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Abstract. Job scheduling is an important but difficult task to wafer fabrication facto-
ries. To further improve the performance of job scheduling in a wafer fabrication factory,
a fuzzy-neural dynamic-bottleneck-detection (DBD) approach is proposed in this study.
The fuzzy-neural DBD approach is modified from the traditional DBD approach after
incorporating some major changes. First, taking into account the uncertainty of job
classification, fuzzy partition is applied to divide jobs into different categories. Second,
the fuzzy c-means and fuzzy back propagation network (FCM-FBPN) approach is applied
to estimate the remaining cycle time of a job. Third, we replace the heuristics in the
traditional DBD approach, with more advanced and flexible dispatching rules, such as
the shortest cycle time until next bottleneck (SCNB) rule and the four-factor bi-criteria
nonlinear fluctuation smoothing (4f-biNFS) rule. A real wafer fabrication factory is also
simulated as a testing environment for the adoption of several methods. According to
the experimental results, the fuzzy-neural DBD approach was better than six existing ap-
proaches and their variants in reducing the average cycle time and cycle time standard
deviation at the same time.
Keywords: Wafer fabrication, Scheduling, Dispatching rule, Fuzzy neural, Dynamic
bottleneck detection

1. Introduction. Semiconductor manufacturing process is usually divided into four pha-
ses: wafer fabrication, wafer probe, assembly, and final testing. Among them, the longest
one is wafer fabrication. The production system required for wafer fabrication is very
complex and difficult to control [1]. Every job in a wafer fabrication factory is composed
of 20-25 wafers, and has hundreds of steps to undergo. These processing steps can be
divided into several categories, such as photolithography, etch, strip. Therefore, the same
operation can be performed on the job many times. In other words, a job needs to
access the same group of workstations more than once for the same operation, which
is typical of the re-entrant production system. The characteristics make job scheduling
in a wafer fabrication factory a very challenging task. In addition, the cycle time to
complete all operations in a wafer fabrication factory is usually several months, resulting
in the accumulation of work-in-progress (WIP). For this reason, cycle time reduction is
an important task of job scheduling in a wafer fabrication factory.

To this end, a good release policy has been considered to be the most effective method
[2]. However, in most wafer fabrication factories, in particular, foundry factories, the
order-related jobs must be released as soon as possible after the receipt of the order.
In addition, many studies have confirmed that the use of the existing dispatching rules
(such as first-in first out (FIFO), earliest due date (EDD), least slack (LS), shortest
processing time (SPT), shortest remaining processing time (SRPT), critical ratio (CR),
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FIFO+, SRPT+, and SRPT++) to a wafer fabrication factory does not produce very
good results. Tie breaking is another issue. Nevertheless, job scheduling in a wafer
fabrication factory has become a very important issue [3]. However, Chen [4] pointed out
the inadequacies of the existing dispatching rules. First of all, most dispatching rules in
this field consider only the attributes of the jobs gathered at the same place, and lack
an effective way for taking the conditions of the factory as a whole into consideration.
Second, most dispatching rules are not tailored to a particular wafer fabrication factory.
Third, most dispatching rules are deterministic and do not reflect the changes in a wafer
fabrication factory. Although there are a few dispatching rules incorporating stochastic
variables, such as the fluctuation smoothing (FS) rules – fluctuation smoothing policy for
variance of cycle time (FSVCT) and fluctuation smoothing policy for mean cycle time
(FSMCT), they use the average values for these stochastic variables, and are as such
not responsive to environmental changes. Fourth, most of the dispatching rules have not
been optimized. Some studies used response surface method (RSM) and the desirability
function to handle multiple-factor, multiple-objective optimization [5]. However, most of
these studies applied second-order multiple regression, which may not be accurate enough.
The desirability function is also a very subjective approach. At last, the dispatching rules
are focused on a single performance measure. In theory, single-objective optimization
wafer fabrication factory scheduling problem is a strongly NP-hard problem. Nevertheless,
optimizing multiple targets at the same time is still being pursued.
Recently, a few studies (e.g., Koonce and Tsai [6]) have suggested data-mining-based

approaches that attempt to simulate the best practices in the past for future applications.
However, a wafer fabrication factory is a highly dynamic environment in which future
conditions might be very different from those in the past. It is also very difficult to
find the socalled best practices for such a highly dynamic and complicated production
system. Another way is to combine some existing rules, and every time to pick only the
most suitable one. For example, Hsieh et al. [7] used five approaches including FSMCT,
FSVCT, largest deviation first (LDF), one step ahead (OSA), and FIFO jointly. However,
each time an extensive simulation experiment is required to estimate the performance of
each candidate in order to determine the most suitable one. Moreover, the transition from
one approach to another is radical.
Agent technologies have also been applied. For example, Yoon and Shen [8] constructed

a multiple-agent system for scheduling a wafer fabrication factory, in which four types of
agents (scheduling agents, work cell agents, machine agents, and product agents) were
designed and developed. The optimal scheduling plan was found by the scheduling agent
through enumerating some possible scenarios. However, the batch production commonly
used in a wafer fabrication factory was not considered in their study and therefore the case
might be impractical. Youssef et al. [9] proposed a hybrid genetic algorithm (GA) and
data mining approach to determine the best scheduling plan of a jobshop, in which the GA
was used to generate a learning population of good solutions. These good solutions were
then explored to find a number of decision rules that could be transformed into a meta-
heuristic. Koonce and Tsai [6] proposed a similar approach. Sourirajan and Uzsoy [10]
proposed a rolling horizon (RH) heuristic that breaks down the factory into smaller sub-
problems that can be resolved over time in order using a workcenter-based decomposition
heuristic.
This study is dedicated to propose a better dispatching rule. The motivation of this

study is explained as follows. Recently, some sophisticated dispatching rules have been
proposed. For example, Chen [11] modified the traditional FSMCT rule, and proposed
a nonlinear FSMCT (NFSMCT) rule, in which the fluctuation in the remaining cycle
time estimate is smoothed, and then its influence is balanced with that of the release
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time or the mean release rate. Subsequently, the difference in the slack is magnified
using the ‘division’ operator. Subsequently, Chen [4] proposed the one-factor tailored
nonlinear FSMCT (1f-TNFSMCT) rule and the one-factor tailored nonlinear FSVCT
(1f-TNFSVCT) rule including an adjustable parameter to customize the rules for the
wafer fabrication factory. Taking into account two performance measures (average cycle
time and cycle time variation) at the same time, Chen and Wang [12] proposed a bi-
criteria nonlinear fluctuation smoothing rule that also has an adjustable factor (1f-biNFS).
To increase the flexibility of customization, Chen et al. [13] extended the above rules,
and proposed the bi-criteria fluctuation smoothing rule with four adjustable factors (4f-
biNFS). However, the adjustment factors in these rules are static. In other words, they will
not change over time. Chen [14] therefore designed a mechanism to dynamically adjust
the values of the factors in Chen and Wang’s bi-criteria nonlinear fluctuation smoothing
rule (dynamic 1f-biNFS). However, the adjustment of the factors is based on a pre-defined
rule. This process is too subjective, and does not also take into account the status of the
wafer fabrication factory. In addition, these rules have not been optimized, so there is
considerable room for improvement.

To further improve the performance of job scheduling in a wafer fabrication factory,
a fuzzy-neural dynamic-bottleneck-detection (DBD) approach is proposed in this study.
DBD is very special, because it divides jobs into several categories, and uses four heuristics
jointly, which allows considerable space for improvement. The fuzzy-neural DBD approach
is modified from the DBD approach proposed by Zhang et al. [5]. The unique features of
the proposed methodology include:

(1) Jobs are divided into several categories with fuzzy partition, instead of the tradition
crisp partition that may cause some problems.

(2) Some heuristics in the traditional DBD can be replaced with more advanced, flexible
dispatching rules including the shortest cycle time until next bottleneck (SCNB) rule
and 4f-biNFS. As 4f-biNFS will be used by most job categories in the fuzzy-neural
DBD approach, the scheduling performance of the fuzzy-neural DBD approach is
expected to be at least close to that of 4f-biNFS.

(3) We estimate the remaining cycle time of a job with the fuzzy c-means and fuzzy back
propagation network (FCM-FBPN) approach [15]. According to Chen and Wang
[16], with more accurate remaining cycle time estimation, the scheduling performance
of a fluctuation smoothing rule can be significantly improved.

Two performance measures, the average cycle time and cycle time standard deviation,
are considered. To evaluate the effectiveness of the proposed methodology, production
simulation is also applied in this study. The remainder of this paper is organized as follows.
Section 2 is divided into two parts. The first part describes the application of FCM-FBPN
to estimate the remaining cycle time of a job. The fuzzy-neural DBD approach is then
detailed in the second part. To evaluate the effectiveness of the proposed methodology,
a real wafer fabrication factory is simulated in Section 3 as a test environment. The
fuzzy-neural DBD approach and some existing methods are then applied to schedule jobs
in the simulated wafer fabrication factory in Section 4. Some discussion points are also
made. Finally, the concluding remarks with a view to the future are given in Section 5.

2. Methodology. The variables are defined as follows.

(1) λ: the release rate.
(2) Ri: the release time of job i.
(3) Ui: the average factory utilization at Ri.
(4) UNi: the average utilization of the next workstation of job i.
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(5) Qi: the total queue length on the processing route of job i at Ri.
(6) QNi: The average utilization of the next workstation of job i.
(7) BQi: the total queue length before the bottlenecks at Ri.
(8) FQi: the total queue length in the whole factory at Ri.
(9) PTi: the processing time of job i at processing step k.
(10) WIPi: the factory work-in-progress (WIP) at Ri.

(11) D
(m)
i : the delay of the m-th recently completed job at Ri, m = 1 ∼ 3.

(12) CTEi: the estimated cycle time of job i.
(13) CTi: the cycle time (actual value) of job i.
(14) ICTEikf : the estimated interval cycle time from step k to step f of job i.
(15) SCTEik: the estimated step cycle time of job i until processing step k.
(16) SCTik: the step cycle time (actual value) of job i until processing step k.
(17) RCTEik: the estimated remaining cycle time of job i at processing step k.
(18) RCTik: the remaining cycle time (actual value) of job i at processing step k.

2.1. Step 1: estimating the remaining cycle time with FCM-FBPN. In the
proposed methodology, the remaining cycle time of a job needs to be estimated, for this
purpose the FCM-FBPN approach proposed by Chen et al. [15] is applied. Unlike [15], the
FCM-FBPN approach is applied to estimate both the remaining cycle time and interval
cycle time of a job, as the two times are used in the fuzzy-neural DBD approach. With
more accurate remaining/interval cycle time estimation, the fuzzy-neural DBD approach
is expected to achieve a better scheduling performance.
In the FCM-FBPN approach, jobs (examples) are pre-classified into K categories with

FCM before they are fed into the FBPNs. FCM performs classification by minimizing the
following objective function:

Min
K∑
k=1

n∑
i=1

µm
i(k)e

2
i(k) (1)

whereK is the required number of categories; n is the number of examples; µi(k) represents
the membership of example i belonging to category k; ei(k) measures the distance from
example i to the centroid of category k; m ∈ (1,∞) is a parameter to increase or decrease
the fuzziness. The procedure of applying FCM to classify examples is

(1) Establish an initial classification result.
(2) (Iterations) Obtain the centroid of each category as

x̄(k) = {x̄(k)j} (2)

x̄(k)j =
n∑

i=1

µm
i(k)xij

/ n∑
i=1

µm
i(k) (3)

µi(k) = 1

/ K∑
l=1

(ei(k)/ei(l))
2/(m−1) (4)

ei(k) =

√∑
all j

(xij − x̄(k)j)2 (5)

where xij indicates the jth parameter in
{
LSi, Ui, Qi, BQi,WIPi, D

(1)
i , D

(2)
i , D

(3)
i

}
of example i; x̄(k) is the centroid of category k. Note that the buckets of an example
are not considered in classifying the example.

(3) Re-measure the distance of each example to the centroid of every category, and then
recalculate the corresponding membership.



A FUZZY-NEURAL DBD APPROACH FOR JOB SCHEDULING 4029

(4) Stop if the following condition is satisfied. Otherwise, return to Step (2):

max
k

max
i

∣∣∣µ(t)
i(k) − µ

(t−1)
i(k)

∣∣∣ < d (6)

where µ
(t)
i(k) is the membership of example i belonging to category k after the tth

iteration; d is a real number representing the threshold of membership convergence.

Finally, the separate distance test (S test) proposed by Xie and Beni [17] can be applied
to determine the optimal number of categories K:

Min S (7)

s.t. Jm =
K∑
k=1

n∑
i=1

µm
i(k)e

2
i(k), (8)

e2min = min
p6=q

(∑
all j

(x̄(p)j − x̄(q)j)
2

)
, (9)

S =
Jm

n× e2min

, (10)

K ∈ Z+

The K value minimizing S determines the optimal number of categories.
Subsequently, examples of different categories are then learned with different FBPNs

but with the same topology. The procedure for determining the parameter values of the
FBPN is described as follows. The configuration of the FBPN is established as follows:

(1) Inputs: 8 parameters associated with the nth example/job including LSi, Ui, Qi,

BQi, WIPi, D
(1)
i , D

(2)
i , and D

(3)
i . These parameters have to be normalized so that

their values fall within [0, 1]. Then some production execution/control experts are
requested to express their beliefs (in linguistic terms) about the importance of each
input parameter in estimating the cycle time (or step cycle time) of a job. Linguistic
assessments for an input parameter are converted into several pre-specified fuzzy
numbers. The subjective importance of an input parameter is then obtained by
averaging the corresponding fuzzy numbers of the linguistic replies for the input
parameter by all experts. The subjective importance obtained for an input parameter
is multiplied to the normalized value of the input parameter. After such a treatment,
all inputs to the FBPN become fuzzy numbers.

(2) Single hidden layer: Generally one or two hidden layers are beneficial for the con-
vergence property of the FBPN.

(3) Number of neurons in the hidden layer: 1 ∼ 16. The computing efficiency decreases
rapidly if the scale of the FBPN (including the number of the hidden-layer nodes)
increases. Nevertheless, a large number of the hidden-layer nodes are theoretically
beneficial to the estimation accuracy. For these reasons, the optimal number of the
hidden-layer nodes in the FBPN is chosen from the interval [1, 16] in the proposed
methodology.

(4) Output: The (normalized) estimated cycle time (or step cycle time) of the example.
(5) Network learning rule: Delta rule.
(6) Transformation function: Sigmoid function,

f(x) =
1

1 + e−x
(11)

(7) Learning rate (η): 0.01 ∼ 1.0.
(8) Batch learning.
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(9) Number of epochs per replication: 25000 ∼ 75000.
(10) Number of initial conditions/replications: 100.

The parameters used in the FBPN are defined:

(1) x̃i: the input to the ith input node.
(2) w̃h

ij: the connection weight between the ith input node and the jth hidden node.

(3) Ĩhj : the input to the jth hidden node.

(4) θ̃hj : the threshold on the jth hidden node.

(5) h̃j: the output from the jth hidden node.
(6) w̃o

j : the connection weight between the jth hidden node and the output node.

(7) Ĩo: the input to the output node.

(8) θ̃o: the threshold on the output node.
(9) õ: the network output (before defuzzification).

The procedure for determining the parameter values is now described as follows. After
pre-classification, a portion of the adopted examples in each category is fed as “training
examples” into the FBPN to determine the parameter values for the category. Two phases
are involved at the training stage. At first, in the forward phase, inputs are multiplied
with weights, summed, and transferred to the hidden layer. Then activated signals are
outputted from the hidden layer as:

h̃j =
1

1 + e−ñh
j

(12)

where

ñh
j = Ĩhj (−)θ̃hj (13)

Ĩhj =
∑
all i

w̃h
ij(×)x̃(i) (14)

h̃j’s are also transferred to the output layer with the same procedure. Finally, the output
of the FBPN is generated as:

õ =
1

1 + e−ño (15)

where

ño = Ĩo(−)θ̃o (16)

Ĩo =
∑
all j

w̃o
j (×)h̃j (17)

To improve the applicability of the FBPN and to facilitate the comparisons with con-
ventional techniques, the fuzzy-valued output õ is defuzzified according to Wrather and
Yu’s formula [19]:

d(õ) =

∫ 1

0

E(oα)dα (18)

where oα is the α cut of õ. Then the output o is compared with the normalized actual
cycle time (or step cycle time) a, for which the RMSE is calculated:

RMSE =

√√√√ ∑
all trained examples

(o− a)2

/
number of trained examples (19)
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Subsequently in the backward phase, the deviation between o and a is propagated back-
ward, and the error terms of neurons in the output and hidden layers can be calculated
respectively as:

δo = o(1− o)(a− o) (20)

δ̃hj = h̃j(×)(1− h̃j)(×)w̃o
jδ

o (21)

Based on them, adjustments that should be made for connecting weights and thresholds
can be obtained as:

∆w̃o
j = ηδoh̃j (22)

∆w̃h
ij = ηδ̃hj (×)x̃i (23)

∆θo = −ηδo (24)

∆θ̃hj = −ηδ̃hj (25)

To accelerate convergence, a momentum can be added to the learning expressions. For
example,

∆w̃o
j = ηδoh̃j + α(w̃o

j (t)− w̃o
j (t− 1)) (26)

Theoretically, network-learning stops when the RMSE falls below a pre-specified level,
or the improvement in the RMSE becomes negligible with more epochs, or a large number
of epochs have already been run. Then test examples are fed into the FBPN to evaluate the
accuracy of the network that is also measured with the RMSE. However, the accumulation
of fuzziness during the training process continuously increases the lower bound, the upper
bound, and the spread of the fuzzy-valued output õ (and those of many other fuzzy
parameters), and might prevent the RMSE (calculated with the defuzzified output o)
from converging to its minimal value. Conversely, the centers of some fuzzy parameters
are becoming smaller and smaller because of network learning. It is possible that a fuzzy
parameter becomes invalid in the sense that the lower bound is higher than the center.
To deal with this problem, the lower and upper bounds of all fuzzy numbers in the FBPN
will no longer be modified if Chen’s index [20] converges to a minimal value.

When a new job is released into the factory, the eight parameters associated with the
new job are recorded and compared with those of each category center. Then the FBPN
with the parameters of the nearest category center is employed to estimate the cycle time
(or step cycle time) of the new job.

The remaining cycle time of a job can be calculated as follows:

RCTEik = CTEi − SCTik (27)

At the same time, the interval cycle time can be expressed as:

ICTEikf = RCTEik −RCTEif (28)

If f is a recent bottleneck step, then ICTEikf determines the cycle time until the next
bottleneck.

2.2. Step 2: the fuzzy-neural DBD approach. In the DBD approach proposed by
Zhang et al. [5], different heuristics are used for scheduling jobs to non-bottleneck and
bottleneck workstations. The traditional DBD approach starts from the division of jobs
into several categories:

(1) The first priority category: Jobs will be marked as “hot jobs” and have the highest
priority for processing.

(2) The second priority category: including jobs of the following conditions:
(i) They are not “hot jobs”.
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(ii) The most recently average utilization of the next workstation (UNi) is greater
than Ub. Ub is a real-valued constant specified in advance.

(iii) The current queue length before the next workstation (QNi) is shorter than C1

* the capacity of the next workstation per hour. C1 is a positive integer.
According to conditions (ii) and (iii), the next workstation is clearly a weak bottle-
neck.

(3) The third priority category: including jobs of the following conditions:
(i) and (ii): the same as those in (2).
(iii) QNi is longer than C1 * the capacity of the next workstation per hour, but

shorter than C2 * the capacity of the next workstation per hour. C2 is a positive
integer.

In other words, the next workstation is a strong bottleneck.
(4) The fourth priority category: Jobs that are not classified into the first three categories

fall into this category.

An example is given in Table 1 to illustrate the classification of DBD. This classification
has the following problems:

(1) Many foundry factories work with more than two types of priorities, such as “nor-
mal”, “hot”, “super hot”. Such cases need to be expanded.

(2) Some empirical evidences are needed to determine the best values for all three pa-
rameters (Ub, C1, and C2).

(3) The values of Ub, C1, and C2 cannot be automatically adjusted based on the current
conditions in the factory.

(4) The classification by DBD is a crisp partitioning. As a result, jobs with similar
working conditions may be assigned to different categories. For example, in the
previous example if there are two jobs J1 and J2 and UN1 = 0.85, QN1 = 8, UN2 =
0.86, QN2 = 7, then J1 and J2 will be assigned to category 4 and 2, even if their
conditions are very similar.

Table 1. The classification of jobs by DBD

# Job no. Priority UNi QNi Category
1 295 Hot 88% 12 1
2 198 Normal 82% 9 4
3 288 Hot 88% 12 1
4 207 Normal 92% 14 4
5 128 Normal 86% 7 2
6 230 Normal 84% 10 4
7 144 Hot 83% 10 1
8 256 Normal 88% 11 3
9 292 Normal 92% 14 4

For these reasons, whether there is a more appropriate way to classify jobs for DBD
needs to be investigated. In this study, the following fuzzy partition method is proposed
instead:

(1) High priority categories: Undoubtedly, jobs with different priorities should be treated
separately. In other words, there will be at least one category with each priority,
such as “the normal priority (N) category”, “the hot priority (H) category”, “the
super hot priority (SH) category”, “the super super hot priority (S2H) category”.

(2) Normal priority categories: Jobs of “normal priority” are the most, and are further
divided into three sub-categories “the first normal priority (N1) category”, “the
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second normal priority (N2) category”, and “the third normal priority (N3) category”.
The memberships of a job belonging to these sub-categories are calculated as follows
(see Figure 1):

µN1(Ji) =
UNiQNi − 0.5max

k
(UNkQNk)− 0.5min

k
(UNkQNk)

0.5max
k

(UNkQNk)−0.5min
k

(UNkQNk)
(29)

µN2(Ji) =



UNiQNi −min
k

(UNkQNk)

0.5max
k

(UNkQNk)−0.5min
k

(UNkQNk))

if UNiQNi ≤ 0.5max
k

(UNkQNk)+ 0.5min
k

(UNkQNk)

UNiQNi −max
k

(UNkQNk)

0.5min
k

(UNkQNk)−0.5max
k

(UNkQNk)
otherwise

(30)

µN3(Ji) =
UNiQNi − 0.5max

k
(UNkQNk)− 0.5min

k
(UNkQNk)

0.5min
k

(UNkQNk)−0.5max
k

(UNkQNk)
(31)

Figure 1. The fuzzy partition by the fuzzy-neural DBD

After the application of the fuzzy partition method to the previous example, the results
are shown in Table 2. Thus, there is no need to determine the values of the parameters.
In addition, the classification system will be automatically adjusted to reflect the current
conditions of the factory. Jobs with similar conditions have similar membership function
values, and will be assigned to similar categories.

After job classification, in the traditional DBD the heuristics for different categories
are not the same:

(1) The first priority category: The heuristic for this category is a hybrid of CR and
FIFO. In other words, CR is first used to dispatch jobs in this category. Then, FIFO
is applied to break ties caused by CR.

(2) The second priority category: The shortest processing time until the next bottleneck
(SPNB), CR, and FIFO are jointly used for this category. SPNB is first used to
dispatch jobs in this category. CR is then applied to break ties caused by SPNB. If
there are still some ties not broken, FIFO will be applied to break them. In SPNB,



4034 T. CHEN

Table 2. The classification of jobs by the fuzzy partition method

# Job no. Priority UNi QNi µH µN1 µN2 µN3

1 295 hot 88% 12 1.00 0.00 0.00 0.00
2 198 normal 82% 9 0.00 0.00 0.41 0.59
3 288 hot 88% 12 1.00 0.00 0.00 0.00
4 207 normal 92% 14 0.00 1.00 0.00 0.00
5 128 normal 86% 7 0.00 0.00 0.00 1.00
6 230 normal 84% 10 0.00 0.00 0.70 0.30
7 144 hot 83% 10 1.00 0.00 0.00 0.00
8 256 normal 88% 11 0.00 0.00 0.99 0.01
9 292 normal 92% 14 0.00 0.90 0.10 0.00

the next bottleneck is usually a photolithography station. Jobs on it are usually
divided into separate wafers that are processed separately. Subsequently, all wafers
will be re-incorporated into the original job.

(3) The third priority category: This category uses SPT, CR, and FIFO to dispatch jobs
and break ties in order.

(4) The fourth priority category: CR and FIFO are used for this category.

The heuristics used in the traditional DBD have the following problems:

(1) Many ties are formed and need to be broken.
(2) Estimating and considering the future conditions are conducive to the scheduling

performance. However, all heuristics in DBD are only based on historical data, and
do not take such information into account.

(3) Some advanced dispatching rules have been proposed recently, and can be used to
replace the heuristics.

To solve these problems, in the proposed fuzzy-neural DBD approach we use the fol-
lowing dispatching rules instead:

(1) High priority categories (including H, SH, S2H, etc.): The dispatching rule used in
these categories is the 4f-biNFS rule:

SKi = (Ri −RCTEik + (RCTEik −min(Rj)) · f1) · α−f2 ·
(
i

λ
−RCTEik

+

(
RCTEik −

1

λ

)
· f3
)
·
(γ
λ

)−f4
·
(
(RCTEik −min(RCTEjl))

β

)−(f2+f4)
(32)

where α = max(Rj) − min(Rj); β = max(RCTEjl) − min(RCTEjl); γ = N − 1;
f1 ∼ f4 are positive real numbers satisfying the following constraints:

If f1 = 1 and f2 = 1, then f3 = 0, f4 = 0, and vice versa (33)

If f1 = 0 and f2 = 0, then f3 = 1, f4 = 1, and vice versa (34)

If f1a ≥ f1b and f2a ≥ f2b, then f3a ≤ f3b and f4a ≤ f4b (35)

If f1a ≤ f1b and f2a ≤ f2b, then f3a ≥ f3b and f4a ≥ f4b (36)

where (f1a, f2a, f3a, f4a) and (f1b, f2b, f3b, f4b) are two different sets of the four ad-
justable factors. There are many possible models to form such sets. For example,

Linear model: f1 = f2, f3 = f4, f1 = 1− f3 (37)

Nonlinear model: f1 = fk
2 , f3 = fk

4 , f1 = 1/f3, k ≥ 0 (38)

Logarithmic model: f1 = ln(1 + f2)/ ln 2, f3 = ln(1 + f4)/ ln 2, f1 = 1/f3 (39)



A FUZZY-NEURAL DBD APPROACH FOR JOB SCHEDULING 4035

The 4f-biNFS rule estimates the remaining cycle time, and is more able to respond to
factory conditions. In addition, through the appropriate integration of two nonlinear
fluctuation rules NFSMCT and NFSVCT, the 4f-biNFS rule is expected to reduce
the average cycle time and cycle time standard deviation at the same time. The four
adjustable factors in the 4f-biNFS rule can be customized for a specific factory. In
addition, the experimental results in Chen [8] and Chen and Wang [18] showed that
it was easy to reduce the number of ties by nonlinear fluctuation smoothing rules.

(2) The third normal priority category (N3): The dispatching rule used for the third
normal category is also the 4f-biNFS rule.

(3) The second normal priority category (N2): We use SCNB and 4f-biNFS together
for this category. SCNB is modified from the traditional SPNB by replacing the
processing time until the next bottleneck with the corresponding interval cycle time.
As mentioned earlier, such a treatment is conducive to the scheduling performance.

(4) The first normal priority category (N1): SPT and 4f-biNFS are used for job dis-
patching and tie breaking.

As a job may be classified into multiple categories with different memberships, the
dispatching results by different categories need to be aggregated:

OD(i) =
∑
all h

OD(i, h)µh(Ji) (40)

where OD(i) is the order of processing job i; OD(i, h) is the order of processing job i if
it belongs to category h. µh(Ji) is the membership of job i to category h.

After the application of the new rules to the previous example, the sequencing results of
all categories are summarized in Table 3. After aggregation, the final sequencing results
are shown in Table 4.

Table 3. The sequencing results of all categories

# Job no. Priority CTNBEi RCTEik Pik Ri H N3 N2 N1

1 295 hot 23 110 16 95 3
2 198 normal 2 155 16 47 3 2 5
3 288 hot 3 112 16 92 2
4 207 normal 7 156 13 51 4 3 2
5 128 normal 20 192 14 12 5 5 3
6 230 normal 9 146 16 63 2 4 4
7 144 hot 24 187 18 20 1
8 256 normal 1 128 12 76 1 1 1
9 292 normal 22 116 17 94 6 6 6

3. Production Simulation for Generating Test Data. A simulation system was
developed to simulate a wafer fabrication factory with the following assumptions:

(1) Jobs are uniformly released into the wafer fabrication factory.
(2) Distribution of interarrival time of machine breakdown is exponential.
(3) This study considers dynamic-product-mix cases.
(4) The percentage of jobs with different priorities released into the wafer fabrication

factory is controlled.
(5) The probabilities of processing a job on alternative machines at any given step are

all equal. In advanced wafer fabrication factories, some machines might be dedicated
to the operations of certain product types.
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Table 4. The final sequencing results

# Job no. Priority Order
1 295 hot 3
2 198 normal 6
3 288 hot 2
4 207 normal 5
5 128 normal 8
6 230 normal 7
7 144 hot 1
8 256 normal 4
9 292 normal 9

(6) A job cannot proceed to the next step until the fabrication on its every wafer has
been finished, except when the step is a measurement operation.

(7) No preemption is allowed.

The basic configuration of the simulated wafer fabrication factory is simplified from
a real-world wafer fabrication factory which is located in the Science Park of Hsinchu,
Taiwan. There are five products (labeled A ∼ E) in the simulated wafer factory. The
factory has a monthly capacity of 32000 wafers. The average utilization is about 90%.
About 43 jobs (1066 wafers) are released into the wafer fabrication factory every day.
Three types of priorities (normal, hot, and super hot) are randomly assigned to jobs in
the beginning. Percentages of jobs with these priorities released onto the shop floor are
restricted to approximately 80%, 18%, and 2%, respectively. Major products require 400
∼ 800 processing steps and 1 ∼ 9 reentrances to the machines that are the biggest bot-
tlenecks. In total 500 machines (including alternative machines) are provided to process
single-wafer or batch operations in the factory. Fifty replications of the simulation are run
successively. The proposed methodology was implemented on a PC with an Intel Dual
CPU E2200 2.2 GHz and 1.99G RAM. A horizon of twenty-four months is simulated with
the following conditions:

(1) The maximal cycle time is less than three months. Therefore, four months and an
initial WIP status (obtained from a pilot simulation run) seemed to be sufficient to
drive the simulation into a steady state. The statistical data were collected starting
at the end of the fourth month.

(2) For each replication, the data of 1000 jobs was collected and classified by product
type and priority. In total, the data of 50000 jobs were collected.

(3) A trace report was generated for every simulation run in order to verify the simulation
model.

(4) The simulated average cycle times were compared with the actual values to validate
the simulation model.

The FCM-FBPN approach was implemented with the Neural Network Toolbox of MAT-
LAB 2006a with the following conditions:

(1) Number of epochs per replication: 75000.
(2) Number of initial conditions/replications: 100.
(3) Stop training if MSE < 10−5 or 75000 epochs have been run.

4. Results and Discussions. To evaluate the effectiveness of the fuzzy-neural DBD
approach and to compare them with some existing approaches – FIFO, EDD, SRPT,
FSMCT, FSVCT, CR, and DBD were applied to schedule the jobs in the simulated wafer
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fabrication factory, and to collect the data from 50000 jobs which was then separated by
product type and priority. In total, the data of 12 ∗ 50000 = 600000 jobs were collected.
Then the average cycle time and cycle time standard deviation of jobs with every product
type and priority were calculated to evaluate the scheduling performance. The results are
summarized in Table 5 and Table 6.

Table 5. The performances of various approaches in reducing the average
cycle time

Average cycle
time (hrs)

A
(normal)

A
(hot)

A
(super hot)

B
(normal)

B
(hot)

C
(normal)

C
(hot)

FIFO 1324 412 334 1302 460 1438 580
EDD-5.0 1119 355 317 1444 480 1833 602
EDD-5.5 1095 360 305 1496 485 1895 632
EDD-6.0 1064 365 307 1549 501 1932 604
EDD-6.5 1069 363 309 1579 493 1950 586
EDD-7.0 1029 369 308 1612 513 2008 595
EDD-7.5 1015 365 310 1675 503 1974 609
SRPT 973 368 323 1800 487 2021 594
CR-5.0 1159 367 306 1569 481 1938 562
CR-5.5 1210 369 308 1548 496 1948 567
CR-6.0 1220 375 313 1619 459 1964 558
CR-6.5 1259 396 313 1684 497 2017 561
CR-7.0 1346 377 307 1773 494 1970 566
CR-7.5 1442 393 312 1911 508 1831 559
FSMCT 1414 407 323 1438 444 1366 497
FSVCT 1084 392 324 1774 541 1913 626
DBD-5.0 1031 349 297 1501 463 1709 563
DBD-5.5 1073 357 301 1537 450 1731 547
DBD-6.0 1059 355 302 1524 457 1799 543
DBD-6.5 1084 358 294 1566 456 1729 544
DBD-7.0 1063 362 292 1570 446 1750 550
DBD-7.5 1079 358 303 1587 454 1740 558

The proposed
methodology

848 294 257 1202 391 938 450

In FIFO, jobs were sequenced on each machine first by their priorities, then by their
arrival times at the machine.

In EDD, jobs were sequenced first by their priorities, then by their due dates. The
performance of EDD is dependent on the way of determining the due date of a job. In
the experiment, the due date of a job was determined as follows:

Due date = release time + (ψ − 1.5 ∗ priority) ∗ total processing time (41)

where ψ indicates the cycle time multiplier. Although EDD is aimed at improving due-
date related performance, it is also investigated because the due date of a job places a
threshold on the cycle time of the job. Nevertheless, a tighter due date does not guarantee
a shorter cycle time. For this reason, trying various approaches of determining the due-
date to optimize cycle-time related performance is a reasonable attempt.

In FSMCT, there were two stages. First, jobs were scheduled with the FIFO policy,
for which the remaining cycle times at each step of all jobs were recorded and averaged.
Then, the FSMCT policy was applied to schedule jobs based on the average remaining
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Table 6. The performance of various approaches in reducing cycle time variation

Cycle time standard
deviation (hrs)

A
(normal)

A
(hot)

A
(super hot)

B
(normal)

B
(hot)

C
(normal)

C
(hot)

FSVCT 324 35 28 227 55 295 54
FIFO 56 24 23 88 40 74 31

EDD-5.0 133 26 24 51 40 134 23
EDD-5.5 105 35 17 60 28 149 61
EDD-6.0 103 32 22 42 50 146 34
EDD-6.5 90 26 20 38 53 143 37
EDD-7.0 85 24 13 35 48 144 34
EDD-7.5 75 30 17 43 42 154 34
SRPT 249 33 23 108 30 253 38
CR-5.0 69 30 19 58 38 147 38
CR-5.5 64 26 15 54 51 160 53
CR-6.0 63 37 16 50 34 138 55
CR-6.5 65 43 16 35 52 145 70
CR-7.0 79 47 14 16 42 169 43
CR-7.5 98 50 12 25 35 193 49
FSMCT 42 44 23 35 29 81 34
DBD-5.0 136 25 19 77 29 156 30
DBD-5.5 134 24 18 76 32 156 33
DBD-6.0 134 26 18 75 28 154 34
DBD-6.5 133 28 18 72 32 155 38
DBD-7.0 137 29 18 68 31 158 31
DBD-7.5 141 29 18 70 30 164 33

The proposed
methodology

68 25 14 41 13 117 24

cycle times obtained previously. In other words, jobs were sequenced on each machine
first by their priorities, then by their slack values, which was equal to their release times
minus the average remaining cycle times.
In CR, jobs were sequenced first by their priorities, then by their critical ratios. The

critical ratio of a job is calculated as follows:

Critical ratio = (time− due date)/remaining processing time (42)

The performance of CR is dependent on the way of determining the due date of a job.
Equation (41) is applied for this purpose.
In the proposed methodology, various combinations of the four parameters were tried

to optimize the performance.
With respect to the average cycle time, the FIFO policy was adopted as the basis for

comparison. On the other hand, the FSVCT policy was adopted as the comparison basis
with respect to cycle time standard deviation.
The effectiveness of the proposed methodology with respect to various performance

measures is illustrated in Figures 2 and 3. According to the experimental results, the
following points can be made:

(1) An example is used to illustrate the effects of replacing SPNB by SCNB in the fuzzy-
neural DBD approach. The results are shown in Figure 4 and Figure 5. Obviously,
this attempt was successful, especially when it came to the average cycle time.
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Figure 2. The performances of various approaches in reducing the average
cycle time

Figure 3. The performances of various approaches in reducing cycle time
standard deviation

Figure 4. The effects of replacing SPNB by SCNB (with respect to the
average cycle time)
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Figure 5. The effects of replacing SPNB by SCNB (with respect to cycle
time standard deviation)

(2) Through the use of 4f-biNFS instead of CR+FIFO, the improvements in both per-
formance measures were also significant, due to the bi-criteria nature. Figure 6 and
Figure 7 illustrate this fact. However, the advantage of 4f-biNFS over CR+FIFO
seemed more obvious when cycle time standard deviation was optimized, which was
more or less in line with Chen et al.’s study.

Figure 6. The effects of using 4f-biNFS instead of CR+FIFO (with re-
spect to the average cycle time)

Figure 7. The effects of using 4f-biNFS instead of CR+FIFO (with re-
spect to cycle time standard deviation)
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(3) With respect to the average cycle time, the fuzzy-neural DBD approach was better
than the baseline approach, the FIFO policy, in all cases with an average advan-
tage of 24%. In Chen et al.’s study, nonlinear fluctuation smoothing rules reduced
the average cycle time more than the traditional fluctuation smoothing rules. It is
reasonable to believe that the same improvement is also possible to achieve by the
proposed fuzzy-neural DBD approach.

(4) As in the traditional DBD approach, controlling the flow of jobs into the bottleneck
workstations were proven to be very effective in reducing the average cycle times in
the fuzzy-neural DBD approach.

(5) At the same time, the fuzzy-neural DBD approach has also made a very good perfor-
mance in reducing cycle time standard deviation. The fuzzy-neural DBD approach
surpassed the baseline p-FSVCT policy clearly in all cases with an average advan-
tage of 62%, indicating that the same treatments also reduced the fluctuation in
cycle time and improved the performance of the traditional DBD policy.

(6) Due date determination is required in the traditional DBD approach, but the algo-
rithm presented here does not require such a step.

(7) As expected, SRPT performed also well in reducing the average cycle times, but
might give an exceedingly bad performance with respect to cycle time standard
deviation. Among various EDD rules, the performance of EDD-5.0 was the best in
reducing the average cycle times, while EDD-7.0 was the best choice if cycle time
standard deviation was to be minimized.

To ascertain whether there were significant differences between the performance of the
proposed methodology and those of the existing approaches, a Wilcoxon sign-rank test
was applied to test the following hypotheses:

Ha0: The performance of the fuzzy-neural DBD approach is the same as those of the
traditional approaches with respect to the average cycle time.

Ha1: The performance of the fuzzy-neural DBD approach is better than those of the
traditional approaches with respect to the average cycle time.

Hb0: The performance of the fuzzy-neural DBD approach is the same as those of the
traditional approaches with respect to cycle time standard deviation.

Hb1: The performance of the fuzzy-neural DBD approach is better than those of the
traditional approaches with respect to cycle time standard deviation.

The results of hypothesis testing are summarized in Table 7. With respect to the
average cycle time, the performance of the fuzzy-neural DBD approach was significantly
better than those of the existing approaches. On the other hand, its advantage over
sixteen existing approaches on reducing cycle time standard deviation was also statistically
significant.

5. Conclusion and Directions for Future Research. This study presents a fuzzy-
neural DBD approach to further improve the performance of job scheduling in a wafer
fabrication factory. The fuzzy-neural DBD approach is modified from the well-known
DBD approach after making some important changes. First, in the fuzzy-neural DBD
approach the boundaries of job categories are no longer rigid and inflexible by fuzzy par-
tition. Second, in the traditional DBD approach the remaining cycle time of a job is
usually estimated with the average historical value, while we apply the FCM-FBPN ap-
proach to improve the accuracy of estimation, which has been shown to be conducive to
the performance of job scheduling [12]. Third, some of the heuristics in the traditional
DBD approach have been replaced by more advanced and flexible dispatching rules, in-
cluding SCNB and 4f-biNFS.
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Table 7. The results of testing hypotheses using Wilcoxon sign-rank test

Approach Ha0 Hb0

FIFO Z = 2.37∗∗∗ Z = 0.51
EDD-5.0 2.37∗∗∗ 2.03∗∗

EDD-5.5 2.37∗∗∗ 2.28∗∗

EDD-6.0 2.37∗∗∗ 2.37∗∗∗

EDD-6.5 2.37∗∗∗ 2.03∗∗

EDD-7.0 2.37∗∗∗ 1.44
EDD-7.5 2.37∗∗∗ 2.37∗∗∗

SRPT 2.37∗∗∗ 2.37∗∗∗

CR-5.0 2.37∗∗∗ 2.28∗∗

CR-5.5 2.37∗∗∗ 1.77∗

CR-6.0 2.37∗∗∗ 1.94∗

CR-6.5 2.37∗∗∗ 1.52
CR-7.0 2.37∗∗∗ 1.52
CR-7.5 2.37∗∗∗ 1.77∗

FSMCT 2.37∗∗∗ 0.00
FSVCT 2.37∗∗∗ 2.37∗∗∗

DBD-5.0 2.37∗∗∗ 2.37∗∗∗

DBD-5.5 2.37∗∗∗ 2.20∗∗

DBD-6.0 2.37∗∗∗ 2.37∗∗∗

DBD-6.5 2.37∗∗∗ 2.37∗∗∗

DBD-7.0 2.37∗∗∗ 2.28∗∗

DBD-7.5 2.37∗∗∗ 2.28∗∗

To assess the effectiveness of the fuzzy-neural DBD approach, and compare it with
some existing methods, a real wafer fabrication factory was also simulated, and then
the proposed methodology and seven existing approaches (with their variants) were all
applied to job scheduling in the simulated wafer fabrication factory. According to the
experimental results, some remarkable conclusions are mentioned as follows:

(1) The scheduling performance (measured in terms of the average cycle time) of the
proposed methodology was significantly better than that of some existing approaches.

(2) At the same time, the proposed methodology also outperformed these existing ap-
proaches in cycle time standard deviation.

(3) Controlling the flow of jobs into bottleneck workstations once again proved to be
very important to the performance of job scheduling in both the average cycle time
and cycle time standard deviation.

The advantages of the proposed methodology over the existing approaches include:

(1) The fuzzy-neural DBD approach outperformed the seven existing approaches in re-
ducing the average cycle time and cycle time standard deviation at the same time,
for which the bi-criteria dispatching rule 4f-biNFS played a key role.

(2) The traditional DBD approach incorporates CR, and therefore needs to determine
the due date of each job, which is not necessary for the fuzzy-neural DBD approach,
because it replaces CR by 4f-biNFS. The performance of the traditional DBD is also
limited by the suitability of the due date setting method. In the fuzzy-neural DBD
approach, the drawback does not exist.

Conversely, the possible deficiencies of the proposed methodology include:
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(1) Long time is required for estimating the remaining cycle time in the proposed
methodology. To tackle this problem, a dedicated software package can be developed
in the future for implementing the proposed methodology.

(2) Even the linguistic set for forming fuzzy partition should be selected carefully [21-
31]. Lack of a better way to pick up the linguistic set may harm the performance of
scheduling.

Replacing the parts in the fuzzy-neural DBD approach to further improve the scheduling
performance can be tried in future research.
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