
International Journal of Innovative
Computing, Information and Control ICIC International c©2012 ISSN 1349-4198
Volume 8, Number 7(A), July 2012 pp. 4431–4449

NEW FINDINGS ON RFID AUTHENTICATION SCHEMES
AGAINST DE-SYNCHRONIZATION ATTACK

Kuo-Hui Yeh1, Nai-Wei Lo2, Yingjiu Li3, Yung-Chun Chen2

and Tzong-Chen Wu2

1Department of Information Management
National Dong Hwa University

No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 97401, Taiwan
khyeh@mail.ndhu.edu.tw

2Department of Information Management
National Taiwan University of Science and Technology

No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan
{ nwlo; tcwu }@cs.ntust.edu.tw; D9409103@mail.ntust.edu.tw

3School of Information Systems
Singapore Management University

80 Stamford Road, Singapore 178902
yjli@smu.edu.sg

Received March 2011; revised July 2011

Abstract. In order to protect privacy of RFID tag against malicious tag tracing activ-
ities, most RFID authentication protocols support forward/backward security properties
by updating the same secret values held at both tag end and database end asynchronously
during each authentication session. However, in real network environments an adversary
may easily interrupt or interfere transmission of necessary key update message in each au-
thentication session such that key re-synchronization between tag and database cannot be
completed, which is named as de-synchronization attack. To defend against this security
threat, recent RFID authentication schemes have applied redundant secret/key design to
allow a tag with de-synchronized secret to successfully communicate with server/database
in its next authentication session. In this paper, we first categorize existing authenti-
cation protocols into three types based on their key update mechanisms. Then security
evaluation on de-synchronization attack is conducted for type I and II protocols. Two
attack models and theorems show that synchronization mechanisms used in type I and
II schemes cannot defend against de-synchronization attack. Finally, three remarks are
further presented to support our important finding: most existing RFID authentication
schemes cannot simultaneously provide forward/backward security and resistance for de-
synchronization attack in practical setting.
Keywords: De-synchronization attack, RFID authentication, Tag identification, Secu-
rity

1. Introduction. RFID technology is massively adopted in various applications [36,57-
60] to identify each target object on which a tag with RF (radio frequency) antenna is
attached. An RFID application system is composed of a backend server/database, one
or multiple readers and a lot of tagged objects. In order to prevent illegal and mali-
cious access to information contained in an RFID tag, many theoretically-secure RFID
authentication protocols [1,4-6,8-11,13,16,17,23,25-28,31-37,39,41-45,48-51,53-57] are pro-
posed in recent years; even some of them [36] can be implemented in real world. As
personal privacy has become a highly sensitive topic around the world, there exists real
demand for RFID authentication scheme to support forward/backward security on tagged

4431

4432 K.-H. YEH, N.-W. LO, Y. LI, Y.-C. CHEN AND T.-C. WU

objects to avoid an adversary tracing a person by tracking RFID tagged objects he carries
or wears. Existing authentication protocols usually achieve forward/backward security by
dynamically updating the secret key held at both tag end and the server end. However,
it is easy for an adversary to destroy a key update process between tag and server by
interfering communication channels. This security threat is named as de-synchronization
attack. To defend against this attack, recently proposed protocols utilize the concept
of key redundancy design; that is, the backend server stores both the currently involved
key and the previously used key for a valid tag ID to allow a tag with de-synchronized
key to successfully communicate and re-synchronize its key value with the server in the
next authentication session. Note that in some schemes, key redundancy mechanisms
are adopted at tag side instead of the backend server. In this paper, we want to verify
whether existing RFID authentication protocols supporting forward/backward security
can resist de-synchronization attack in practical setting (i.e., the network environment in
real world).
In the design of RFID authentication, the extremely limited capabilities of RF tags

make it difficult to maintain the computation cost of tags as low as possible and at
the same time achieve strong security and privacy. The limitation inspires academic
scholars to reform traditional cryptographic algorithms for the needs in constructing a
secure and efficient authentication scheme for RFID systems. Along with this trend,
the study on the formal analysis model for RFID security and privacy has promptly
been focused by research community. In 2006, Juels and Weis [24] proposed a formal
definition for RFID privacy (denoted as ind-privacy), and revealed the vulnerabilities of
some privacy-aware RFID protocols. Later, Ha et al. [21] pointed out that previously
proposed adversarial models have limitations on analyzing RFID location privacy. A
formal analysis model (denoted as unp-privacy), which is based on random oracle and
indistinguishability, was accordingly introduced. To pursue practicability, the proposed
model considers passive and active attacks on the message flows between the reader and
the tags as well as the tag compromise attack. Nevertheless, Deursen and Radomirović
[18] had demonstrated that the formal model for RFID location privacy in [21] does not
coincide with the intuitive notion of location privacy. At the same year, Damgrd et al. [14]
introduced the completeness and soundness concepts based on the model proposed in [24].
In 2009, Ma et al. [35] presented their efforts and findings: (1) refining the unp-privacy
model according to its own flaws pointed in the study [18]; (2) proving that unp-privacy
implies ind-privacy; (3) determining the minimal condition for RFID tags to achieve
unp-privacy in an RFID system; and (4) developing an RFID protocol possessing strong
entity privacy and performance efficiency. Next, Ng et al. [38] presented privacy analysis
on symmetric based RFID authentication schemes. The authors divided existing RFID
authentication protocols into four classes and demonstrated the achievable privacy level
for each class. In addition, a strong security claim is argued; that is, forward privacy is
impossible in existing RFID authentication proposals if public key cryptography cannot
be adopted. In 2010, Deng et al. [15] introduced a zero-knowledge based framework for
RFID privacy. The proposed framework is stronger than ind-privacy [35]. Furthermore,
an efficient and robust RFID authentication scheme is introduced with a formal proof.

2. Preliminaries. An RFID system generally consists of many objects attached with
RFID tags (i.e., transponders), an RFID reader (i.e., transceiver) and a backend appli-
cation server. An RFID tag is composed of limited memory space, basic control and
computation circuits and a radio frequency communication module. An RFID reader is
used to acquire data stored in tags without line of sight restriction. The backend appli-
cation server is responsible for retrieving and utilizing the detail information of objects

NEW FINDINGS ON RFID AUTHENTICATION SCHEMES 4433

attached by RFID tags from corresponding databases. In the normal operation process
of an RFID-based application system, the reader broadcasts RF signals to energize and
inquiry tags in their RF broadcast range. Once a tag is invoked by RF query signals
from the reader, the tag will respond a reply message with pre-defined message format.
In general, a unique identification number is given back to the reader. Afterwards, the
reader processes the received tag message if necessary, and forwards it as a service request
to the backend server. After receiving the service request, the backend server executes
corresponding business logic and responds this service request with the processing result
back to the reader and/or the tag if necessary. Figure 1 shows an RFID communication
environment which consists of a reader, a backend server and multiple tags.

Figure 1. An RFID system

This subsection presents formal definitions for RFID systems and a new concept called
authentication availability. An RFID system is considered as comprising a backend appli-
cation server (with its own database) S, a single reader R and a set of n tags T1, . . . , Tn

in which all of them are probabilistic polynomial time Turing machines. Typically, a tag
means a passive transponder identified by a unique ID, and has limited memory for secret
keys and/or state information. All legitimate tags have registered at S side, and can only
be identified and authenticated by S. In addition, R can request necessary data from S
whenever it requires. During a protocol instance, all the messages exchanged between the
tags and R are free to be intercepted, tampered and replayed. Moreover, the tags are not
tamper-proofed and can be corrupted easily. Once corrupted, all the internal secrets and
memory contents are assumed to be readily available to the adversary.

Since the design of RFID authentication, the security of backend communication chan-
nel between R and S is assumed. However, in real network environments it may pave
a way for attackers to invoke simple transmission task as parts of malicious attacks (or
behaviors). It is highly possible for an adversary to simulate the server reachability with-
out breaking any secure communication or entity authentication mechanisms adopted
between the reader and the server. For example, in a real network environment, if there is
no authentication scheme deployed in packet level, an attacker can easily inject a message
which eventually reaches the server S without breaking any application level security on
communications. Based on the above clarifications, we believe that in real network en-
vironments an adversary Ad can control the communications among parties and interact
with them through the following oracle queries.

• (O1) InitReader(). This oracle allows Ad to invoke a RF reader to start a session i
of the target protocol, and get back a session identifier sid and a challenge message
ci.
• (O2) Send(Tj, i,m). This oracle allows Ad to send a message m to any given tag Tj,
and get back Tj’s response in session i.

4434 K.-H. YEH, N.-W. LO, Y. LI, Y.-C. CHEN AND T.-C. WU

• (O3) SendToReach(S, i,m). This oracle allows Ad to send a message m to reach the
server S in session i. Note that Ad must not receive any response back.
• (O4) Eavesdrop(R, Tj, i,m). This oracle models passive attack by allowing Ad to
eavesdrop and get read access to the message m exchanged between R and any
given tag Tj in session i.
• (O5) Intercept(R, Tj, i,m). This oracle models active attack by allowing Ad to in-
terrupt the message m transmitted between R and any given tag Tj in session i.
• (O6) SetTag(Tj). This oracle models active attack by allowing Ad to update key and
state information to tag Tj and return Tj’s current key and internal state information.

Oracle O1 which can be realized as an adversary can easily purchase and get access to a
reader device in a realistic environment provided that the target authentication protocol
is open to public usage or proposed as a standard. Once the oracle O1 is supported,
oracles O2, O4 and O5 can be developed without much effort for an adversary under the
assumption that the wireless communication channel between tag and reader is insecure.
As mentioned before, the oracle O3 is for an adversary Ad to simulate the server reach-
ability instead of breaking secure communication or authentication mechanisms between
reader and server. This query operation O3 will be successful as long as an adversary
can find a way to pass the message m to reach the server S. This is highly possible in
real network environments once no extra authentication mechanism is deployed in packet
level. Finally, the oracle O6 is reasonable as the vulnerability of tag is assumed.

Definition 2.1. (Authentication Availability): Assume that at the end of session
i− 1, the secret sj shared between any given tag Tj and the backend application server S
is synchronized. S and Tj will accept request/response messages [ci, ri, fi] with probabil-
ity 100% during the next session i, where ci is a challenge message, ri is Tj’s response
protected by the secret sj, and fi is the final message based on ci, ri and sj.

Experiment ExpAvailability
Ad [sp,n,p, q, r,v,w,x]

• Initialize RAP(): setup the reader R and a set T of n tags T1, T2, . . . , Tn;

• {Tj, ci, st} ← AO1,O2,O3,O4,O5,O6

1 [R,S, T]; //learning stage
• b ∈R {0, 1};
• If b = 0 then ri ← RAP (R, S, Tj, ci, sj) and fi ← RAP (R, S, Tj, ci, ri, sj

′)
else (ri, fi)← RAP (R, S, Tj, ci, ri, sj);

• b′AO1,O2,O3,O4,O5,O6

2 [R,S, Tj, st, ci, ri, fi]; //guessing stage
• The experiment outputs 1 if b′ = b, 0 otherwise.

The ExpAvailability
Ad [sp, n, p, q, r, v, w, x] is a game-based experiment for the adversary Ad

to test the availability of any given target RFID authentication protocol RAP() in which
sp is the security parameter and n, p, q, r, v, w, x are experiment parameters. In the
experiment, the adversary Ad (consisting of algorithms A1 and A2) is given RAP() as the
input and allowed to launch O1, O2, O3, O4, O5 and O6 oracle queries without exceeding
n, p, q, r, v, w and x overall calls, respectively. At first, the experiment initializes RAP()
by producing a reader R and n-tags set T = {T1, T2, . . . , Tn} according to the security
parameter sp. In the learning stage, algorithm A1 selects the target tag Tj and a challenge
message ci. Meanwhile, a state information st is output. Next, the experiment selects
a random bit b, and sets ri ← RAP (R, S, Tj, ci, sj) and fi ← RAP (R, S, Tj, ci, ri, s

′
j) if

b = 0, and (ri, fi) ← (R, S, Tj, ci, ri, sj) otherwise. Note that sj and s′j are two different
secret values. Next, in the guessing stage, algorithm A2 has oracle accesses to R, S, Tj,
st, ci, ri and fi, and requires inferring whether ri and fi are involved with the same secret
sj or not.

NEW FINDINGS ON RFID AUTHENTICATION SCHEMES 4435

Definition 2.2. Let E be the event that occurs if either S or Tj does not accept [ci, ri, fi]
during any given session i. An adversary Ad(ε, t, p, q, r, v, w, x)-breaks the availability
of the target RFID authentication protocol RAP () if the probability that E occurs, i.e.,
Pr[E], is at least ε and the running time of Ad is at most t, where ε is non-negligible and
t is a polynomial time which depends on the execution time of O1, O2, O3, O4, O5 and O6.
In brief, the RFID authentication protocol RAP () provides (ε, t, p, q, r, v, w, x)-availability
if there exists no adversary Ad(ε, t, p, q, r, v, w, x)-breaks the availability of RAP ().

3. Analysis on Existing RFID Authentication Mechanisms against De-synchr-
onization Attack. To defend against de-synchr-onization attack, recent RFID authenti-
cation protocols adopt a so-called key redundancy design; e.g., the backend server (or the
tag) stores both the currently involved key and the previously used key for a valid tag ID
to allow a tag with de-synchronized key to successfully communicate and re-synchronize
its key value with the server in the next authentication session. In this section, we first
categorize existing RFID authentication protocols into three types, i.e., types I, II and
III. Security evaluation on de-synchronization attack is then conducted for protocols as-
sociated with types I and II, respectively. Our results show that the key synchronization
mechanisms used in types I and II protocols cannot defend against de-synchronization
attack.

3.1. General operation components and mechanisms used in protocol.

1. OTag(), OServer(): A collection of operations denoted as an oracle following the
protocol specification carried out on the tag and the server side, respectively.

2. Ki
ID: The tag key at session i where the initial key is K0

ID.
3. Si

ID: The tag state at session i denoted as an encapsulation of the tag key Ki
ID and

other per instance generated and received values. If Si
ID is updated to Si+1

ID , Ki
ID is

updated to Ki+1
ID as well.

4. OUpdate(Si
ID): A tag key update operation performed on the tag side which takes

Si
ID as input and outputs Ki+1

ID .
5. key redundancy design: Two redundant records of secret key value shared between S

and Tj (e.g., currently involved key Ki
ID and the key Ki−1

ID used in the last session).
6. key independent update: The newly updated key Ki+1

ID is independent of the input
value Si

ID at any given session i (e.g., Ki+1
ID 6= Ki+2

ID in which Ki+1
ID ← OUpdate(Si

ID)
at session i, and Ki+2

ID ← OUpdate(Si
ID) at session i+ 1).

7. key dependent update: The newly updated key Ki+1
ID is dependent on the input value

Si
ID at any given session i (e.g., Ki+1

ID = Ki+2
ID in which Ki+1

ID ← OUpdate(Si
ID) at

session i, and Ki+2
ID ← OUpdate(Si

ID) at session i+ 1).

Next, we classify existing RFID authentication protocols based on where key redun-
dancy design is adopted (e.g., at the tag side or the server side) and which key update
mechanism is utilized (e.g., dependent or independent). Protocols out of our classification
either cannot guarantee forward/backward security properties [4,12,23,35-37,48,53] or are
vulnerable to de-synchronization attack [10,13,16,26,27,39,41-43,45]. We briefly introduce
each protocol subgroup as follows.

1. Type I protocols [1,5,6,28,31-34,49-51] involve with key independent update, and its
key redundancy design is adopted the server side. (Please refer to Figure 2)

2. Type II protocols [9,44,56] involve with key independent update, and its key redun-
dancy design is adopted the tag side. (Please refer to Figure 3)

3. Type III protocols [8,11,54,55] possess key dependent update and its key redundancy
design is adopted either at the server side or at the tag side.

4436 K.-H. YEH, N.-W. LO, Y. LI, Y.-C. CHEN AND T.-C. WU

3.2. Type I protocols are vulnerable to de-synchronization attack.

Theorem 3.1. Type I schemes [1,5,6,28,31-34,49-51] are vulnerable to de-synchronization
attack. For any given tag Tj, Type I protocols cannot provide at least (ε, t, 2, 1, 1, 0, 0, 0)-
availability (or at least (ε, t, 1, 0, 1, 2, 1, 0)-availability).

Proof: We demonstrate how to break the availability of Type I protocols in a polyno-
mial time. Given the target Type I RFID authentication protocol RAP() and its corre-
sponding security parameter sp, the adversary Ad considers the following de-synchronizat-
ion attack processes. Note that in the session i − 1, the secrets shared between Tj and
S is synchronized. Let the key values at the server side are Ki

ID and Ki−1
ID , and the key

value at the tag side is Ki
ID.

The first phase (session i):

• System initialization: Ad recognizes RAP() with the security parameter sp.
• InitReader(): Ad selects the target tag Tj, and utilizes the oracle O1 to invoke a
reader R and start a new session of RAP(). Then, Ad obtains the session identifier
i, a state information st and a challenge message ci.
• Send(Tj, i, ci): Ad utilizes the oracle O2 to send ci to Tj, and receive a tag response
ri. These two values ci and ri are temporarily maintained and will be exploited in
the third phase. Note that the first two steps, i.e., InitReader() and Send (Tj, i,
ci), can also be accomplished via the combination of oracle queries O4 and O5. That

Figure 2. The normal operation process of Type I protocols in session i

NEW FINDINGS ON RFID AUTHENTICATION SCHEMES 4437

is, Ad can execute two times of oracle query O4 to eavesdrop ci and ri, respectively,
exchanged between a legitimate reader R′ and Tj. Next, the oracle query O5 is
invoked to interrupt the rest transmission (i.e., ri, vi and fi) between R′ and Tj.

At the end of this phase, the key values at the server side are Ki
ID and Ki−1

ID , and the
key value at the tag side is Ki

ID.

The second phase (session i+ 1):

• In this session, Ad is suspended and monitors the channel involved with Tj until
a whole operation process of RAP() between another legitimate reader R′′ and Tj

is performed successfully. Note that in session i + 1, ci+1, ri+1, vi+1 and fi+1 are
transmitted.
• So far, the key values at the server side are Ki+2

ID ← OUpdate(Si
ID) and Ki−1

ID , and the
key value at the tag side is Ki+2

ID ← OUpdate(Si
ID).

The third phase (session i+ 2):

• Once the second phase is done, Ad performs the following procedures immediately.
• InitReader(): Ad selects the target tag Tj, and uses the oracle O1 to invoke R to
start a new session of RAP(). Ad then gets the session identifier i + 2, a state
information st and a challenge message ci+2.
• SendToReach(S, i + 2, {ci, ri}): Ad uses the oracle query O3 to send {ci, ri} to S.
Since {ci, ri} are involved with key Ki

ID, {ci, ri} will be successfully verified at S
side. After that, S performs the key update mechanism, i.e., Ki+3

ID ← OUpdate(Si
ID)

and Ki−1
ID .

Finally, Ad finishes the experiment and outputs a bit b′ as its conjecture of the value
of b from ExpAvailability

Ad . As RAP() adopts key independent update, the key value shared
between S and Tj is out-of-synchronization now. The secret keys at S side are Ki−1

ID and
Ki+3

ID , and the key at Tj side is K
i+2
ID . Since in key independent update the updated key is

independent of the input value, it is obvious that Ki+3
ID is not the same with Ki+2

ID . In that
case, the adversary Ad can always make a correct guess of b with the above three attack
steps, where only 2, 1, 1, 0, 0 and 0 execution times of the oracle queries O1, O2, O3, O4, O5

and O6 are required, respectively. As the probability that Ad(ε, t, 2, 1, 1, 0, 0, 0)-break the
availability of RAP() is significant, i.e., Adv(ε, t, 2, 1, 1, 0, 0, 0) = |Pr[Ad′s guess is corre-
ct] − 50%| = 50%, and the running time of Ad is polynomial, we can conclude that
Type I protocols cannot provide at least (ε, t, 2, 1, 1, 0, 0, 0)-availability. Note that the
oracle queries O4 and O5 can be utilized to replace the oracles O1 and O2 in the first
phase. This leads to another conclusion that Type I protocols cannot guarantee at least
(ε, t, 1, 0, 1, 2, 1, 0)-availability. Theorem 3.1 is proved.

Example 3.1. The CLLD Protocol [6] Is Vulnerable to De-synchronization
Attack.

•Review of CLLD Protocol
Every tag Tj is assigned with an l -bit identifier tj = h(uj), where uj is an l -bit string

and h() is a one-way hash function. For each Tj, the server (with a database) stores an
entry [(uj, tj)new, (uj, tj)old, Dj] in which (uj, tj)new denotes the currently involved identity,
(uj, tj)old represents the last successfully verified identity, and Dj is Tj’s information. The
normal process of CLLD protocol is as follows.

R→ Tj : ri.

The reader R generates a random bit-string r1 ∈R {0, 1}l, and sends it to tag Tj. Then,
Tj generates a random bit string r2 ∈R {0, 1}l as a secret, and computes M = tj ⊕ r2

4438 K.-H. YEH, N.-W. LO, Y. LI, Y.-C. CHEN AND T.-C. WU

and M2 = fj(r1‖r2), where f() is a keyed hash function. Next, Tj sends M1 and M2 to R
which soon forwards them along with r1 to the backend server S.

Tj → R→ S : M1,M2, r1

Upon receiving M1, M2 and r1, S retrieves each tj from all stored tag identity pairs
(new and old), and verifies (for each tj) whether the received value M2 equals to the
computed value f1(r1‖r2) in which r2 ←M1 ⊕ tj. If no tj satisfies the above verification,
S sends an error message to R and terminates the protocol. On the other hand, if
tj is found among the (uj, tj)old pairs, the server S recognizes that the tag Tj failed
to complete the whole process at the last authentication session, and Tj’s identity is
not updated. S then sets (uj, tj)new ← (uj, tj)old, and continues with the protocol as
normal. With the corresponding uj, the server computes M3 = sj ⊕ h(r2), and sends
it to R along with Di. Meanwhile, S updates the secrets, i.e., (uj, tj)old = (uj, tj)new,
uj(new) ← (uj � l/4)⊕ (tj � l/4)⊕ r1 ⊕ r2 and tj(new) ← h(uj(new)).

S → R→ Tj : M3

The reader sendsM3 to Tj. Once Tj receivesM3, it computes sj ←M3⊕h(r2) and h(sj),
and checks if h(sj) = tj. If it holds, Tj updates tj to h((uj � l/4)⊕ (tj � l/4)⊕ r1⊕ r2).
Otherwise, tj remains the same.
•De-synchronization Attack on CLLD Protocol [6]
A synchronized tag is assumed in which the secret information, i.e., tj = (tj)i, main-

tained at tag side equals to the values, i.e., (uj, tj)old = (uj, tj)i−1 and (uj, tj)new = (uj, tj)i,
stored in the server/database (DB). Note that we denote the secrets as (tj)i and (uj, tj)i
during session i.

The first phase (session i):

• System initialization: Ad recognizes CLLD protocol with the security parameter sp.
• InitReader(): Ad selects the target tag Tj, and utilizes the oracle query O1 to
invoke a reader R to start a new session of CLLD protocol. After that, Ad obtains
the session identifier i, a state information st and a challenge message r1 i.
• Send(Tj, i, r1 i): Ad utilizes the oracle query O2 to send r1 i to Tj, and gets back a
tag response {M1 i,M2 i}. The value {M1 i,M2 i, r1 i} are temporarily maintained
and will be used in the third phase.
• At the end of this phase, the key values at the server side are (uj, tj)i−1 and (uj, tj)i,
and the key value at the tag side is (tj)i.

The second phase (session i+ 1):

• In this phase, Ad monitors Tj’s communication channel until a whole operation
process of CLLD protocol between another reader R′′ and Tj is performed completely.
Note that in session i+ 1, M1 i+1, M2 i+1, r1 i+1, r2 i+1 and M3 i+1, are produced.
• So far, the key values at the server side are (uj, tj)i and (uj, tj)i+2 and the key value
at the tag side is (tj)i+2.

The third phase (session i+ 2):

• Once the second phase is done, Ad performs the following procedures immediately.
• InitReader(): Ad selects the target tag Tj, and uses the oracle query O1 to invoke
R to start a new session of CLLD protocol. Ad then gets the session identifier i+2,
a state information st and a challenge message r.
• SendToReach(S, i+2, {M1 i,M2 i, r1 i}): Ad uses the oracle query O3 to send {M1 i,
M2 i, r1 i} to S. Since {M1 i,M2 i, r1 i} are involved with key (uj, tj)i, the legitimacy
of {M1 i,M2 i, r1 i} will be examined successfully at S side. Then, S updates the
keys, i.e., (uj, tj)i and (uj, tj)i+3.

NEW FINDINGS ON RFID AUTHENTICATION SCHEMES 4439

Finally, Ad finishes the experiment and outputs a bit b′ as its conjecture of the value of
b from ExpAvailability

Ad . Obviously, the key values at S side are (uj, tj)i and (uj, tj)i+3,
and the key value at (Tj side is (tj)i+2. Since CLLD protocol adopts key indepen-
dent update, the key value shared between S and Tj is out-of-synchronization now, i.e.,
(tj)i+2 is not equal to (tj)i+3. In that case, the adversary Ad can make a correct guess
of b with the above attack steps, where only 2, 1, 1, 0, 0 and 0 execution times of
the oracle O1, O2, O3, O4, O5 and O6 are required, respectively. As the probabil-
ity that Ad(ε, t, 2, 1, 1, 0, 0, 0)-break the availability of CLLD protocol is significant, i.e.,
Adv(ε, t, 2, 1, 1, 0, 0, 0) = |Pr[Ad′s guess is correct] − 50%| = 50%, and the running time
of Ad is polynomial, we argue that CLLD protocol cannot provide (ε, t, 2, 1, 1, 0, 0, 0)-
availability.

Example 3.2. The ACA Protocol [1] Is Vulnerable to De-synchronization
Attack.

• Review of ACA Protocol
In ACA protocol, each tag Tj is assigned with two parameters, i.e., an l -bits idj and

an l -bits valj = h(seedj). Note that l should be large enough to prevent exhaus-
tive search attack of seedj. For each Tj, the server (with a database) stores an entry
[(idj, seedj)new, (idj, seedj)old, Dj] in which (idj, seedj)new is the currently involved iden-
tity and (idj, seedj)old represents the last successfully verified identity. At the system
initialization, (idj, seedj)new is equal to (idj, seedj)old. The normal operation process of
ACA protocol is as follows.

(1) The reader R generates a random bit-string r1 ∈R {0, 1}l and sends h(r1) to tag
Tj. Next, Tj generates a random bit string r2 ∈R {0, 1}l, and computes M1 =
pf(h(r1)‖idj) and M2 = pf(h(r2)‖idj). Then, Tj sends M1 and r2 to R. Upon re-
ceiving M1 and r2, the reader R queries the backend server S with {M1, r1, r2, h(r1)}.

(2) Once the server S obtains M1, r1, r2 and h(r1), S retrieves each idj from all stored
tag identity pairs (new and old) from database, and verifies whether the received
value M1 equals to the computed value M1 = pf(h(r1)‖idj). If no idj satisfies
the examination, the server sends an error message to the reader and the pro-
tocol stops. If idj is found among the (idj, seedj)old pairs, the server then sets
(idj, seedj)new ← (idj, seedj)old, and continues the protocol. With the corresponding
entry [(idj, seedj)new, (idj, seedj)old, Dj], the server S computes M1 = pf(h(r2)‖idj)
and M3 = seedj ⊕ M2, and sends it to the reader R along with Dj. Meanwhile,
S updates the secrets, i.e., (idj, seedj)old = (idj, seedj)new, idjnew ← g(h(r1) ⊕ r2 ⊕
seedj(new) ⊕ idj(new)) and seedj(new) ← r1.

(3) Upon receiving the server response, R sends M3 to Tj. After the tag Tj receives M3,
Tj computes seedj ←M3⊕M2, and checks if h(seedj) = valj. If it holds, the tag Tj

updates idj to g(h(r1)⊕ r2 ⊕ seedj ⊕ idj) and valj = h(r1).

• De-synchronization Attack on ACA Protocol [1]
Given ACA protocol, the adversary Ad performs the following malicious attack phases

to de-synchronize the secrets, i.e., idj and seedj, shared between the server S and the tag
Tj. We assume that in the session i−1, the secrets shared between Tj and S are as follows:
the secrets at the server side are (idj, seedj)old = (idj, seedj)i−1 and (idj, seedj)new =
(idj, seedj)i and the one at the tag side is (idj) = (idj)i.

The first phase (session i):

• System initialization: Ad recognizes ACA protocol with the security parameter sp.
• InitReader(): the adversary Ad selects the target tag Tj, and utilizes the oracle
query O1 to invoke a reader R to start a new session of the ACA protocol. After

4440 K.-H. YEH, N.-W. LO, Y. LI, Y.-C. CHEN AND T.-C. WU

that, Ad obtains a session identifier i, a state information st and a challenge message
{r1 i, h(r1 i)}.
• Send(Tj, k, h(r1 i)): the adversary Ad uses the oracle query O2 to send h(r1 i) to Tj,
and gets back Tj’s response {M1 i, r2 i}. The response message {M1 i, r1 i, r2 i, h(r1 i)}
are temporarily maintained and will be used in the third phase.
• At the end of this phase, the secret values at the server side are (idj, seedj)old =
(idj, seedj)i and (idj, seedj)new = (idj, seedj)i+1 and the one at the tag side is (idj) =
(idj)i.

The second phase (session i+ 1):

• In this phase, the adversary Ad is suspended and monitors the channel involved
with Tj until a new session of ACA protocol is held between another reader R′ and
Tj. Note that in session i + 1, M1 i+1,M2 i+1, r1 i+1, h(r1 i+1), r2 i+1 and M3 i+1 are
generated.
• At the end of this phase, the secret values at the server side are (idj, seedj)i and
(idj, seedj)i+2, and the secret value at the tag side is (idj)i+2.

The third phase (session i+ 2):

• Once the second phase is done, Ad performs the following procedures immediately.
• InitReader(): the adversary Ad selects the target tag Tj, and uses the oracle query
O1 to invoke R to start a new session of the ACA protocol. Ad then gets the session
identifier i+ 2, a state information st and a challenge message {r1 i+2, h(r1 i+2)}.
• SendToReach(S, i + 2, {M1 i, r1 i, r2 i, h(r1 i)}): Ad performs the oracle query O3 to
send {M1 i, r1 i, r2 ih(r1 i)} to the backend server S. As {M1 i, r1 i, r2 ih(r1 i)} are
actually involved with secrets (idj, seedj)i, {M1 i, r1 i, r2 ih(r1 i)} will be successfully
verified at S side. Then, S performs the secrets update mechanism.
• Finally, the secret values at S side are (idj, seedj)i and (idj, seedj)i+3, and the secret
value at the tag side is (tj)i+2. Since ACA protocol utilizes key independent update,
the secrets shared between S and Tj are out-of-synchronization now.

With the above attack procedures, the adversary Ad does make a correct guess of b in
which only 2, 1 and 1 execution times of O1, O2 and O3 is required, respectively. As the
probability that Ad(ε, t, 2, 1, 1, 0, 0, 0)-break the availability of ACA protocol is significant,
i.e., Adv(ε, t, 2, 1, 1, 0, 0, 0) = |Pr[Ad′s guess is correct] − 50%| = 50%, and the running
time of Ad is polynomial, the insecurity of ACA protocol is proved.

3.3. Type II protocols are vulnerable to de-synchronization attack.

Theorem 3.2. Type II schemes [9,44,56] are vulnerable to de-synchronization attack. For
any given tag Tj, Type II protocols cannot provide at least (ε, t, 1, 3, 0, 1, 1, 1)-availability
(or (ε, t, 1, 3, 0, 1, 1, 1)-availability).

Proof: Given the target Type II RFID authentication protocol RAP() and its corre-
sponding security parameter sp, the adversary Ad considers the following de-synchroniza-
tion attack procedures. Note that in the session i− 1, the secrets shared between Tj and
S are synchronized. Let the key value at the server side is Ki

ID, and the key values at the
tag side are Ki

ID and Ki−1
ID .

The first phase (session i):

The adversary Ad continuously monitors the communication channel involved with Tj.
Once a session i of RAP() is invoked between the reader R′ and Tj, Ad acts as follows.

• Eavesdrop(R′, Tj, i, fi): Ad invokes the oracle query O4 to eavesdrop fj transmitted
between R′ and Tj, and temporarily records fi.

NEW FINDINGS ON RFID AUTHENTICATION SCHEMES 4441

Figure 3. The normal operation process of session i in type II protocols

• Intercept(R′, Tj, i, ri): Ad utilizes the oracle query O5 to interrupt ri transmitted
between R′ and Tj.
• After that, the key value at the server side is Ki

ID, and the key value at the tag side
is Ki+1

ID ← Oupdate(S
i
ID) and Ki

ID.

The second phase (session i+ 1):

Ad monitors the channel involved with Tj until a new session (i.e., i+1) of RAP() held
between another reader R′′ and Tj is completed. Note that in session i+1, ci+1, ri+1, vi+1

and fi+1 are transmitted. So far, the key values at the tag side are Ki+2
ID ← OUpdate(Si

ID)
and Ki

ID, and the key value at the server side is Ki+2
ID ← OUpdate(Si

ID).

The third phase (session i+ 2):

Once the second phase is done, Ad performs the following procedures immediately.

• InitReader(): Ad selects the target tag Tj, and uses the oracle query O1 to invoke
R to start a new session of RAP(). Ad then gets back a session identifier i + 2,
state information st and a challenge message ci+2. Next, Ad queries Tj which first
replies message involved with Ki+2

ID and then sends message involved with Ki
ID, once

4442 K.-H. YEH, N.-W. LO, Y. LI, Y.-C. CHEN AND T.-C. WU

Ad pretends that he/she cannot find the corresponding Ki+2
ID in the backend server.

This step consumes two oracle queries O2.
• Send(Tj, i+2, fi): Ad uses the oracle query O2 to send fi to Tj, where fi are involved
with key Ki

ID. Hence, fi will be examined successfully by Tj. Next, Tj updates the
key, i.e., Ki+3

ID ← OUpdate(Si
ID) and Ki

ID.

Finally, Ad finishes the experiment and outputs a bit b′ as its conjecture of the value of b
from ExpAvailability

Ad . The key value shared between S and Tj is out-of-synchronization now
as RAP() adopts key independent update mechanism. Note that the key value at S side is
Ki+2

ID , and the key values at Tj side are K
i
ID and Ki+3

ID . Since in RAP() the updated key is
always independent of the input value, it is obvious thatKi+3

ID is not equal toKi+2
ID . In that

case, the adversary Ad will make a correct guess of b with the above attack steps in which
only 1, 3, 0, 1, 1 and 0 execution times of the oracle O1, O2, O3, O4, O5 and O6 are needed,
respectively. As the probability that Ad(ε, t, 1, 3, 0, 1, 1, 0)-break the availability of RAP()
is significant, i.e., Adv(ε, t, 1, 3, 0, 1, 1, 0) = |Pr[Ad′s guess is correct]− 50%| = 50%, and
the running time of Ad is polynomial, we can conclude that the Type II protocols cannot
provide at least (ε, t, 1, 3, 0, 1, 1, 0)-availability. Note that some Type II protocols such as
[56] need one more attack step to invoke oracle query O6. Theorem 3.2 is proved.

Example 3.3. Gossamer Protocol [44] Is Vulnerable to De-synchronization
Attack.

• Review of Gossamer Protocol
In Gossamer protocol, each tag Tj stores a static identifier (ID), two index pseudonym

(IDSold and IDSnew) and four secret keys (k1 old, k1 new, k2 old, k2 new), where new/old
represents the parameter used in the current/last session. The backend server maintains
a static identifier (ID), an index-pseudonym (IDS) and two keys (k1 and k2). The tag
can operate simple bitwise functions such as XOR(⊕), AND(∨), OR(∧), Addition mod
2m(+), circular shift rotation (Rot(x, y)) and MixBits operation. At the beginning of
Gossamer protocol, the reader R sends a hello message to the tag Tj which soon responds
with its IDS. Based on this IDS, R probes the corresponding information of Tj from the
backend server.

R→ Tj : Hello

Tj → R : IDS

R→ Tj : A‖B‖C

With the information, i.e., ID, IDS, k1 and k2, retrieved from the backend server, the
reader R computes A‖B‖C and sends them to Tj, where n1 and n2 are random numbers.

A = Rot(Rot(IDS + k1 + π + n1, k2) + k1, k1);

B = Rot(Rot(IDS + k2 + π + n2, k2) + k2, k2);

n3 = MixBits(n1, n2); n′
1 = MixBits(n3, n2);

k∗
1 = Rot(Rot(n2 + k1 + π + n3, n2) + k2 ⊕ n3, n1)⊕ n3;

k∗
2 = Rot(Rot(n1 + k2 + π + n3, n1) + k1 + n3, n2) + n3;

C = Rot(Rot(n3 + k∗
1 + π + n′

1, n3) + k∗
2 ⊕ n′

1, n2)⊕ n′
1;

π = 0x3243F6A8885A308D313198A2.

From A and B, Tj can obtain two nonce values n1 and n2 respectively. Tj then computes
C ′ and checks whether the result is equal to the received C. If both of them are equal, Tj

NEW FINDINGS ON RFID AUTHENTICATION SCHEMES 4443

sends D to R, and updates its own secret parameters.

C ′ = Rot(Rot(n3 + k∗
1 + π + n′

1, n3) + k∗
2 ⊕ n′

1, n2)⊕ n′
1;

D = Rot(Rot(n2 + k∗
2 + ID+n′

1, n2) + k∗
1 + n′

1, n3) + n′
1;

n′
2 = MixBits(n′

1, n3); IDSold = IDS; k1 old = k1; k2 old = k2;

IDSnew = Rot(Rot(n′
1 + k∗

1 + IDS + n′
2, n

′
1) + k∗

2 ⊕ n′
2, n3)⊕ n′

2;

k1 new = Rot(Rot(n3 + k∗
2 + π + n′

2, n3) + k∗
1 + n′

2, n
′
1) + n′

2;

k2 new = Rot(Rot(IDSnew + k∗
2 + π + k1 new, IDSnew) + k∗

1 + k∗
1 new, n

′
2) + k1 new;

Tj → R : D

The reader R calculates D′ and check whether the computed D′ is equal to the received
D. It it holds, R updates IDS, k1 and k2 in the same way as Tj does.

D′ = Rot(Rot(n2 + k∗
2 + ID + n′

1, n2) + k∗
1 + n′

1, n3) + n′
1;

n′
2 = MixBits(n′

1, n3);

IDS = Rot(Rot(n′
1 + k∗

1 + IDS + n′
2, n

′
1) + k∗

2 ⊕ n′
2, n3)⊕ n′

2;

k1 = Rot(Rot(n3 + k∗
2 + π + n′

2, n3) + k∗
1 + n′

2, n
′
1) + n′

2;

k2 = Rot(Rot(IDS + k∗
2 + π + k1, IDS) + k∗

1 + k1, n
′
2) + k1.

• De-synchronization Attack on Gossamer Protocol [44]
A synchronized tag Tj is given, where the secret information (IDSi−1 and IDSi, k1 i−1,

k1 i, k2 i−1, k2 i) maintained at Tj side equals to the values (IDSi, k1 i, k2 i) stored in the
backend server. Note that we denote the secret as (IDSi, k1 i, k2 i) during session i.

The first phase (session i):

Let the adversary Ad continuously monitor the communication channel involved with
Tj. Once the normal process of session i of Gossamer protocol is invoked between the
reader R′ and Tj, Ad acts as follows.

• Eavesdrop(R′, Tj, i, A‖B‖C): Ad invokes the oracle query O4 to eavesdrop A‖B‖C
transmitted between R′ and Tj, and temporarily records A‖B‖C.
• Intercept(R′, Tj, i, D): Ad utilizes the oracle query O5 to interrupt D transmitted
between R′ and Tj.
• At the end of this phase, the backend server will not update the secret informa-
tion (IDS, k1, k2) associated with Tj. However, Tj updates its own secrets. There-
fore, the current status of shared secrets is as follows: (IDSi+1, k1 i+1, k2 i+1) and
(IDSi, k1 i, k2 i) at Tj side, and (IDSi, k1 i, k2 i) at server side.

The second phase (session i+ 1):

Let Ad monitor Tj’s communication channel until a new session (i.e., i + 1) of Gos-
samer protocol is successfully held by another reader R′′ and Tj. In this phase, Tj uti-
lizes the old record, i.e., IDSi, k1 i, k2 i, to communicate with the reader as the IDS
stored in the backend server is the old one. After that, the key values at the tag side
are (IDSi+2, k1 i+2, k2 i+2) and (IDSi, k1 i, k2 i), and the key value at the server side is
(IDSi+2, k1 i+2, k2 i+2).

The third phase (session i+ 2):

Let Ad perform the following attack procedures.

• InitReader(): Ad selects the target tag Tj, and uses the oracle query O1 to invoke a
reader R to start a new session i+2 of Gossamer protocol. Ad then queries Tj which
first replies IDSi+2 and then sends IDSi, once Ad pretends that he/she cannot find
the IDSi+2 in the backend server. This step consumes two oracle queries O2.

4444 K.-H. YEH, N.-W. LO, Y. LI, Y.-C. CHEN AND T.-C. WU

• Send(Tj, i + 2, A‖B‖C): Ad uses the oracle query O2 to send A‖B‖C to Tj, where
A‖B‖C are involved with (IDSi, k1 i, k2 i). Hence, the legitimacy of A‖B‖C will be
passed at Tj side. Next, Tj updates the key values, i.e., (IDSi+3, k1 i+3, k2 i+3) and
(IDSi, k1 i, k2 i).

Now the secrets shared between the server and the tag Tj are out-of-synchronization as
Gossamer protocol adopts key independent update mechanism. Note that the key values
at Tj side are (IDSi+3, k1 i+3, k2 i+3) and (IDSi, k1 i, k2 i), and the key value at the server
side is (IDSi+2, k1 i+2, k2 i+2). Finally, Ad finishes the experiment and outputs a bit b′

as its conjecture of the value of b from ExpAvailability
Ad . It is obvious that Ad will always

make a correct guess of b with the above attack steps in which only 1, 3, 0, 1, 1 and
0 execution times of the oracle O1, O2, O3, O4, O5 and O6, respectively, are performed.
As the probability that Ad(ε, t, 1, 3, 0, 1, 1, 0)-break the availability of Gossamer protocol
is significant, i.e., Adv(ε, t, 3, 1, 0, 1, 1, 0) = |Pr[Ad′s guess is correct]− 50%| = 50%, and
the running time of Ad is polynomial, we have proved that Gossamer protocol cannot
guarantee (ε, t, 1, 3, 0, 1, 1, 0)-availability.

Example 3.4. The YW09 Scheme [56] Is Vulnerable to De-synchronization
Attack.

• Review of YW09 Scheme [56]
Every tag Tj is assigned with eight data records, i.e., ID, IDSold, IDSnew, K1 old,

K1 new, K2 old, K2 new and RID, which are stored in Tj’s internal memory. Note that
the currently involved records [ID, IDSnew, K1 new, K2 new, RID] and the last successfully
verified records [ID, IDSold, K1 old, K2 old, RID] are maintained simultaneously. For each
Tj, the reader R (and the server S) maintains an entry [ID, IDS,K1, K2, RID]. At the
system initialization, S generates IDS, K1, K2 for each tag Tj and sets the Tj’s values
such as IDSold = IDSnew = IDS, K1 new = K1 old = K1, K2 new = K1 old = K2, R1 = R1

and RID = RID. The normal process of YW09 is as follows.

(1) Initially, the reader R sends a request message Hello to the tag Tj.
(2) Once Tj receives the Hello message, it first computes R1 and then calculates (IDSnew

‖IDSnew) ⊕ (RID‖R1) and RID + R1, and sends these two results to R, where
R1 = (K1 new ⊕K2 old) + ((K2 new ⊕K1 old) ∨R1). After receiving Tj’s response, the
reader R utilizes the RID retrieved from the server S (with its database) to derive
values R1 and IDS. Note that if the reader R can probe the matched record at S
side, it steps to the following authentication procedures; otherwise, it interrogates
Tj again and, after that, Tj will responds with (IDSold‖IDSold) ⊕ (RID‖R1) and
RID +R1.

(3) The reader R then exploits the matched IDS and two newly generated random
numbers n1 and n2 to calculate the values as follows. Next, the reader R sends
(A‖B‖C)⊕ (R1‖R1‖R1) to Tj.

A = IDS ⊕K1 ⊕ n1, B = (IDS ∨K2) + n2, K ′
1 = (K1 ⊕ n2)� K1,

K ′
2 = (K2 ⊕ n1)� K2 and C = (K1 ⊕K ′

2) + (K ′
1 ⊕K2)

(4) Upon getting the message from R, Tj first XORs (R1‖R1‖R1) with the received value
(A‖B‖C)⊕ (R1‖R1‖R1) to get (A‖B‖C), and then extracts n1 from A and n2 from
B. After that, Tj computes K ′

1 = (K1 ⊕ n2) � K1, K
′
2 = (K2 ⊕ n1) � K2 and

C ′ = (K1 ⊕ K ′
2) + (K ′

1 ⊕ K2). If C ′ does not match with the received value C,
the session is terminated; otherwise, the reader R is authenticated and Tj calculates
D = (K ′

2 + ID)⊕ ((K1 ⊕K2) ∨K ′
1) which is soon transmitted to R. Meanwhile, Tj

performs the updates: IDSold = IDS, IDSnew = (IDS + ID)⊕ (n2⊕K ′
1), K1 old =

NEW FINDINGS ON RFID AUTHENTICATION SCHEMES 4445

K1, K1 new = K ′
1, K2 old = K2, K2 new = K ′

2. After obtaining D, the reader R uses
the secret values stored at S side to compute. D′ = (K ′

2+ID)⊕((K1⊕K2)∨K ′
1) and

D′ with D. If both them are identical, S updates IDS = (IDS + ID)⊕ (n2 ⊕K ′
1),

K1 = K ′
1 and K2 = K ′

2; otherwise, the protocol is terminated.

• De-synchronization Attack on YW09 Scheme [56]
Given YW09 scheme and its relevant security parameter sp, the adversary Ad performs

the following attack steps. Note that in session i − 1 the secrets shared between Tj

and S are synchronized, i.e., the secret at S side is (IDS,K1, K2) = (IDS,K1, K2)i,
and the secrets in Tj are (IDS,K1, K2)old = (IDS,K1, K2)i−1 and (IDS,K1, K2)new =
(IDS,K1, K2)i.

The first phase (session i):

The adversary Ad first exploits the oracle query O6 to compromise an arbitrary tag Tj

and obtains the shared secret RID, where l 6= j. Ad then monitors the channel involved
with the target tag Tj until a normal operation process of YW09 scheme between the
reader R′ and Tj is held. During the authentication procedure, Ad records {(A‖B‖C)⊕
(R1‖R1‖R1)}i with the oracle query O4 and intercept the message {D}i via the oracle
query O5. Now the secret at S side is (IDS,K1, K2) = (IDS,K1, K2)i, and the secrets
in Tj are (IDS,K1, K2)old = (IDS,K1, K2)i and (IDS,K1, K2)new = (IDS,K1, K2)i+1.

The second phase (session i+ 1):

The adversary Ad monitors Tj’s communication channel until a whole authentication
session of YW09 scheme between another reader R′′ and Tj is completed. Note that in this
step (i.e., session i+1), {(A‖B‖C)⊕ (R1‖R1‖R1)}i+1 and {D}i+1 are produced and based
on (IDS,K1, K2)i. As n1 and n2 are fresh at each session, {(A‖B‖C)⊕(R1‖R1‖R1), D}i+1

is different from {(A‖B‖C‖) ⊕ (R1‖R1‖R1), D}i. Since (IDS)i+1 cannot be found in S
side, the old tag pseudonym (IDS)i and corresponding record (K1, K2)i will be used
to pass the legitimacy examination at R′ side. Thus, the tag Tj will update its secrets
(IDS,K1, K2)old = (IDS,K1, K2)i and (IDS,K1, K2)new = (IDS,K1, K2)i+2 while the
server S will update the shared secret (IDS,K1, K2) = (IDS,K1, K2)i+2.

The third phase (session i+ 2):

Once the second step is done, the adversary Ad immediately selects the target tag Tj

and invokes oracle query O1 to obtain a session identifier i+2, a state information st and
the challenge Hello message. The adversary Ad executes twice oracle O2 operations to
send Hello to Tj, and Tj responds {(IDSi‖IDSi)⊕ (RID‖R1 i+2), RID+R1 i+2}. In that
case, Ad can derive the values R1 i+2 and {(A‖B‖C)i⊕ (R1 i+2‖R1 i+2‖R1 i+2)} according
to the values RID and R1 obtained in step 1.

Ad then uses the oracle query O2 to send {(A‖B‖C)i ⊕ (R1 i+2‖R1 i+2‖R1 i+2)} to Tj.
Since {(A‖B‖C)i ⊕ (R1 i+2‖R1 i+2‖R1 i+2)} are involved with record (IDS,K1, K2)i and
fresh pseudo random number R1 i+2, {(A‖B‖C)i ⊕ (R1 i+2‖R1i+2‖R1i+2)} will be verified
successfully by Tj. Now the secrets at Tj side are (IDS,K1, K2)old = (IDS,K1, K2)i and
(IDS,K1, K2)new = (IDS,K1, K2)i+3; however, the secret at S side is still (IDS,K1,
K2)old = (IDS,K1, K2)i+2. As YW09 scheme adopts key independent update, the secrets
shared between Tj and S is out of synchronization now.

Finally, Ad finishes the experiment and outputs a bit b′ as its conjecture of the value
of b from ExpAvailability

Ad . With the above procedures, Ad does make a correct guess of
b, where 1, 3, 1, 1 and 1 execution times of O1, O2, O4, O5 and O6 are required. The
probability that Ad(ε, t, 1, 3, 0, 1, 1, 1)-break the availability of YW09 scheme is significant,
i.e., Adv(ε, t, 1, 3, 0, 1, 1, 1) = |Pr[Ad′s guess is correct] − 50%| = 50%, and the running
time of Ad is polynomial. The insecurity of YW09 scheme is demonstrated.

4446 K.-H. YEH, N.-W. LO, Y. LI, Y.-C. CHEN AND T.-C. WU

3.4. Important remarks.

Remark 3.1. As RFID authentication protocols [4,12,23,35-37,48,53] do not possess se-
cret/key update mechanism, the forward/backward security cannot be guaranteed. Once
the target tag Tj was compromised, the revealed secrets contained in Tj can be exploited
by adversary to trace Tj’s (previously involved and future) events or trajectories.

Remark 3.2. The RFID authentication schemes [10,13,16,26,27,39,41-43,45] possess the
key update mechanism, but all of them lack the prevention scheme for de-synchronization
attack. Malicious attacker can easily break the synchronization of secrets shared between
the server and the tags via simple message interception.

Remark 3.3. The type III protocols [8,11,54,55] cannot guarantee the backward security
as the updated key is always dependent on the currently involved key value. Even if a new
session is invoked, the same updated key value will be derived.

4. Conclusion. Based on the proposed attack models, our two theorems have proved
RFID authentication protocols involving with key independent update and key redun-
dancy design cannot defend against de-synchronization attack. In addition, protocols
categorized in type III or those being analyzed by other references [10,13,19,22,23,29,30,
35,38,40,46,52,55], cannot guarantee forward/backward security. In summary, our work
shows that most existing authentication protocols cannot simultaneously provide forward/
backward security and resist de-synchronization attack in real world scenarios.
In this paper, we have introduced a formal definition of authentication availability

and its relevant adversarial experiment. According to the definition, we have demon-
strated that protocols categorized as types I and II are vulnerable to de-synchronization
attack, and argue that most existing RFID authentication schemes cannot provide for-
ward/backward security and defend against de-synchronization attack at the same time.
We are the first one to introduce formal attack models analyzing RFID authentication
protocols against de-synchronization attack. Our analyses indicate that key independent
update and key redundancy design (i.e., to store both new and old secret values in data-
base or tag) makes these RFID authentication schemes themselves difficult to support
authentication availability. Any future extension of these protocols without modification
on either key independent update or key redundancy design will incur the same identified
authentication flaw. In the future, we plan to develop a robust framework with strong
security and privacy to evaluate existing RFID authentication schemes, and propose a
practical RFID authentication scheme with formal security proofs.

Acknowledgment. The authors gratefully acknowledge the support from Taiwan In-
formation Security Center (TWISC) and National Science Council, Taiwan, under the
Grants No. NSC 100-2219-E-011-002, NSC 100-2218-E-011-005 and NSC 100-2218-E-259-
004-MY2. The authors also gratefully acknowledge the helpful comments and suggestions
of the reviewers, which have improved the presentation.

REFERENCES

[1] M. Akgun, M. U. Caglayan and E. Anarim, A new RFID authentication protocol with resistance to
server impersonation, IEEE International Symposium on Parallel & Distributed Processing, pp.1-8,
2009.

[2] G. Avoine, E. Dysli and P. Oechslin, Reducing time complexity in RFID systems, The 12th Annual
Workshop on Selected Areas in Cryptography, 2005.

[3] J. Ayoade, Security implications in RFID and authentication processing framework, Computers &
Security, vol.25, no.3, pp.207-212, 2006.

NEW FINDINGS ON RFID AUTHENTICATION SCHEMES 4447

[4] J. Bringer, H. Chabanne and E. Dottax, HB++: A lightweight authentication protocol secure against
some attacks, The 2nd International Workshop on Security, Privacy and Trust in Pervasive and
Ubiquitous Computing, pp.28-33, 2006.

[5] M. Burmester and B. de Medeiros, The security of EPC Gen2 compliant RFID protocols, The 6th
International Conference of Applied Cryptography and Network Security, LNCS, vol.5037, pp.490-
506, 2008.

[6] S. Cai, Y. Li, T. Li and R. H. Deng, Attacks and improvements to an RFID mutual authentica-
tion protocol and its extensions, The 2nd ACM Conference on Wireless Network Security, Zurich,
Switzerland, 2009.

[7] T. Cao, E. Bertino and H. Lei, Security analysis of the SASI protocol, IEEE Transactions on
Dependable and Secure Computing, vol.6, pp.73-77, 2008.

[8] Y. Chen, J.-S. Chou and H.-M. Sun, A novel mutual authentication scheme based on quadratic
residues for RFID systems, Computer Networks, vol.52, no.12, pp.2373-2380, 2008.

[9] H.-Y. Chien, SASI: A new ultralightweight RFID authentication protocol providing strong authenti-
cation and strong integrity, IEEE Trans. on Dependable and Secure Computing, vol.4, no.4, pp.337-
340, 2007.

[10] H.-Y. Chien and C.-W. Huang, Security of ultra-lightweight RFID authentication protocols and its
improvements, ACM SIGOPS Operating System Review, vol.41, pp.83-86, 2007.

[11] H.-Y. Chien and C.-H. Chen, Mutual authentication protocol for RFID conforming to EPC class 1
generation 2 standards, Computer Standards & Interfaces, vol.29, no.2, pp.254-259, 2007.

[12] E. Y. Choi, D. H. Lee and J. I. Lim, Anti-cloning protocol suitable to EPCglobal class-1 generation-2
RFID systems, Computer Standards & Interfaces, vol.31, pp.1124-1130, 2009.

[13] P. D’Arco and A. De Santis, From weaknesses to secret disclosure in a recent ultra-lightweight RFID
authentication protocol, Cryptology ePrint Archive, 2008.

[14] I. Damgȧrd and Ø. M. Pedersen, RFID security: Tradeoffs between security and efficiency, Topics
in Cryptology CT-RSA, LNCS, vol.4964, pp.318-332, 2008.

[15] R. H. Deng, Y. Li, A. C. Yao, M. Yung and Y. Zhao, A new framework for RFID privacy, Cryptology
ePrint Archive, Report 2010/059, 2010.

[16] T. Dimitriou, A lightweight RFID protocol to protect against traceability and cloning attacks, Se-
cureComm, 2005.

[17] D. N. Duc, J. Park, H. Lee and K. Kim, Enhancing security of EPCglobal GEN-2 RFID tag against
traceability and cloning, Symposium on Cryptography and Information Security, 2006.

[18] T. van Duersen and S. Radomirović, On a new formal proof model for RFID location privacy,
Cryptology ePrint Archive, Report 2008/477, 2008.

[19] I. Erguler and E. Anarim, Scalability and security conflict for RFID authentication protocols, IACR
ePrint, 2010.

[20] H. Gilbert, M. Robshaw and H. Sibert, An active attack against HB+ – A provably secure lightweight
authentication protocol, Cryptology ePrint Archive, 2005.

[21] J. H. Ha, S. J. Moon, J. Zhou and J. C. Ha, A new formal proof model for RFID location privacy,
ESORICS, LNCS, vol.5283, pp.267-281, 2008.

[22] D. Han and D. Kwon, Vulnerability of an RFID authentication protocol conforming to EPC class 1
generation 2 standards, Computer Standards & Interfaces, vol.31, no.4, pp.648-652, 2009.

[23] J. C. Hernandex-Castro, J. M. Estevex-Tapiador, P. Peris-Lopez and J.-J. Quisquater, Cryptanalysis
of the SASI ultralightweight RFID authentication protocol, ePrint arXiv: 0811.4257, 2008.

[24] A. Juel and S. Weis, Defining strong privacy for RFID, Cryptology ePrint Archive, Report 2006/137,
2006.

[25] A. Juels and S. A. Weis, Authenticating pervasive devices with human protocols, CRYPTO, LNCS,
vol.3621, pp.293-308, 2005.

[26] S. Karthikeyan and M. Nesterenko, RFID security without extensive cryptography, The 3rd ACM
Workshop on Security of Ad Hoc and Sensor Networks, pp.63-67, 2005.

[27] T. V. Le, M. Burmester and B. de Medeiros, Universally composable and forward-secure RFID
authentication and authenticated key exchange, The 2nd Asian ACM Symposium on Information,
Computer and Communications Security, pp.242-252, 2007.

[28] S. Lee, T. Asano and K. Kim, RFID mutual authentication scheme based on synchronized secret
information, Symposium on Cryptography and Information Security, 2006.

[29] T. Li and R. H. Deng, Vulnerability analysis of EMAP – An efficient RFID mutual authentication
protocol, The 2nd International Conference on Availability, Reliability and Security, pp.238-245,
2007.

4448 K.-H. YEH, N.-W. LO, Y. LI, Y.-C. CHEN AND T.-C. WU

[30] T. Li and G. Wang, Security analysis of two ultra-lightweight RFID authentication protocols, IFIP
International Federation for Information Security, pp.108-120, 2007.

[31] N. W. Lo and K.-H. Yeh, Hash-based mutual authentication protocol for mobile RFID systems with
robust reader-side privacy, The 1st ACM Workshop on Convergence of RFID and Wireless Sensor
Networks and Their Applications, 2007.

[32] N. W. Lo and K.-H. Yeh, An efficient mutual authentication scheme for EPCglobal class-1 generation-
2 RFID system, The 2nd International Workshop on Trustworthiness, Reliability and Services in
Ubiquitous and Sensor Networks, LNCS, vol.4809, pp.43-56, 2007.

[33] N. W. Lo and K.-H. Yeh, Novel RFID authentication schemes for security enhancement and system
efficiency, The 4th VLDB Workshop on Secure Data Management, LNCS, vol.4721, pp.203-212, 2007.

[34] N. W. Lo and K.-H. Yeh, Mutual RFID authentication scheme for resource-constrained tags, Journal
of Information Science and Engineering, 2010.

[35] C. Ma, Y. Li, T. Li and R. H. Deng, RFID privacy: Relation between two notions, minimal condition,
and efficient construction, The 16th ACM Conference on Computer and Communication Security,
Chicago, IL, USA, pp.54-65, 2009.

[36] D. Molnar and D. Wagner, Privacy and security in library RFID: Issues, practices, and architectures,
Conference on Computer and Communications Security, pp.210-219, 2004.

[37] J. Munilla and A. Peinado, HB-MP: A further step in the HB-family of lightweight authentication
protocols, Computer Networks, vol.51, no.9, pp.2262-2267, 2007.

[38] C. Y. Ng, W. Susilo, Y. Mu and R. Safavi-Naini, New previacy results on synchronized RFID
authentication protocols againse tag tracing, ESORICS, LNCS, vol.5789, pp.321-336, 2009.

[39] M. Ohkubo, K. Suzki and S. Kinoshita, Cryptographic approach to privacyfriendly tags, The RFID
Privacy Workshop, 2003.

[40] K. Oua and R. C.-W. Phan, Privacy of recent RFID authentication protocols, The 4th International
Conference on Information Security Practice and Experience, LNCS, vol.4991, pp.263-277, 2008.

[41] P. Peris-Lopez, J. C. Hernandex-Castro, J. M. Estevex-Tapiador and A. Ribagorda, LMAP: A real
lightweight mutual authentication protocol for low-cost RFID tags, The 2nd Workshop RFID Secu-
rity, 2006.

[42] P. Peris-Lopez, J. C. Hernandex-Castro, J. M. Estevex-Tapiador and A. Ribagorda, EMAP: An effi-
cient mutual authentication protocol for low-cost tags, OTM Federated Conferences and Workshop:
IS Workshop, 2006.

[43] P. Peris-Lopez, J. C. Hernandex-Castro, J. M. Estevex-Tapiador and A. Ribagorda, M2AP: A mini-
malist mutual-authentication protocol for low-cost RFID tags, International Conference on Ubiqui-
tous Intelligence and Computing, LNCS, vol.4159, pp.912-923, 2006.

[44] P. Peris-Lopez, J. C. Hernandex-Castro, J. M. Estevex-Tapiador and A. Ribagorda, Advances in
ultralightweight cryptography for low-cost RFID tags: Gossamer protocol, The 9th International
Workshop of Information Security Applications, LNCS, vol.5379, pp.56-68, 2008.

[45] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador and A. Ribagorda, An ultra light au-
thentication protocol suitable for resource-limited gen-2 RFID tags, Journal of Information Science
and Engineering, vol.25, no.1, pp.33-57, 2009.

[46] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. E. Tapiador and J. C. A. van der Lubbe, Security
flaws in a recent ultralightweight RFID protocol, RFIDSec Asia, 2010.

[47] P. Peris-Lopez, T. Li, J. C. Hernandez-Castro, Lightweight props on the weak security of EPC class-1
generation-2 standard, IEICE Trans. Inf. & Syst., vol.E93-D, no.3, 2010.

[48] K. Rhee, J. Kwak, S. Kim and D. Won, Challenge-response based RFID authentication protocol for
distributed database environment, SPC, LNCS, vol.3450, 2005.

[49] P. Rizomiliotis, E. Rekleitis and S. Gritzalis, Security analysis of the song-mitchell authentication
protocol for low-cost RFID tags, IEEE Communications Letters, vol.13, no.4, pp.274-276, 2009.

[50] B. Song and C. J. Mitchell, RFID authentication protocol for low-cost tags, The 1st ACM Conference
on Wireless Network Security, NY, USA, pp.140-147, 2008.

[51] B. Song and C. Mitchell, Scalable RFID authentication protocol, Network System Security, IEEE
Computer Society, pp.216-224, 2009.

[52] H.-M. Sun, W.-C. Ting and K.-H. Wang, On the security of Chien’s ultralightweight RFID authen-
tication protocol, Cryptology ePrint Archive, Report 83, 2008.

[53] S. A. Weis, S. E. Sarma, R. L. Rivest and D. W. Engels, Security and privacy aspects of low-cost
radio frequency identification systems, Security in Pervasive Computing, pp.201-212, 2003.

[54] J. Yang, J. Park, H. Lee, K. Ren and K. Kim, Mutual authentication protocol for low-cost RFID,
Encrypt Workshop on RFID and Lightweight Crypto, 2005.

NEW FINDINGS ON RFID AUTHENTICATION SCHEMES 4449

[55] K.-H. Yeh and N. W. Lo, Improvement of two lightweight RFID authentication protocols, Informa-
tion Assurance and Security Letters, vol.1, pp.6-11, 2010.

[56] T. C. Yeh and C. S. Wu, An enhanced ultralightweight RFID authentication protocol, Joint Con-
ferences on Pervasive Computing, pp.779-804, 2009.

[57] A. Juels, D. Molner and D. Wagner, Security and privacy issues in EPassports, The 1st International
Conference of Security and Privacy for Emerging Areas in Communication Networks, SecureComm,
2005.

[58] P. Najera, J. Lopez and R. Roman, Real-time location and inpatient care systems based on passive
RFID, Journal of Network and Computer Applications, vol.34, pp.980-989, 2011.

[59] C. C. Lo, C. H. Chen, D. Y. Cheng and H. Y. Kung, Ubiquitous healthcare service system with
content-awareness capability: Design and implementation, Expert Systems with Applications, vol.38,
pp.4416-4436, 2011.

[60] K. Ohashi, S. Ota, L. Ohno-Machado and H. Tanaka, Smart medical environment at the point
of care: Auto-tracking clinical interventions at the bed side using RFID technology, Computer in
Biology and Medicine, vol.40, pp.545-554, 2010.

