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ABSTRACT. In field-oriented induction machines, an accurate flux estimation is crucial
for high-performance speed control. However, the flux estimation is sensitive to parame-
ter variations such that the control performance will be deteriorated. This paper presents
a novel flux observer, fractional order integral sliding-mode (FOISM) fluzx observer, to
estimate the d- and q-azxis fluzes in the stationary reference frame. The closed-loop sta-
bility is guaranteed by employing the Lyapunov stability theory. FEssential properties of
fractional operators are also discussed for realizing fractional order integrations and dif-
ferentiations properly. In addition to numerical analyses and simulations, a DSP/FPGA
based experimental platform is set up to evaluate the feasibility of the proposed control
framework. Simulation results indicate that the use of fractional-order schemes leads to
better results than the counterparts of integer-order approaches. Also, experimental re-
sults demonstrate that the desired speed and flux tracking of an induction machine can
be performed by utilizing the FOISM flux observer.

Keywords: Fractional order, Integral sliding-mode, Flux observer, Field-oriented con-
trol, Induction motor, DSP/FPGA

1. Introduction. Because of highly nonlinear characteristics, coupling and time-varying
dynamics, the control of induction motors is much more difficult than the counterpart of
DC motors. In this context, the field-oriented control scheme, also called the vector
control, makes the control of AC motors equivalent to that of separately excited DC
motors by employing certain coordinate transformations and decoupling manipulations
[1]. The control performance of sensorless field-oriented induction motors mainly relies
on an accurate flux estimation. In practice, rotor fluxes are preferred to be estimated
rather than directly measured. It is true that the inaccuracy of estimated fluxes causes a
performance degradation of speed control. Current model (CM) and voltage model (VM)
are two typical flux observers with the advantage of computation simplicity [2]. However,
due to the sensitivity of parameter variations, CM and VM observers were respectively
operated in low- and high-speed ranges [3]. The estimation accuracy and robustness of
flux observers have attracted considerable attention in high performance induction drives.
Using the measurements of stator currents and rotor speeds, a reduced-order flux observer
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was utilized for the speed control of induction motors [4]. Hilairet et al. [5] proposed a
two-stage extended Kalman filter for the flux and speed estimation of induction motors.

Variable structure systems with the sliding-mode (SM) method can offer some inter-
esting features, including the robustness to parameters variations, insensitivity to distur-
bances and fast dynamics [7-9]. During the motion on a sliding surface, system responses
are based on the derivative of the sliding surface that can result in an invariance property
against uncertainties [10-12]. Moreover, the system trajectories in the integral sliding-
mode (ISM) scheme can be established without a reaching phase, and the robustness
subject to parameter variations and disturbances is guaranteed starting from the ini-
tial time instance [13-15]. Recently, the ISM method has been successfully applied to
high-performance induction motor drives. For example, Hajian et al. [12] introduced
a sliding-mode speed controller with two proportional-integral type sliding surfaces, in
which an on-line search method was adopted to minimize the average real input power;
In the work of Comanescu et al. [13], two ISM controllers were utilized to overcome the
effect caused by the cross-coupling of d-¢ current dynamics. In order to obtain more
accurate responses, the closed-loop framework was suggested to minimally rely upon the
features of induction motors [14]. Besides, the computational complexity resulted from
the iterative calculations between flux and speed estimations will degrade the control
performance. Approaches of [12, 13] required the speed information and the rotor time
constant of induction motors for flux estimates. The precision of flux estimation might be
affected by the iterative calculations of estimated speeds and the variation of rotor time
constants, which will consequently decrease the control performance of induction motors.

In most cases of sliding manifolds, a proportional-integral or proportional-derivative
type sliding surface is adopted, where the order of integration or derivation is an integer.
However, subject to the increasing system complexity, integer-order operators may be un-
able to meet the required performance and robustness of concern. There is a significant
demand for a better flux estimation. The fractional calculus provides a possible approach
due to the fact that the behaviors of many physical systems can be properly described by
using the fractional-order system theory [15]. By adopting the concepts of fractional order
calculus, it could have the advantages of adequate description of system dynamics, less
sensitive to parameter variations, and reasonable realization by approximations [16, 17].
It was presented that the fractional order calculus could be applied to solving control
problems and enhancing control performance [18]. Moreover, Podlubny [19] introduced
the geometric and physical interpretations of fractional integration and differentiation.
Compared with integer-order controllers, fractional order controllers can provide better
responses regarding to external disturbances and parameter variations [20]. Applications
of fractional order sliding-mode strategies have been widely addressed in different areas.
For instance, Delavari et al. introduced a fractional-order P D surface sliding mode con-
troller for a coupled second-order nonlinear system [21]; In the work of Calderén et al. [22],
a fractional order sliding-mode control scheme was proposed to determine the switching
surface of a DC/DC buck converter.

The accuracy of the flux estimation is sensible to the desired performance of field-
oriented induction motors. It is motivated to provide a better formulation of the flux
observer to achieve high-precision speed control. An ISM flux observer is introduced,
where the estimated speed and the rotor time constant are not fed into the flux observer
directly. Thus, this observer is insensitive to the errors in both speed estimation and
rotor time constant. In this paper, a fractional-order integral sliding-mode (FOISM)
flux observer is proposed for field-oriented induction motors. In the proposed scheme, the
deviations between observed and measured stator currents are utilized to define the sliding
surface. Accordingly, the FOISM control law is designed and the system convergence is
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guaranteed by the Lyapunov theorem. Furthermore, a DSP/FPGA based experimental
system is set up to evaluate the feasibility of proposed works.

The organization of this paper is as follows. Section 2 briefly describes the dynamic
model of induction motors and the concepts of fractional order calculus. In addition,
the approximation of fractional order operators and related numerical analyses are also
represented. In Section 3, the design of a FOISM flux observer is addressed, in which the
stability analysis based on the Lyapunov stability theorem is considered. Also, the speed
estimation of the induction motor is discussed. Thereafter, simulations and experimental
results are provided in Section 4 and Section 5, respectively. Finally, concluding remarks
and future works are given in Section 6.

2. Preliminaries.

2.1. Dynamic model of induction motors. It is noted that the mathematical model
of a field-oriented induction motor is highly nonlinear. Based on the concept of vector

control, the state equations of an induction motor in the stationary reference frame can
be described as [23]

s ] noow | [ &5, 5 5 vl
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where k; = ki”Ler, ko = U}%S, ks = %LS and n = %:. In (1) and (2), i, ¢, v, R and L are the
current, flux, voltage, resistance and inductance, the superscript s means the component
in the stationary reference frame, subscripts d and ¢ denote components of d- and g-axis,
subscripts 7 and s mean the rotor and stator. In addition, L,, is the mutual inductance
between the rotor and stator, o is the total flux leakage coefficient, and w, is the electrical

angular speed of the rotor, respectively.

2.2. Fractional order calculus. Fractional order calculus, developed from ordinary cal-
culus, is a generalization of the integration and differentiation to the non-integer (frac-
tional) order generalized operator ,Df, in which a and ¢ are limits and ¢ is the order of the
operator. This operator is a notation for both the fractional derivative and the fractional
integral in a single expression, which can be represented as follows [15, 24]:

dq
— >0
dia’ q
oDf = 1, q¢=0 (3)

[Hdr)=, ¢<0

Two general fractional order integral /differential operations are commonly discussed, Ca-
puto and Riemann-Liouville (R-L) fractional operators. Physically, the R-L fractional
operator has initial value problems [25]. Therefore, the Caputo fractional operator is
more practical than the R-L one. In this work, the Caputo fractional operator is adopted

for system modeling and analyzing, in which the fractional order differential equation of
f(t) is defined as follows:

. 1 b fm)
ath(t):F(m_q)/a (t—r)gl)—de’ VOo<m-1<g<m,meN (4)
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where T'(e) is the Euler’s gamma function, and m is the first integer which is not less
than ¢. The Laplace transform of the Caputo differential equation can be described in
the following

L{oDif(t)} = s"F(s) Zsm RFE(0). (5)

In (5), it is observed that only integer-order operators are involved in the derivative of
function f(t) at the initial point. Without loss of generality, the initial state and input
of system dynamics are considered as zeros. Therefore, the Laplace transformation of the
Caputo differential equation for zero initial conditions with a fractional order A can be
rewritten as follows:

L{oD} (1)} = s"F(s) (6)
where 0 < A < 1. Intuitively, the fractional-order modeling can give a more adequate
description of complex system features, and then a better performance can be obtained
with a proper choice of orders. In the rest of this paper, a simplified notation D* is
utilized to represent the fractional order operator, D* = (D).

2.3. Approximation of fractional operators. For practical realizations, transfer func-
tions with fractional order integral/differential operators are usually approximated by
integer-order transfer functions, in which a close enough behavior is acquired with less
complexity. Referring to [22], the implementations of fractional order controllers can be
categorized into two approaches, the analog approximation and the digital approximation.
For example, let [w4,wp] be the frequency range of concern. To obtain a proper ap-
proximation of a fractional order differential operator, high- and low-transitional frequen-
cies are chosen as w;, > wp and w; < wy, respectively. Then, the approximation of a
frequency-band fractional order differential operator can be determined as [26, 27]

A N ’
S/\ ~ (ﬂ) H 1+ S/C‘)k (7)
wy) 2o 1+ s [ wy,

k+N+1/2—)/2 E+N+1/24X1/2

, Wh 2N+1 Wh 2N +1
W =wp | — y W =wp | —
wy wy

where w;ﬁ is the zero of rank k, w is the pole of rank k£, 2N + 1 is the number of zeros
and poles, w, = (w; - wp,)'/? and A > 0. Similarly, the case of A < 0 can be dealt with by
swapping the numerator and denominator of (7).

2.4. Numerical analyses of fractional order operators. In this paper, a FOISM
flux observer is approximately formulated with a bounded-frequency transfer function. In
practice, the approximate transformations of fractional order operators are related to a
frequency truncation. Intuitively, the degree of approximation of a fractional order op-
erator is related to chosen transitional frequencies and the order N. It can be expected
that a better approximation can be obtained with a larger N. However, the computation
complexity will be increased with the increasing of N. On the other hand, with a fixed NV,
characteristics related to chosen bounded frequencies are also interested. In this study,
both fractional order integral and differential operators are contributed to sliding-mode
control actions. Therefore, the approximation of fractional order operators with differ-
ent parameter settings is worthy of further investigation. Without loss of generality, the
transfer function s™ 4+ s7*1 X\ = 0.5 is selected to discuss the approximate modeling.
With N = 3, high- and low-transitional frequencies are respectively selected as:

1) Case 1: wy, = 10? rad/sec and w; = 1072 rad/sec,



FRACTIONAL ORDER INTEGRAL SLIDING-MODE FLUX OBSERVER 4855

Bode Diagram
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FI1GURE 1. Frequency responses of the approximations to the transfer func-
tion 579 4 59 with different transitional frequencies

2) Case 2: wy, = 10° rad/sec and w; = 1073 rad/sec,
3) Case 3: wy = 10* rad/sec and w; = 10~ rad/sec.

From (7), the approximate transfer functions of the fractional operator s%° correspond-
ing to aforementioned cases are summarized in Table 1. It is noticed that the approximate
transfer function of s7%% is the inverse function of s%. Frequency responses of the approx-
imate transfer functions of s~ + 5% with different transitional frequencies are depicted
in Figure 1. It can be seen that there exist significant approximation errors outside the
selected range transitional frequencies. Thus, to obtain a better approximation in the
viewpoint of frequency responses, a wider range of [w;,wp] is adopted. In this paper,
the induction motor is driven by a sinusoidal pulse-width modulation (SPWM) inverter
of which the switching frequency is 10 kHz. Regarding to the switching frequency, the
transitional frequencies for the approximation of integral/differential operators are set to
wp = 10* rad/sec and w; = 10~* rad/sec.

Remark 2.1. Certain approximations can be obtained with selected high- and low-transiti-
onal frequencies. With regard to the feasibility of implementation and the accuracy of
approximation, the transitional frequency range needs to be selected adequately according
to the characteristics of controlled plants.

3. Flux and Speed Estimation. From (1) and (2), the conventional sliding-mode cur-
rent model flux observer can be represented as follows [28]:

Seafy]efE] 2]
15 q qu qu

qs
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TABLE 1. Approximations of s% with various transitional frequencies

Case 1: 05 ~ %10+ 5/0.0139)(1 + 5/0.0518) (1 + 5/0.1931)(1 + 5/0.7197)(1 + 5/2.6827) (1 + 5/10.0000) (1 + 5/37.2759)
© ¥ ¥ 711 5/0.0268)(1 + 5/0.1000)(1 + 5/0.3728)(1 + 5/1.3895)(1 + 5/5.1795)(1 + 5/19.3070)(L + 5/71.9686)

Clase 2: 05 x 0-0316(1 +5/0.0016)(1 + 5/0.0118)(1 + 5/0.0848)(1 + 5/0.6105)(1 + 5/4.9340) (1 + 5/3.6228) (1 + 5/227.5846)
©% ¥ (14 5/0.0044)(1 + 5/0.0316)(1 + 5/0.2276)(1 + 5/1.6379)(1 + s/11.7877)(1 + 5/84.8343)(1 + 5/610.5402)

Case 3: 05 o 0-0L(L+5/0.0002)(1 + 5/0.0027)(1 + 5/0.0373) (1 + 5/0.5179)(1 + 5/7.1969) (1 + 5/100.0000) (1 + 5/1389.4955)
. S ~
(1 + 5/0.0007)(1 + 5/0.0100) (1 + 5/0.1389)(1 + 5/1.9307)(1 + 5/26.8269) (1 + 5/372.7594) (1 + 5/5179.4747)

][] g

qr
in which terms ¢4 and 1, can be obtained as

(L s]E ]

Referring to (2), (9) and (10), it can be seen that the flux estimation could be affected
by parameter variations of R, and L,. In this paper, a FOISM observer is proposed to
improve the performance of flux estimation. Based on the current errors, i) = i}, — ij,,

Iy = lgs — lgs» between measured and estimated stator currents, the sliding surface of the
FOISM flux observer is defined as

S — |:8d:| _ |:CIEZ+CQDA€Z:| (11)

s —A7s
Sq Crig + co D iy

where ¢, and ¢, are positive constants. In (11), D~ is considered as a fractional order
integral operator with A € (0,1]. From (10) and (11), the derivative of S can be derived
as follows:

S:q[@—@

Z’S

=s
21| g
s + 02D |: g :|
— 3 )
qs qs a

M : _ i
:Clk1|::zj:|+61kl|:N :| —Clk2|:%si:|+CQD >\+1|:%

» QW

Jor 2]

where M = —ng¢j,. — wrdy, + nlnig, N = w05, — 1oy, + nlyiy, and M, N are pre-
determined based on the rated rotor speed, electrical parameters and the reference values
of rotor fluxes. Derivations of ¢; and 1), are discussed in the following. Let V = %STS
be a Lyapunov function candidate. Then the derivative of V' can be obtained as follows

vV =98"S
M s B s
:ST{Clkl{zz}—i‘Clkl{N:|—Clk2|:ég:|+CQD )\+1|:§g:|} (13)

Assume that max ek, M| < Qq < 00 and max |k N| < @, < oo. It can be obtained

that sq - max |c ki M| < sq - sign(sq)Qa and s, - max ek N| < s, - sign(s,)Qq- Thus (13)
can be rewritten as

V< S Lok wd]_ 5 {@ N DfHa[g]_+[swn@@Qd]} y
{Cl 1 |: wq C1R2 ZZ - Co ZZ SZgn(Sq)Qq ( )
From (14), the stabilizing control law can be determined as

] e ] -t [simtea ] ey [5] (15)

Ve |k iq B ciky | sign(sg)
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where

sign(s;) = { s;i/|s;l, if s; #0

0, otherwise

J € {d,q} and uq is a positive constant gain.

Theorem 3.1. The sliding mode of an induction motor using the proposed FOISM flux
observer is guaranteed if the constant gain uy of the control law (15) is satisfied with
Uy > nlaX[ng,Cqu

Proof: Substituting ¢4 and v, of (15) into (14), it gives that

V< [ Sq ]T (_ [ Uug - 51gn(84) ] + [ sign(sa)Qua ])
= | s ug - sign(s,) sign(sq)Qq
= —[s4- sign(sa)(uo — Qa) + s¢ - sign(se) (uo — Qy)]
By the assumption ug > max [Qg4, @], it can be obtained that uy—Qg > 0 and uy—Q, > 0.
Also, it is noted that s4 - sign(sq) > 0 and s, - sign(s,) > 0. Therefore, we can conclude
that ¥ < 0, and the sliding mode of the FOISM flux estimation is guaranteed. O
In summary, the convergence of the flux observer can be ensured by selecting a large
enough ugy subject to ug > max [Qg, Q,]. However, an excessively large uy may produce a
high control signal that could result in saturated driving. When system trajectories reach
to the sliding surface, i.e., S = [O,O]T, d- and g¢-axis observed currents will converge to
actual currents. Accordingly, errors of flux estimation will also tend to zeros.
It is well known that the sliding-mode method suffers from the problem of chattering,
which can excite unexpected high frequency responses. In this paper, a saturation function
is adopted to eliminate the chattering effect as follows [29]:

N _ ) sign(sj/e), if [sj/e| > 1 .
sat(s;) = { sife , if |s;/e| <1 7 j€{d q} (16)

where € > 0 represents the thickness of the boundary layer, as shown in Figure 2. From
(15) and (16), the FOISM flux observer with a saturation function can be described as
follows:

(17)

[ " ] = [ — gt sat(sa) + iy — DT
Vg Luy - sat(s,) + %22 — 2D
Remark 3.1. The integral sliding-mode (ISM) flux observer can be considered as a special
case of the proposed FOISM flux observer, in which X\ is set to 1.

c1k1

Remark 3.2. All the terms associated with the speed and rotor time constant are embedded
in restrictive and bounded terms, which are replaced by a constant gain. The rotor speed
and time constant are not fed into the flux observer directly, that makes the fluz estimation
insensitive to the iterative calculations of the estimated speed and the variations of the
rotor time constant of induction motors.

Remark 3.3. Given 0 < X\ < 1, it can be obtained that —\+1 € [0,1). Thus, from (17),
the proposed control actions consist of fractional order differential terms. In fact, both
operations of fractional order integral and differential operators are embedded in control
actions, where integral terms are inherited in sliding surfaces, sq and sq.

The estimated rotor speed of an induction motor is derived from the flux estimation.
From (10), the speed estimation can be obtained in the following:

IRERIEI AN
qr qs



4858 Y.-H. CHANG, C.-I WU, H.-W. LIN, H.-C. CHEN AND C.-W. CHANG

sat(s,€)
A

FIGURE 2. The diagram of the saturation function
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FiGURE 3. The block diagram of the proposed scheme

From (18), the estimated speed of an induction motor can be described as follows:

o = Detba = 1l (13,53 — 1064 )

Oy —= — (19)
(82) + (4)
2
Arm:_Ar 20
w pr (20)

where N, is the number of poles and @,, is the estimated mechanical angular speed of
the rotor. Consequently, the block diagram for a sensorless field-oriented induction motor
with the proposed FOISM flux observer is depicted in Figure 3, where the superscript e
denotes components in the reference coordinate frame of the rotor flux.

4. Simulation Results. In this paper, a three-phase 0.1 kW squirrel cage induction
machine is used, whose parameters are shown in Table 2. Simulations are performed
in Matlab to validate the performance of the proposed FOISM observer. Four types
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TABLE 2. Parameters of the induction motor

Parameter | R; ()| J (kg m?) N, | L, (H) | rated current (A) | rated speed (rpm)
Value 28.72 0.0001 2 0.7262 1.05 3000
Parameter | R, () | B (m/rad-s) | Ls (H) | L, (H) | rated voltage (V)
Value 15.89 0.000692 0.7262 | 0.6817 105

TABLE 3. Speed command evolution [30]

Time interval | Speed commands

0—0.5 The speed command starts from zero at ¢t = 0 s.
0.5—-5 A step command, 900 rpm, is applied at ¢t = 0.5 s.
5—38 A speed command starts from 900 rpm to 720 rpm at t = 5 s.

8§ —11 A speed command starts from 720 rpm to 1080 rpm at t = 8 s.
11—-14 A constant speed command of 900 rpm is applied at £t = 11 s.
A sine function 180 x sin(2¢) is added to the previous constant
14 —17.14
speed command at ¢t = 14 s.
The speed command of 900 rpm is kept in the rest time of the
simulaution.

17.14 — 20

of flux observers, CM [2], SM [28], ISM [12] and FOISM, are considered, in which the
speed, flux and current controllers will remain identically. Following the proposed design
procedures, the coefficients of related controllers and observers are summarized in Table
4. To verify the superiority of the proposed FOISM observer, various speed commands
are applied while keeping a constant nominal load torque at 0.3 Nt-m. The step, in-
creased/decreased and sine wave speed commands are applied and specified in Table 3
[30], in which steady-state, transient and tracking responses of presented flux observers
can be revealed. Simulation results of aforementioned observers are shown in Figures 4-7,
in which the speed response, speed error, rotor flux and g-axis current error are depicted.
It is noted that the FOISM observer can provide a better flux response than other ob-
servers. Furthermore, the consequently speed tracking regarding to the proposed FOISM
observer is more accurate than the other mentioned observers. Also, the performance
validations of speed and flux control can be indicated by the convergences of the speed
and ¢-axis current.

5. Experimental Results. In this paper, control responses of flux and speed tracking
are mainly addressed, where flux observers are utilized in the presence of different speed
commands and load conditions. Experimental results are presented by calculating the
root-mean-square (RMS) values of tracking errors. As shown in Figure 8, a DSP and
FPGA based experimental system with a sampling period of 1 ms is set up to validate
proposed results. In the experimental platform, the TMS320C6713 DSP board is used to
implement all control algorithms coded with C language and the Stratix EP1S25 FPGA
board is used to implement all functions of data bus, encoder, A/D converter and SPWM
inverter. The induction motor is a Nikki Denso NF21-3F three-phase squirrel cage ma-
chine (parameters have been given in Table 2). Currents are measured by using Hall
sensors. The external load torque is produced by a Mitsubishi ZKG-10AN powder clutch.
Coefficients of relative controllers and observers are the same as simulation, which have
been provided in Table 4. To highlight the feasibility and superiority of the proposed
control scheme, forward-reverse operations are implemented to validate the capability of
dealing with load disturbance, where extrogenous loads are applied on ¢ = 3, 13, 23, 33
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FIGURE 4. Simulation results corresponding to the CM flux observer: (a)
speed response, (b) speed error, (¢) rotor flux, (d) ¢g-axis current error

second and removed on t = 7, 17, 27, 37 second. In the meantime, the flux and load
torque commands are set to 0.22 wb and 0.3 Nt-m, respectively. Some of the control
responses of CM [2], SM [28], ISM [12] and FOISM flux observers on w;,, = 1800 rpm are
illustrated in Figures 9-12, including estimations of the rotor speed, estimations of d-axis
flux, the errors of d- and ¢-axis currents, and control efforts of d- and ¢-axes, respectively.
From these experimental results, it is apparent that d- and g-axis chatting phenomena
and current errors of the FOISM flux observer are smaller than counterparts of CM, SM
and ISM methods. Furthermore, the proposed flux observer can provide a better track-
ing accuracy of d- and g¢-axis flux estimations and consequent speed responses. About
the experimental results, it is noted that a better tracking performance of field-oriented
induction motors can be established if the accurate flux estimation is provided. With
regard to different speed commands, 500, 900 and 1800 rpm, transient responses of the
speed control with different load conditions are shown in Figures 13 and 14. It can be
observed that the instant speed error and recovery time of the FOISM flux observer are
the smallest among four estimation methods subject to load disturbances. Moreover, the
steady-state responses of speed and flux tracking are illustrated in Figures 15 and 16, re-
spectively. It is obvious that speed and flux tracking errors with the FOISM flux observer
are less than counterparts of other observers. From Figures 13-16, it can be summarized
that the proposed FOISM flux observer can provide much better control responses in both
transient and steady-state manners with various speed commands and extrogenous loads.

6. Conclusions. In this paper, an induction machine based on the sensorless field-
oriented control scheme is discussed, where the flux/speed estimation and tracking are
main subjects of concern. A fractional order integral sliding-mode flux observer is pro-
posed to take the advantage of the flexibility of fractional orders, in which the superiority
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FIGURE 5. Simulation results corresponding to the SM flux observer: (a)
speed response, (b) speed error, (¢) rotor flux, (d) ¢g-axis current error

TABLE 4. Coefficients of controllers and observers

Coefficient kpd kid kpq kz’q kpf kif
Value 65 | 1200 | 45 | 4000 | 30 | 100

Coefficient | kps | kis | a1 Co U A
Value 0.081 0.05| 1 5 1000 | 0.5

is verified by numerical analyses. Furthermore, the associated performance of speed con-
trol is investigated. A DSP/FPGA based experimental system is set up to validate the
feasibility of proposed works. Compared with integer-order flux observers, simulation
and experimental results illustrate that the proposed FOISM flux observer can achieve
much better performance in both steady-state and transient responses subject to load
disturbances. It is observed that the use of fractional-order schemes can provide better
responses compared with the counterparts of integer-order approaches. Also, the tracking
performance of vector-controlled induction motors is getting better if a relatively robust
and accurate flux observer is provided. On the other hand, the flux estimation is based
on that the orders of integral/differential operators are pre-determined. Given with cer-
tain orders, the feasibility of the proposed results has been evaluated with experimental
implementations. In practice, there could be a better choice for the orders of fractional
operators, and then the control performance can be further improved. Thus, deriving an
adaptive law to determine optimized fractional orders is a promising challenge.
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