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Abstract. The main purpose of this paper is to consider the robust stability analysis
of time-delay systems based on the parameter plane method. The simple and systematic
procedure proposed for solving this problem easily obtains the exact stability boundaries of
time-delay systems. First, the relation between state-space representation and s-domain
characteristic equations is analyzed. The effects of both the state matrix and time-delay
on stability are addressed by this approach. System stabilization by state feedback gain is
also derived. Performance tests of the proposed procedure confirm that it obtains more
information compared with procedures reported in the literature.
Keywords: Time delay, Parameter plane, Stability

1. Introduction. The use of state-space models for stability analysis of time-delay sys-
tems has received much attention in the last two decades [1-11]. Specifically, the problem
of parameter-dependent and delay-dependent robust stability for time-delay systems with
polytopic uncertainties was studied in [12]. The parameter plane method and parameter
space method for robust stability analysis of time-delay systems was presented in [13].
A general rule has been identified for setting desirable elements in the system matrices
as parameters. The exact stability boundary obtained by the parameters can also be
plotted in the parameter plane or parameter space. As compared with [13], the purpose
of this study is to apply the parameter plane method for evaluating the robust stability of
uncertain time-delay systems reported in the literature, with an emphasis on the effects
of time delay. The stability effect produced by state feedback gain and commensurate
delays is also addressed.

2. Main Results. This section first introduces the fundamental technique for analyzing
the robust stability of second order time-delay systems by the parameter plane method.
The effects of scaling factors, time delay and state feedback gain are considered. Besides,
the time-delay systems with third-order and commensurate delays are also analyzed.

2.1. Effect of scaling factors. Consider the system

ẋ(t) = αA0x(t) + βAdx(t− T )

= α

[
a b
c d

] [
x1(t)
x2(t)

]
+ β

[
f g
h i

] [
x1(t− T )
x2(t− T )

]
,

(1)

where A0 and Ad are matrices, a, b, c, d, f , g, h, i are parameters, T is the time delay,
and α and β are scaling factors. The characteristic equation of this system is

F (s, T ) = det(sI − αA0 − βAde
−sT ) = 0 (2)
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i.e.,

s2 − α(a+ d)s+ α2(ad− bc)− β(f + i)se−sT

+ αβ(fd+ ai− cg − bh)e−sT + β2(fi− gh)e−2sT = 0 (3)

Arrange (3) as
X · α2 + Y · β2 + Z · α +W · β + U · αβ + V = 0 (4)

where X = (ad − bc); Y = (fi − gh)e−2sT ; Z = −(a + d)s; W = −(f + i)se−sT ;
U = (fd+ ai− cg − bh)e−sT ; V = s2.
Let s = jω, where ω is the frequency. Partition (4) into two stability equations including

real part and imaginary part, one has

XRe · α2 + YRe · β2 + ZRe · α +WRe · β + URe · αβ + VRe = 0 (5)

and
XIm · α2 + YIm · β2 + ZIm · α +WIm · β + UIm · αβ + VIm = 0 (6)

where XRe, YRe, ZRe, WRe, URe, VRe, and XIm, YIm, ZIm, WIm, UIm, VIm, are the real and
imaginary parts of X, Y , Z, W , U , V , respectively.
Solutions for α and β ((5) and (6), respectively) can be solved simultaneously by using

the symbolic method and then plotted in the parameter plane as the stability boundary
when ω is changed from 0 to ∞.

2.2. Effect of time delay. To determine the effect of time delay, assume that α = 1
and β = 1 and that (3) can be expressed as

A2e
−2sT + A1e

−sT + A0 = 0 (7)

where A2 = fi−gh, A1 = −(f + i)s+fd+ai− cg− bh and A0 = s2− (a+d)s+(ad− bc).
Define

e−sT = e−jωT = cosωT − j sinωT = δ − jη (8)

where δ = cosωT and η = sinωT . Then

e−2jωT = cos 2ωT − j sin 2ωT
= cos2 ωT − sin2 ωT − j2 cosωT sinωT
= δ2 − η2 − j2δη

(9)

After substitute (8) and (9) into (7), one has

A2δ
2 − A2η

2 + A1δ − jA1η − j2A2δη + A0 = 0 (10)

To solve δ and η, let s = jω, hand partition (10) into stability equations as in (5) and (6):

XRe · δ2 + YRe · η2 + ZRe · δ +WRe · η + URe · δη + VRe = 0 (11)

and
XIm · δ2 + YIm · η2 + ZIm · δ +WIm · η + UIm · δη + VIm = 0 (12)

Equations (11) and (12) can then be solved simultaneously by using the symbolic method,
and the solution can be plotted in the parameter plane as the stability boundary when ω
is changed from 0 to ∞.
Because solutions for δ and η must also satisfy condition (8), the boundary must inter-

sect the unit circle in the δ-η plane. The obtained time delays are

T =
1

ω
cos−1 δ, (13)

and

T =
1

ω
sin−1 η. (14)
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Restated, (13) and (14) provide exact values for maximum time delay for asymptotic sta-
bility. If no intersection in the parameter plane is found, the system is delay-independent
stable.

2.3. Effect of state feedback gain. The parameter plane method applied to analyze
the effect of state feedback gain is presented here. Consider the state feedback gain

u(t) = −Kx(t) = −
[
k1 k2

] [ x1(t)
x2(t)

]
(15)

For simplification, assume α = 1 and β = 1. Equation (1) with state feedback gain
K = [ k1 k2 ] can be written as the following equation

ẋ(t) = A0x(t) + Adx(t− T ) + Bu(t)

=

[
a b
c d

] [
x1(t)
x2(t)

]
+

[
f g
h i

] [
x1(t− T )
x2(t− T )

]
−
[
m
n

] [
k1 k2

] [ x1(t)
x2(t)

]
,

=

[
a−mk1 b−mk2
c− nk1 d− nk2

] [
x1(t)
x2(t)

]
+

[
f g
h i

] [
x1(t− T )
x2(t− T )

]
=

[
a′ b′

c′ d′

] [
x1(t)
x2(t)

]
+

[
f g
h i

] [
x1(t− T )
x2(t− T )

]
(16)

where a′ = a−mk1, b
′ = b−mk2, c

′ = c− nk1, d
′ = d− nk2 and B =

[
m n

]T
.

The above procedures can also be used to analyze how state feedback gain and time
delay affect stability in the parameter plane.

2.4. Third order time-delay system. This subsection addresses the stability analysis
of a third order time-delay system. Consider the system

ẋ(t) =

 a b c
d f g
h i v

 x1(t)
x2(t)
x3(t)

+

 k l m
n o p
q r u

 x1(t− T )
x2(t− T )
x3(t− T )

 . (17)

where a, b, c, d, f , g, h, i, v, k, l, m, n, o, p, q, r and u are parameters.
The characteristic equation is

A3e
−3sT + A2e

−2sT + A1e
−sT + A0 = 0, (18)

where

A3 = −(uok + plq +mnr −moq − kpr − lun),

A2 = (ok + uk + uo− qm− pr − nl)s
−(vok + ukf + aou+ hpl + bpq + glq +mni+ cnr
+dmr −mho− coq − fmq − kpi− kgr
−apr − dlu− bun− vnl),

A1 = −(k + o+ u)s2 + (fk + ao+ kv + ov + au
+fu− hm− cq − pi− gr − ld− bn)s
−(fkv + aov + afu+ bph+ hgl + bgq + cni+ dmi
+cdr − coh− fmh− cfq − kgi− api− agr − bdu− dvl − bvn),

A0 = s3 − (a+ f + v)s2 + (af + av + fv − ch− ig − bd)s
−(afv + bgh+ cdi− chf − agi− bvd).

Let s = jω and solve (8) as follows:

e−3jωT = cos 3ωT − j sin 3ωT
= (4 cos3 ωT − 3 cosωT )− j(3 sinωT − 4 sin3 ωT )
= (4δ3 − 3δ)− j(3η − 4η3)

(19)
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Substitute (8), (9) and (19) into (18) as follows:

4A3δ
3+ j4A3η

3+A2δ
2−A2η

2+(−3A3+A1)δ+(−j3A3− jA1)η− j2A2δη+A0 = 0 (20)

By adopting the same procedure applied in the second-order case in Subsection 2.2, the
solution for δ and η can be depicted in the parameter plane as ω is changed from 0 to ∞.
Moreover, the bound of time delay can be obtained by using (13) and (14).

2.5. Effect of commensurate time delays. Consider the following linear system with
commensurate time delays.

ẋ(t) =

[
a b
c d

] [
x1(t)
x2(t)

]
+

[
f g
h i

] [
x1(t− T )
x2(t− T )

]
+

[
k l
m n

] [
x1(t− 2T )
x2(t− 2T )

]
, (21)

The characteristic equation is

A4e
−4sT + A3e

−3sT + A2e
−2sT + A1e

−sT + A0 = 0, (22)

where A4 = kn−lm, A3 = fn+ki−gm−hl, A2 = −(n+k)s+(an+fi+kd−bm−gh−cl),
A1 = −(i+ f)s+ (ai+ fd− bh− cg) and A0 = s2 − (a+ d)s+ ad− bc.
Let s = jω, Equation (8) gets

e−4jωT = cos 4ωT − j sin 4ωT
= (8 cos4 ωT − 8 cos2 ωT + 1)− j(4 cosωT sinωT − 8 cosωT sin3 ωT )
= (8δ4 − 8δ2 + 1)− j(4δη − 4δη3)

(23)

Substitute (8), (9), (19) and (23) into (22). This gives

8A4δ
4 + 4A3δ

3 + j4A3η
3 + j8A4δη

3 + (A2 − 8A4)δ
2 − A2η

2

+ (−3A3 + A1)δ + (−j3A3 − jA1)η − j2A2δη + A0 + A4 = 0 (24)

Applying a similar procedure obtains the solutions for δ and η in the parameter plane as
ω is changed from 0 to ∞. Moreover, the time delay bound can be obtained by using (13)
and (14).

3. Numerical Examples. This section gives examples of time delay systems reported
in the literature to verify the design procedure.

Example 3.1. Consider the time-delay system

ẋ(t) = α

[
−0.6 0.2
0.2 −0.9

] [
x1(t)
x2(t)

]
+ β

[
−2.1 −1
−1 −0.6

] [
x1(t− T )
x2(t− T )

]
. (25)

In [2], the asymptotic stability is obtained when T = 0.5, α = 1 and β = [0, 1.333).
Figure 1 plots the solutions for α and β obtained by (5) and (6), respectively. Point Q1 is
the obtained result in [2]. The accuracy of Figure 1 is tested at two operating points: (Q2 :
α = 2, β = 1, stable) and (Q3: α = 2, β = 2, unstable). Figure 2 shows the time responses
of x1. Compared with [2], the proposed method obtains more stability information with
scaling factors α and β in the parameter plane.

Example 3.2. Consider the time-delay system

ẋ(t) =

[
−2 0
0 −0.9

] [
x1(t)
x2(t)

]
+

[
−1 0
−1 −1

] [
x1(t− T )
x2(t− T )

]
. (26)

The minimum time delay to destabilize (26) is 6.1726 [7]. In Figure 3, the solutions
obtained by (11) and (12) for δ and η when ω is changed are plotted as the dotted line.
The unit circle is also plotted as a dashed line in Figure 3. The curves clearly intersect
at Q4, and ω and δ are 0.436 and −0.9, respectively. According to (13), T = 6.1726.
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Figure 1. Stability boundary

(a) Q2 (b) Q3

Figure 2. Time responses

Example 3.3. Consider the time-delay system

ẋ(t) =

[
−6 0
0.2 −5.8

] [
x1(t)
x2(t)

]
+

[
0 4
−8 −8

] [
x1(t− T )
x2(t− T )

]
. (27)

The system proposed in (27) is stable for arbitrary delay [7]. In Figure 4, the solutions
for δ and η obtained by the proposed approach are plotted as dotted lines. The results show
no intersection in the parameter plane, and the system is delay-independent stable.

Example 3.4. Consider the time-delay system

ẋ(t) =

[
−3 −2.5
1 0.5

] [
x1(t)
x2(t)

]
+

[
1.5 2.5
−0.5 −1.5

] [
x1(t− T )
x2(t− T )

]
. (28)
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Figure 3. Parameter plane

In Figure 5, the solutions obtained for δ and η when ω is changed are plotted as the dotted
line. Notably, the curve passes through the unit circle at Q5. Therefore, ω = 0.866,
δ = −0.5, and T = 2.4184, which is consistent with [7].

Figure 4. Parameter plane
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Figure 5. Parameter plane

Example 3.5. Consider the uncertain time-delay system

ẋ(t) =

[
0 0
0 0

] [
x1(t)
x2(t)

]
+

[
0 1

−1 + g1 −0.5

] [
x1(t− T )
x2(t− T )

]
+

[
−1 + g2

1

] [
k1 k2

] [ x1(t)
x2(t)

]
=

[
(−1 + g2)k1 (−1 + g2)k2

k1 k2

] [
x1(t)
x2(t)

]
+

[
0 1

−1 + g1 −0.5

] [
x1(t− T )
x2(t− T )

]
(29)

where |g1| ≤ 0.53 and |g2| ≤ 1.7. The uncertain boundaries of g1 and g2 are indicted by
solid lines in Figure 6. If time-delay T = 0.2 and state feedback gain matrix

[
k1 k2

]
=[

0.0329 −0.1016
]
are selected [9], the stability boundary of g1 and g2 can be plotted in

the parameter plane as shown by the dotted line in Figure 6 when using (5), (6) and (16).
The regions are classified as stable or unstable. The uncertain system is clearly stabilized
by the state feedback gain. Figure 7 shows the time responses of x1 at four vertices.

Example 3.6. Consider the following uncertain time-delay system

ẋ(t) =

[
0 −0.12 + 12ρ
1 −0.465− ρ

] [
x1(t)
x2(t)

]
+

[
−0.1 −0.35
0 0.3

] [
x1(t− T )
x2(t− T )

]
, (30)

where |ρ| ≤ 0.035. The asymptotic stability is guaranteed for all delays that are less than
or equal to T ≤ 0.863 [9]. In Figure 8, the solutions obtained for δ and η when ω is
changed are plotted as the dotted line. The results are consistent with [9] when ω = 0.23
and δ = 0.981 at intersection Q6.

Example 3.7. Consider the third order time-delay system

ẋ(t) =

 −1 13.5 −1
−3 −1 −2
−2 −1 −4

 x1(t)
x2(t)
x3(t)

+

 −5.9 7.1 −70.3
2 −1 5
2 0 6

 x1(t− T )
x2(t− T )
x3(t− T )

 . (31)
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Figure 6. Parameter plane

Figure 7. State responses

In Figure 9, the solutions obtained by (20) for δ and η when ω is changed are plotted as
dotted lines. The curves pass through the unit circle at three points (Q7, Q8, Q9), where
T = 0.1624, T = 0.1859 and T = 0.222, respectively. The same results were reported in
[8].

Example 3.8. Consider the commensurate delay system

ẋ(t) =

[
−4 0
0 −3

] [
x1(t)
x2(t)

]
+

[
1 0.5
0 2

] [
x1(t− T )
x2(t− T )

]
+

[
−0.8 0
0.8 0.8

] [
x1(t− 2T )
x2(t− 2T )

]
.

(32)
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Figure 8. Parameter plane

Figure 9. Parameter plane

In Figure 10, the solutions obtained by (24) for δ and η when ω is changed are plotted as
the dotted line. The curve passes through the unit circle at Q10. Additionally, ω = 1.5
and δ = 0.9532. Therefore, T = 0.2048, which is consistent with [5].

Example 3.9. The characteristic equation for a third order system with delayed state
feedback is

hs3 + (6h+ 1)s2 + (13.75h+ 6 + 1.82he−sT + 0.42he−2sT )s+ 13.75 + 1.82e−sT

+ (0.42− 1305k)e−2sT = 0 (33)
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Figure 10. Parameter plane

Figure 11. Parameter plane

where k ∈ [−0.0144,−0.0029] and h ∈ [0.739, 2.58]. In order to check the stability bound
of time-delay T = 0.8548 [10], the solutions for k and h are plotted in the parameter
plane. Figure 11 shows the results. The uncertain boundaries are also drawn as solid
lines in Figure 11. The stability boundary intersects the vertex (k = −0.0144, h = 0.739)
as T = 0.8548, and the uncertain system is stable with state feedback.

Example 3.10. Consider the following specific three-variable biochemical system [14]

ẋ1 = 1− x0.5
1

ẋ2 = x0.5
1 − x0.5

2 (t− T )
ẋ3 = x0.5

2 (t− T )− x3

. (34)
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Figure 12. Parameter plane

Linearizing this system gives

ẋ(t) =


−1

2
0 0

1

2
0 0

0 0 −1




x1(t)

x2(t)

x3(t)

+


0 0 0

0 −1

2
0

0
1

2
0




x1(t− T )

x2(t− T )

x3(t− T )

 (35)

In Figure 12, the solutions obtained by (20) for δ and η when ω is changed are plotted
as the dotted line. The curve intersects the unit circle at point Q11. Using (14) obtains
T = π, which is consistent with [14].

4. Conclusion. Parameter plane method was used for robust stability analysis of differ-
ent time-delay systems. A simple systematic design procedure is also proposed. Examples
in the literature are given to verify the approach. The approach can easily be extended
to high order time-delay systems to acquire system element information in the parameter
plane.
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