and it reduces the cost
of an LSC at the expense of the costs of local members. Therefore, in our scheme, the



4746 Y.-P. CHIU, C.-Y. HUANG AND C.-L. LEI

cost of an LSC is lower than CS, and the cost of a member is higher. Moreover, we can
clearly see the effect of containment. In two schemes with containment, CS and Sempre,
members in other groups have no burden during a rekeying event. The costs of periodic
rekeying of SIM-KM and Sempre are about the same. But our KMC is more efficient in
periodic rekeying because it does not know a TEK. As we can see, our scheme is efficient
in rekeying costs.

6. Concluding Remarks. We have proposed a novel secure multicast architecture called
Sempre, which is based on proxy re-encryption. The multicast model also considers
routers, so it is more realistic than schemes based on logical trees. LKH-based schemes
only consider trees formed by logical concepts. Because such schemes do not consider the
relationship between routers and group members, they have difficulty achieving contain-
ment.
Mukherjee and Atwood’s SIM-KM scheme also exploits proxy re-encryption, but we

found that it fails to achieve forward secrecy. This is because the scheme uses a group
key and, in the rekeying procedure, the new key is encrypted by the old key. Another
drawback is that SIM-KM does not address the need for containment.
The proposed approach reduces the extent of the 1 affects n problem, which is the

source of scalability problems. It also exploits proxy re-encryption to allow intermediate
routers to transform ciphertext without revealing the private keys or the plaintext. By
giving proper proxy keys to the intermediate routers, the impact of membership changes is
confined to a local area. By extension, a security breach in a local area can also be confined
to that area. Thus, we achieve the goals of containment and scalability. Moreover, since
our scheme combines asymmetric-key and symmetric-key algorithms, it is practical for
large and dynamic multicast groups.
For simplicity, we only discuss the KMC as a single entity; however, the task could be

easily distributed among multiple entities in our architecture. Multiple KMCs eliminate
the single point of failure problem, and they are more practical than a single unit. Each
administrative domain has its own KMC, which is responsible for managing the keys in
that domain.
Our architecture is not limited to one specific cryptographic scheme. All proxy re-

encryption schemes that conform to the properties discussed in Section 5.1 can be used.
Hence, under our architecture, operators have the freedom to choose different schemes.
This property enhances the survivability of the whole system.
A practical example of our architecture is provided by a secure large-scale subscription

scenario. In this scenario, only members who pay the subscription fee can retrieve the
protected content.
A natural extension of our scheme is to allow some routers to just pass on multicast

traffic without re-encryption. In the same administrative domain, several subgroups under
the same upstream router could merge to form one big subgroup. Therefore, routers in
the original small subgroups could just pass on multicast traffic without re-encryption.
Subgroup merging reduces the transmission costs of routers, but it increases some of the
costs of local members and LSCs. Moreover, a bigger subgroup means that the area
affected by a security breach would be larger. Therefore, subgroup merging is a tradeoff
between security and performance.
Some formal verification tools, such as Alloy [31, 32] and CORAL [33], have been used

to verify secure multicast protocols. In the future, we will consider using those tools to
verify our protocol.



SECURE MULTICAST ARCHITECTURE USING PROXY RE-ENCRYPTION 4747

Acknowledgment. This work is supported in part by the National Science Council
under Grants NSC 99-2218-E-002-024, NSC 99-2218-E-002-026 and NSC 100-2221-E-019-
045-. This work is conducted under the “III Innovative and Prospective Technologies
Project” of the Institute for Information Industry, which is subsidized by the Ministry
of Economy Affairs of Taiwan. The authors also gratefully acknowledge the helpful com-
ments and suggestions of the reviewers.

REFERENCES

[1] S. Deering, Host extensions for IP multicasting, RFC 1112, 1989.
[2] S. E. Deering and D. R. Cheriton, Multicast routing in datagram internetworks and extended LANs,

ACM Transactions on Computer Systems, vol.8, no.2, pp.85-110, 1990.
[3] S. Rafaeli and D. Hutchison, A survey of key management for secure group communication, ACM

Computing Surveys, vol.35, no.3, pp.309-329, 2003.
[4] S. Mittra, Iolus: A framework for scalable secure multicasting, Proc. of the ACM SIGCOMM ’97

Conference on Applications, Technologies, Architectures, and Protocols for Computer Communica-
tion, pp.277-288, 1997.

[5] D. M. Wallner, E. J. Harder and R. C. Agee, Key management for multicast: Issues and architectures,
RFC 2627, 1999.

[6] C. K. Wong, M. Gouda and S. S. Lam, Secure group communications using key graphs, IEEE/ACM
Transactions on Networking, vol.8, no.1, pp.16-30, 2000.

[7] Y. Kim, A. Perrig and G. Tsudik, Simple and fault-tolerant key agreement for dynamic collaborative
groups, Proc. of the 7th ACM Conference on Computer and Communications Security, pp.235-244,
2000.

[8] R. Mukherjee and J. W. Atwood, Proxy encryptions for secure multicast key management, Proc. of
the 28th Annual IEEE International Conference on Local Computer Networks, pp.377-384, 2003.

[9] R. Mukherjee and J. W. Atwood, SIM-KM: Scalable infrastructure for multicast key management,
Proc. of the 29th Annual IEEE International Conference on Local Computer Networks, pp.335-342,
2004.

[10] R. Mukherjee and J. W. Atwood, Scalable solutions for secure group communications, Computer
Networks, vol.51, no.12, pp.3525-3548, 2007.

[11] M. Blaze, G. Bleumer and M. Strauss, Divertible protocols and atomic proxy cryptography, Proc. of
Advances in Cryptology — EUROCRYPT ’98: International Conference on the Theory and Appli-
cation of Cryptographic Techniques, LNCS, vol.1403, pp.127-144, 1998.

[12] A. Ivan and Y. Dodis, Proxy cryptography revisited, Proc. of the 10th Annual Network and Dis-
tributed System Security Symposium, 2003.

[13] G. Ateniese, K. Fu, M. Green and S. Hohenberger, Improved proxy re-encryption schemes with
applications to secure distributed storage, ACM Transactions on Information and System Security,
vol.9, no.1, pp.1-30, 2006.

[14] M. Green and G. Ateniese, Identity-based proxy re-encryption, Proc. of the 5th International Con-
ference on Applied Cryptography and Network Security, LNCS, vol.4521, pp.288-306, 2007.

[15] D. L. Cook and A. D. Keromytis, Conversion and proxy functions for symmetric key ciphers, Proc. of
the IEEE International Conference on Information Technology: Coding and Computing, Information
and Security Track, pp.662-667, 2005.

[16] D. L. Cook and A. D. Keromytis, Conversion and proxy functions for symmetric key ciphers, Journal
of Information Assurance and Security, vol.1, no.2, pp.119-128, 2006.

[17] R. Molva and A. Pannetrat, Scalable multicast security with dynamic recipient groups, ACM Trans-
actions on Information and System Security, vol.3, no.3, pp.136-160, 2000.

[18] C.-Y. Huang, Y.-P. Chiu, K.-T. Chen and C.-L. Lei, Secure multicast in dynamic environments,
Computer Networks, vol.51, no.10, pp.2805-2817, 2007.

[19] J. Hur, Y. Shin and H. Yoon, Decentralized group key management for dynamic networks using
proxy cryptography, Proc. of the 3rd ACM Workshop on QoS and Security for Wireless and Mobile
Networks, pp.123-129, 2007.

[20] J. Y. Hwang, J. Y. Chun and D. H. Lee, Weaknesses in the Hur-Shin-Yoon decentralized group key
management, Wireless Communications & Mobile Computing, vol.9, no.12, pp.1565-1571, 2009.



4748 Y.-P. CHIU, C.-Y. HUANG AND C.-L. LEI

[21] A. M. Eskicioglu and M. R. Eskicioglu, Multicast security using key graphs and secret sharing,
Proc. of the Joint International Conference on Wireless LANs and Home Networks and Networking,
pp.228-241, 2002.

[22] H. Um and E. J. Delp, A secure group key management scheme for wireless cellular networks, The
3rd International Conference on Information Technology: New Generations, pp.414-419, 2006.

[23] H. Um and E. J. Delp, A secure group key management scheme for wireless cellular systems, Inter-
national Journal of Network Security, vol.6, no.1, pp.40-52, 2008.

[24] D. Waitzman, C. Partridge and S. Deering, Distance vector multicast routing protocol, RFC 1075,
1988.

[25] J. Moy, Multicast extensions to OSPF, RFC 1584, 1994.
[26] D. Kosiur, IP Multicasting: The Complete Guide to Interactive Corporate Networks, Wiley Computer

Publishing, 1998.
[27] Y.-P. Chiu, C.-L. Lei and C.-Y. Huang, Secure multicast using proxy encryption, Proc. of the 7th

International Conference on Information and Communications Security, LNCS, vol.3783, pp.280-
290, 2005.

[28] B. Schneier, Applied Cryptography, 2nd Edition, John Wiley & Sons, 1996.
[29] E. Barker, W. Barker, W. Burr, W. Polk and M. Smid, Recommendation for key management –

Part 1: General, NIST Special Publication 800-57, 2007.
[30] S. Bradner, Key words for use in RFCs to indicate requirement levels, RFC 2119, 1997.
[31] D. Jackson, Alloy: A lightweight object modelling notation, ACM Transactions on Software Engi-

neering and Methodology, vol.11, no.2, pp.256-290, 2002.
[32] M. Taghdiri and D. Jackson, A lightweight formal analysis of a multicast key management scheme,

Formal Techniques for Networked and Distributed Systems — FORTE 2003, LNCS, vol.2767, pp.240-
256, 2003.

[33] G. Steel and A. Bundy, Attacking group multicast key management protocols using CORAL, Elec-
tronic Notes in Theoretical Computer Science, vol.125, no.1, pp.125-144, 2005.


