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ABSTRACT. This paper presents an algorithm based on a combination of Discrete Wavelet
Transforms and back-propagation neural networks for identifying the types of fault in-
cluding the phase with fault appearance of a two-winding three-phase power transformer.
Fault conditions of the transformer are simulated using ATP/EMTP in order to obtain
current signals. The training process for the neural network and fault diagnosis decision
are implemented using toolboxes on MATLAB. Various cases and fault types based on
Thailand electricity transmission and distribution systems are studied to verify the va-
lidity of the algorithm. Various activation functions in each hidden layer and the output
layer are compared in order to select the best activation function for identifying the types
of internal fault of the transformer winding. It is found that average accuracy obtained
from hyperbolic tangent — hyperbolic tangent — linear activation function gives satisfac-
tory accuracy, and will be particularly useful in the development of a modern differential
relay.
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1. Introduction. Power transformer is one of the most important pieces of equipment, of
the power system. When fault occurs in power transformer, detecting fault is necessary
in order to clear fault before reaching a level that can damage the power transformer.
Conventional methods are still utilized for fault diagnosis for the power transformer em-
ployed in Electricity Generating Authority of Thailand (EGAT) such as Dissolved Gas
Analysis (DGA) and Measurement winding impedance of transformer method. However,
both methods have advantages and disadvantages. Dissolved Gas Analysis (DGA) can
detect other fault conditions such as partial discharge (or corona) thermal, but it cannot
identify phase and locate the fault taking place in the transformer. On the other hand,
a large amount of uncertainty and vagueness would exist in the data for the diagnostic.
The measurement of transformer winding impedance has been used by EGAT in the field
test because it is not complicated. This method can identify phase and locate fault within
transformer. However, it cannot detect other fault conditions. Generally, power trans-
formers can be protected by over-current relays, pressure relays and differential relays
depending on purposes [1]. The differential principle, as applied for protecting power
transformers, can be illustrated in Figure 1. If an internal fault occurs, the differential
current would be simply a very large fault current. It can be easily seen that this is a very
powerful discriminator between external and internal faults. However, there are some
factors that can cause a needless operation of the differential protection, such as effects
from magnetizing inrush current, the current transformers saturation or their ratios that
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FIGURE 1. Basic differential scheme for (a) no-fault and (b) internal fault
conditions of a power transformer

are not matched perfectly. This causes the differential signal to be considerably large even
though there is no internal fault.

In order to prevent false tripping in these cases, in the literature for fault detection,
several decision algorithms used for fault detection have been developed to be employed in
the protective relay [2-16] but these several algorithms have different solutions and tech-
niques. In [2], high frequency components of transformer terminal currents technique is
proposed to detect internal faults in power transformers. The spectral energies of the tran-
sient currents are derived and used for discrimination. An application of a finite impulse
response ANN (FIRANN) as differential protection for a three-phase power transformer
is proposed in [3]. The networks have been designed to detect internal and external faults
for primary and backup protection. In [4], a new algorithm based on processing differen-
tial current harmonics is proposed for digital differential protection of power transformers.
This algorithm has been developed by considering different behaviors of second harmonic
components of the differential currents under fault and inrush current conditions. In [5], a
novel analysis of the currents arising during a turn-to-turn fault in transformer, in which a
winding is delta-connected is done, so that data acquisition pre- and post-fault conditions
may lead to a correct diagnosis. The approach given in this paper is based on the analysis
of current sequences which appear in the fault state, and mainly in the nature of a zero
sequence current (ZSC) in a delta winding, which is thoroughly discussed. In [6], the
paper addresses turn-to-turn faults in power transformer windings. A sensitive detection
method of these kinds of faults is presented.

In addition, wavelet transform has been reported in the literature [13-18]. The advan-
tage of the wavelet transform is that the band of analysis can be fine adjusted so that high
frequency components and low frequency components are detected precisely. Results from
the wavelet transform are shown both in time domain and in frequency domain. The devel-
opment of a wavelet—based scheme for distinguishing between transformer inrush currents
and power system fault currents is presented in [14]. Wavelet transforms concept, feature
extraction, and method of discrimination between transformer inrush and fault currents
are described. The performance of the technique is verified from simulation of a 132/11
kV transformer, connected to a 132 kV power system. In addition, in some approaches,
artificial neural network techniques have been proposed in the literature [17,19-21] to deal
with the problems in power transformer protection.

As a result, most research works are interested in only the effects from magnetizing
inrush current and the discrimination between magnetizing inrush current and internal
faults [14,18,22-26], etc. [27-29]. Due to the fact that identifying types of internal fault and
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locating the phase with fault appearance are as important as fault detection; therefore,
this paper concentrates on the types of internal fault in the transformer winding in order
to prevent false tripping and decrease duration time for analyzing the types of internal
fault. To avoid the malfunction of the differential relay, the development of more sophis-
ticated protection systems as well as fault diagnosis for the power transformer has been
progressed with the applications of wavelet transform (WT) and artificial neural networks
(ANNs). Nowadays, a back-propagation neural network has been used to solve almost all
types of problems [30-33]. The activation function is a key factor in the artificial neural
network structure. Back-propagation neural networks support a wide range of activation
functions such as sigmoid function and linear function. The choice of activation function
can change the behavior of the back-propagation neural network considerably. There is
no theoretical reason for selecting a proper activation function. Hence, the objective of
this paper is to consider studies of an appropriate activation function for identifying the
types of fault including the phase with fault appearance of a two-winding three-phase
power transformer using an application of Wavelet transform and a decision algorithm
based on back propagation neural networks. The activation functions in each hidden
layer and output layer are varied, and the results obtained from the decision algorithm
are investigated. The transformer model with the stray capacitances is employed so that
internal fault signals with high frequency components can be calculated. The simulations,
analysis and diagnosis are performed using ATP/EMTP and MATLAB on a PC Pentium
IV 2.4 GHz 512 MB. The current waveforms obtained from ATP/EMTP are extracted
to several scales with the Wavelet transform, and the coefficients of the first scale from
the Wavelet transformer are investigated. The comparison of the coefficients is performed
and used as an input for training processes of the neural networks. The construction of
the decision algorithm is detailed and implemented with various case studies based on
Thailand electricity transmission and distribution systems.

2. Case Studies and Fault Detection Algorithms. Artificial neural network requires
fault signal samples from simulations to training and test processes but internal fault in
transformer winding hardly occurs when comparison with fault in other equipments in
power system, so various fault signals pattern will be obtained from simulation. The
ATP/EMTP program is employed in simulating the transients of fault signals, at a sam-
pling rate of 200 kHz. The present study is interested in identifying the types of internal
fault in the transformer windings.

2.1. Transformer model using EMTP. To study internal faults of the transformer,
Bastard et al. [27] proposed modification of the BCTRAN subroutine. Normally, the
BCTRAN uses a matrix of inductances with a size of 6 x 6 to represent a transformer,
but with the internal fault conditions, the matrix is adjusted to be a size of 7 x 7 for
winding to ground faults and of 8 x 8 for interturn faults. However, the effects of high
frequency components which may occur during the faults are not included in such a model.
In this paper, the combination of the transformer models proposed by Bastard et al. [27]
with the high frequency model including capacitances of the transformer recommended
by IEEE working group [34], is used for simulations of internal faults in the transformer
windings.

The process for simulating internal faults based on the BCTRAN routine of EMTP can
be summarized as follows:

1% step: Compute matrices [R] and [L] of the power transformer from manufacture test
data [16,35] without considering the internal faults [27].
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2" step: Modify Equations (1) and (2) to obtain the new internal winding fault matrices
[R]" and [L]" as illustrated in Equations (3) and (4) [27].
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3'! step: The inter-winding capacitances and earth capacitances of the HV and LV
windings can be simulated by adding lumped capacitances connected to the terminals of
the transformer as shown in Figure 2.

| | Cu
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50 MVA

Chy C

FIGURE 2. A two-winding transformer with the effects of stray capacitances [16]
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2.2. Winding to ground fault simulation. A 50 MVA, 115/23 kV two-winding three-
phase transformer is employed in simulations with all parameters and configuration pro-
vided by a manufacturer [16,35]. The scheme under investigations is a part of Thailand
electricity transmission and distribution system as depicted in Figure 3.

EGAT | PEA
RE MK 115/23 kV "
Y 50 MVA l
Q I A i T G@—T—w
Primary side Secondary side
current current LOAD

FIGURE 3. The system used in simulations studies [16]

From Figure 3, it can be seen that the transformer, which is a step down transformer
is connected between two subtransmission sections. To implement the transformer model
and cover all regions of operating conditions, training and testing data are simulated with
various changes of system parameters as follows:

1) The angles on phase A voltage waveform for the instant of fault inception are 0°-330°
(each step is 30°).

2) For the winding to ground faults, the fault positions as shown in Figure 4 are
designated on any phases of the transformer windings (both primary and secondary) at
the length of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% measured from the line
end of the windings.

a a

I Phase A Phase A
b b
2 I

2

Phase B Phase B
3 4 3 4
Phase C Phase C
5 6 5 6
Primary Secondary Primary Secondary
FIGURE 4. The modifica- FiGure 5. The modifica-
tion on ATP/EMTP model tion on ATP/EMTP model
for a three-phase transformer for a three-phase transformer
with winding to ground with interturn faults [27]

faults [27]
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2.3. Interturn fault simulation. Interturn fault simulations are performed with various
changes of system parameters as same as winding to ground fault simulations, but the
position of fault that occurs is performed as follows:

1) For the interturn faults, the position of point a on the transformer winding, as
shown in Figure 5, is varied at the length of 10%, 20%, 30%, 40%, 50%, 60%, 70% and
80% measured from the line end of the windings.

2) For the interturn faults, the position of point b on the transformer winding, as
shown in Figure 5, is varied at the length of 10%, 20%, 30%, 40%, 50%, 60%, 70% and
80% measured from the line end of the windings.

3. Fault Detection Decision Algorithm. The primary and secondary current wave-
forms can be simulated using ATP/EMTP, and these waveforms are interfaced to MAT-
LAB/Simulink for a construction of fault diagnosis process. The fault signals obtained
in each phase from different currents of the transformer are illustrated in Figure 6(a) in
which it shows phase A to ground fault occurred at high voltage winding. Figure 6(b)
illustrates an example of phase A to ground fault occurred at low voltage winding. With
fault signals obtained from the simulations, the differential currents, which are a deduc-
tion between the primary side current and the secondary side current in all three phases
as well as the zero sequence, are calculated, and the resultant current signals are extracted
using the discrete wavelet transform (DWT). The mother wavelet, daubechies4 (db4) [16],
is employed to decompose high frequency components from the signals. The coefficients
of the signals obtained from the DWT are squared for a more explicit comparison. Figure
7(a) illustrates an example of an extraction using DWT for the differential currents and
zero sequence current from scale 1 to scale 5 for a case of phase A to ground fault at
10% of high voltage winding length while case of phase A to ground fault at 10% of low
voltage winding length is shown in Figure 7(b).

In case of interturn fault, the primary and secondary current waveforms obtained when
interturn phase A fault between 10% and 20% of high voltage winding length are shown
in Figure 8(a) whereas case of interturn phase A fault between 10% and 20% of low
voltage winding length is shown in Figure 8(b). Figure 9 illustrates examples of extraction
processes using Wavelet transform for the differential currents and zero sequence current
from scale 1 to scale 5 for a case of an interturn fault. The similarity between the fault
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FIGURE 6. Primary and secondary currents for a case of phase A to ground
fault at 10% in of winding length
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FIGURE 7. Wavelet transform of differential currents (winding phase A to
ground fault at 10% of winding length)

%10 Frimary Current Frimary Current

SR LA

q 1 1 1 1 1 I 1 I
o oo UZ 0. EIS 0. Uri 0. EIE 0. UE ] El? 0. UB ] EIB 0. 001 002 003 004 005 006 007 008 002 O
Tirme (sec) Tirme (sec)
Secundary Current Secondary Current

L L L L L L L L L K L L L L L L L L L
u] nof 002 003 004 005 006 007 003 009 01 u] nof 002 003 004 005 006 007 003 009 01

Tirme (sec) Tirme (sec)
(a) Fault occurred at high voltage winding (b) Fault occurred at low voltage winding

FIGURE 8. Primary and secondary currents for a case of interturn phase A
fault between 10% and 20% of winding length

signals waveforms from Figure 7 and Figure 8 can be seen obviously so that the comparison
of the coefficients from each scale is considered as illustrated in Figure 10.

From Figure 10, DWT is applied to the quarter cycle of differential current waveforms
after the fault inception. By performing many simulations [16], it has been found that
the coefficient in scale 1 from DW'T seems enough to indicate the fault inception. As a
result, it is unnecessary to use other coefficients from higher scales in this algorithm, and
the coefficients of scale 1 obtained using the DWT are used for training and test processes
for the back-propagation neural network (BPNN).

4. Neural Network Decision Algorithm and Simulation Results. In this paper, a
three-layer BPNN with one input layer, two hidden layers and one output layer is employed
as illustrated in Figure 11. A training process is performed using neural network toolboxes
in MATLAB. It can be divided into three parts as follows [36]:
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FIGURE 9. Wavelet transform of differential currents (interturn phase A
fault between 10% and 20% of winding length)

1) The feedforward input pattern, which has a propagation of data from the input layer
to the hidden layer and finally to the output layer for calculating responses from input
patterns illustrated in Equations (5) and (6).

CL2 — fZ (lw2,1 ” fl (Z'wl,l *p+ bl) 4 b2) , (5)
o/pann = f* (lw?”2 x a4 b3) , (6)

where,

p = input vector of BPNN;

iwh! = weights between input and the first hidden layer;

lw*! = weights between the first and the second hidden layers;

lw3? = weights between the second hidden layer and output layers;

b', b? = bias in the first and the second hidden layers respectively;

b = bias in output layers;

f1, f2 = activation function (Hyperbolic tangent sigmoid function: tanh);

f? = activation function (Linear function).

2) The back-propagation for the associated error between outputs of neural networks
and target outputs. The error is fed to all neurons in the next lower layer, and also used
to an adjustment of weights and bias.

3) The adjustment of the weights and bias by Levenberg-Marquardt (trainlm). This
process is aimed at trying to match between the calculated outputs and the target outputs.
Mean absolute percentage error (MAPE) as an index for efficiency determination of the
BPNN is computed by using Equation (7).

1« i — i
MAPE =~ %Y 0/PaNNi = O/PTARGETI |, 14000 (7)
n

i1 0/PTARGET:

where, n = number of test sets.

Before the training process, input data are normalized and divided into 1620 sets for
training, and 810 sets for tests. A structure of the BPNN consists of 4 neuron inputs,
two hidden layers and 8 neuron outputs. The inputs are the maximum coefficients details
(cD1) in scale 1 at 1/4 cycle of phase A, B, C and zero sequence for post-fault differential
currents as shown in Figure 12. The output variables of the neural networks are designated
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Ficure 10. Flowchart for detecting the phase with a fault condition
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FIGURE 11. BPNN with two hidden layers [36]
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FiGure 12. Magnitude in scale 1 for post-fault current signal shown in
Figure 7(a)

as either 0 or 1 corresponding to phase A, B, C and ground (G) as presented in Table
1. If each output value of BPNN is less than 0.5, fault does not occur on each phase but
if this output value of BPNN is more than 0.5, fault does occur. In addition, a number
of neurons in both hidden layers are increased as well as varying the activation functions
in all hidden layers and the output layer in order to select the best performance. In
addition, the activation function is a key factor in the artificial neural network structure.
The choice of activation function can change the behavior of the back-propagation neural
network considerably. Hence, the activation functions in each hidden layers and output
layer are varied as shown in Table 2 in order to select the best activation function for
identifying internal fault types.

During the training process, the weight and biases are adjusted, and there are 20,000
iterations in order to compute the best value of MAPE. The number of neurons in both
hidden layers is increased before repeating the cycle of the training process. The training
procedure is stopped when reaching the final number of neurons for the first hidden layer
or the MAPE of test sets is less than 0.5%. The training process can be summarized
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TABLE 1. Output patterns from neural networks

Classification of Fault

Al

B1/C1|G1|A2|B2|C2 /G2

Winding phase A to ground fault at high voltage
winding (AGHYV)

1{0(0|11(0]0|0]0

Winding phase A to ground fault at low voltage
winding (AGLV)

Interturn phase A fault at high voltage winding
(AHV)

Interturn phase A fault at low voltage winding
(ALV)

Winding phase B to ground fault at high voltage
winding (BGHYV)

Winding phase B to ground fault at low voltage
winding (BGLV)

Interturn phase B fault at high voltage winding
(BHV)

Interturn phase B fault at low voltage winding
(BLV)

Winding phase C to ground fault at high voltage
winding (CGHV)

Winding phase C to ground fault at low voltage
winding (CGLV)

Interturn phase C fault at high voltage winding
(CHV)

Interturn phase C fault at low voltage winding
(CLV)

TABLE 2. Activation functions in all hidden layers and output layers for

training neural networks

Activation function in

first hidden layer second hidden layer

output layer

Linear function

Logistic Losistic si |
_ . 3 function ogistic sigmoi
Hyperbphc ‘ S1gmol Hyperbolic Tangent sigmoid
Tangent S.lngId 0 boli Linear function
function T ¢ yper %IE " Logistic sigmoid
angent sigmoid unction Hyperbolic Tangent sigmoid
L Linear function
Logistic — -
. d funct; Logistic sigmoid
Logistic Sigmolc function Hyperbolic Tangent sigmoid

Linear function

sigmoid function Hyperbolic

Logistic sigmoid

Tangent sigmoid function

Hyperbolic Tangent sigmoid

4309

as in a flowchart shown in Figure 13 while the results from the training process can be

summarized in Figure 14.

From Figure 14, it can be seen that there are four cases of activation functions with
average error less than 5% as follows:

1. Hyperbolic tangent — Logistic — Linear.
2. Hyperbolic tangent — Hyperbolic tangent — Linear.
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FiGURrE 13. Flowchart for the training process
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3. Logistic — Logistic — Linear.

4. Logistic — Hyperbolic tangent — Linear.

After training process, the decision algorithm is employed to identify the internal fault
types in the transformer winding. Case studies are varied so that the algorithm capability
can be verified. The system under consideration is shown in Figure 3. The total number
of the case studies is 810. Case studies are performed with various types of fault at
each position in the transformer including the variation of fault inception angles. The
result obtained from various activation functions of case studies both high voltage and
low voltage winding is shown in Table 3. From Figures 15-17, the comparison of average
accuracy at various lengths of the winding among four cases of activation functions is
shown while the average accuracy of various types of internal fault in each phase of high
voltage winding and low voltage winding is shown in Figure 18. The results obtained
from the algorithm proposed in this paper are shown in Table 3. It can be seen that
Hyperbolic tangent — Hyperbolic tangent — Linear as activation function in each layer,
is tested with various fault types on both high voltage and low voltage windings of the
three-phase transformer. The average accuracy of fault types from the prediction of the
decision algorithm is highly acceptable as illustrated in Figures 19-21.

TABLE 3. Average accuracy of case studies for identifying the types of
internal fault

Activation function in
: Number of |Accuracy
the first hidden . the output .
the second hidden layer Case studies| (%)
layer layer
) Logistic sigmoid function |Linear function 810 95.926
Hyperbolic tangent Hyperbolic tangent
sigmoid function . . : Linear function 810 96.914
sigmoid function
o . Logistic sigmoid function |Linear function 810 95.679
Logistic sigmoid Hyperbolic tangent
function . . . Linear function 810 96.543
sigmoid function
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at various lengths of the winding (subcoil a as shown in Figure 4) among
phase that fault occurs

5. Conclusions. In this paper, a decision algorithm using discrete wavelet transform in
combination with back propagation neural networks to identify types of internal faults
including locating the phase with fault appearance along the transformer windings has
been proposed. The maximum coefficient from the first scale at 1/4 cycle of phase A, B,
and C of post-fault differential current signals and zero sequence current obtained by the
wavelet transform has been used as an input for the training process of a neural network
in a decision algorithm with a use of the back propagation neural networks. Therefore, the
activation functions in the all hidden layers and output layer have been varied. Various
case studies have been carried out including the variation of fault inception angles, fault
types, and fault locations. The results show that the proposed algorithm is able to locate
the phase with fault appearance along the transformer windings with an accuracy of higher
than 96% when employing hyperbolic tangent — hyperbolic tangent — linear as activation
functions in each layer as summarized in Table 3. This technique would be useful in the
differential protection scheme for the transformer.
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Ficure 21. Comparison of average accuracy of interturn fault at various
lengths of the winding (subcoil b as shown in Figure 5) among phase that
fault occurs
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