International Journal of Innovative
Computing, Information and Conitrol ICIC International (©)2012 ISSN 1349-4198
Volume 8, Number 6, June 2012 pp. 4333-4345

A REDUCED OFFSET BASED METHOD FOR FAST COMPUTATION
OF THE PRIME IMPLICANTS COVERING A GIVEN CUBE

FATIH BASCIFTQI', SIRZAT KAHRAMANLI? AND MURAT SELEK?

!Department of Electronic and Computer Education
Technical Education Faculty
3Technical Vocational School of Higher Education
Selcuk University
Konya 42003, Turkey
{ basciftci; mselek }@selcuk.edu.tr

2Department of Computer Engineering
Engineering Faculty
Mevlana University
Konya 42250, Turkey
skahramanli@mevlana.edu.tr

Received March 2011; revised August 2011

ABSTRACT. In order to generate prime implicants for a cube of a logic function, most
logic minimization methods expand this cube by one at a time removing the literals from
it. However, there is an intractable problem of determining the order of literals to be
removed from the cube and checking whether a tentative literal remowval is acceptable. In
order to avoid this problem, the reduced offset method was developed. This method uses
the positional-cube motation where every reduced off-cube of an n-variable function is
represented by two n-bit strings. However, unfortunately, the conversion of such reduced
cubes to the associated prime implicants has the time complexity worse than exponential.
To avoid this problem, in this study, the method representing every reduced cube by a
single n-bit string and a set of bitwise operations to be performed on such strings are
proposed. The theoretical and experimental estimations show that this approach can
significantly improve the quality of results and reduce the space and time complezities of
the logic minimization process 2 times and up to 3.5 times, respectively.

Keywords: Logic minimization, Prime implicant, Reduced offset, Cube notation

1. Introduction. Sum-of-products (SOP) minimization is a basic problem in logic syn-
thesis [1-3]. It is used for optimization the logic-networks [3,4], for optimizing the test
generators [4,5], for obtaining the shortest paths between source and target nodes in hy-
percube configured systems [6-8] and for attribute reduction [9-17] and rule generation in
information systems [10,11,13,18-20]. Unfortunately, due to the exponential nature of the
exact SOP minimization, the state-of-the-art algorithms can typically handle functions
with up to hundred product terms (cubes) in the minimum SOP [1]. Therefore, most
computer aided design tools rely on direct-cover heuristic minimization methods [1,5,21-
24]. A function f to be minimized by such a method is represented by the onset, offset
and do not care set that are the sets of minterms (cubes) making the function f equal to
1, equal to 0 and unspecified, respectively. We denote these sets by Son, Sorr and Spe,
and their sizes (cardinalities) by |Son|, |Sorr| and |Spc|, respectively. In general, the
size of a set X will be denoted by |X|. Every element of the sets Son, Sorr and Spe is
called an on-cube, off-cube and do not care cube, respectively.

4333

4334 F. BASCIFTCI, S. KAHRAMANLI AND M. SELEK

A typical direct-cover heuristic minimization method realizes the SOP minimization of
a function f by the following algorithm [1,25-27].

Direct_Cover (Son, Sorr) |/ The output is to be a minimal form of the function
W(f)=0 // The set of selected Pls
Until SON = @ {

1) An on-cube P € Soy to be covered is chosen;

2) The set of Sp;(P) of PIs covering the cube P is generated;

3) From the set Spr(P), the essential prime implicant E(P) is identified;

4) The set Son is covered by F(P) and its rest is considered as Sox to be processed

in the next iteration; W(f) =0 =W(f)U E(P). }

FiGURE 1. A typical direct-cover heuristic minimization algorithm

In the algorithm Direct_Cover (Figure 1), the most time-consuming step is the second
one where the Pls are usually generated by the implicant expansion (reduction) method
[3,5,19,20,28,29]. In [5,28-30], it is stated that this step is of polynomial complexity in
the number of Boolean variables n. However, our estimations given below show that this
step is of exponential complexity in n.

Recall that an implicant of a function F'is such a product term that covers at least one
cube from Spx and does not cover any cube from Sopp [5,25,27]. Therefore, an implicant
being expanded by removing any literal (variable or its complement) from it should be
intersected with all the elements of the set Sorr to determine whether a tentative literal
removal is acceptable [5,25,27]. Since always [Sony| = k x 2", where k£ < 1, the time
complexity of a PI construction process should be specified as exponential in n.

Note that the computational efficiency of the expand operator and the quality of the
result (the size of the final cover) generated by it depend on two factors [5,25]:

1) The order in which the implicants are expanded,

2) The order in which the literals are removed from the implicant being expanded.

The rationale strategy for the first factor is to expand firstly those implicants that are
unlikely to be covered by other ones [5,21-23,25,26]. There are also several strategies
for the second factor such as Sequential Search, Multiple Sequential Search, Distributed
Multiple Sequential Search, and Distributed Exhaustive Implicant Fxpansion among which
usually the Sequential Search strategy is preferred [5]. Note that even some differences
in implementation of the Fzpand operator would lead to different covers with different
sizes [2,5,25,26]. Therefore, to improve the quality of results, the programs such as MINI,
PRESTO and Espresso manipulate the results of the Fxpand operator by the additional
operators such as Reduce and Reshape [5,25,27]. Unfortunately, none of the heuristic al-
gorithms is consistently better than the others for all logic functions [25,26]. In order
to avoid the problems specific to the implicant expansion concept, A. A. Malik, R. K.
Brayton, A. R. Newton and A. Sagniovanni-Vincentelli developed a reduced offset-based
minimization method [3,31]. An algorithm realizing this method consists of three steps
one that intractable due to its exponentional complexity. However, this complexity may
be reduced in a large scale if to reducing the reduced off-cubes specification space from
{0,1,2}" into {0,1}". We show that this is possible by using a data structure named as
a difference indicator and using a few logic operations developed especially for it (Section
3). This approach allows us to narrow the reduced off-cubes search space by a factor of
3m/2" = 1.5" x 2" /2" = 1.5" that increases rapidly with the increase of n. For instance,
it takes the values 58, 3325, 191751 and 11057331 for n = 10, 20, 30 and 40 respectively.
Moreover, we show that usually a very large part of implicants generated during the con-
version of product of sums (POS) form of a function to its SOP form is redundant (Section

A REDUCED OFFSET BASED METHOD 4335

3). Therefore, to reduce the space and time complexities of POS to SOP conversion, we
developed a method that prevents the generation of redundant implicants. This method
allows us to reduce POS to SOP conversion process on a very large scale. For instance,
for n = 20 and n = 40, the space complexity of the process is reduced 10% and 10'! times,
respectively (see Table 1). This property of our method allows us to generate the exact
Pls instead of ones heuristically generated by other methods. Due to these advantageous,
for most tested functions including benchmark ones, our method has generated the results
significantly better than those generated by other methods.

The rest of the study is organized as follows. In Section 2, the complexity of the
reduced offset based algorithm is estimated. In Section 3, the method of representation
of the reduced off-cubes by n-bit strings and the method generating PIs by using these
strings are explained. In Section 4, the results of experiments performed on 45 standard
single-output MCNC benchmarks are given. The paper is concluded by Section 5.

2. The Reduced Offset Based Logic Minimization Method. Recall that the re-
duced offset method was developed to speed up the second step of the algorithm Di-
rect_Cover given in Figure 1. According to this method, the reduced offset Sk(P) is
generated first by special handling the elements of Sprr on the chosen on-cube P and
second by minimizing the set Sg(P) into the minimal set Sga(P) of the reduced cubes
(RCs). Then the set Sgu(P) is transformed into the set Sp;(P) that contains all PIs
covering the on-cube P. This method can be realized by the following three procedures

[3]-

2.1. The procedure Reduce_Sorr. This procedure transforms each cube Z = z,_12,_2
... 20 € Sorr into the corresponding reduced cube Z" = ¢, _1¢,_o ... ¢y as follows [3,30]:

If p; = z; then ¢; = z; else ¢; =z, Vie {0,1,...,n—1} (1)

where P = p,_1pn—o...po is an on-cube on which the set Spopp is reduced and a literal
x appearing in the position of any variable means that this variable is do not care for
Z". In the other words, the procedure Reduce_Sorr transforms the set Spopp into a set
Sr(P) by removing all literals from the cubes of Sorp except those that are complements
of the corresponding literals in P [3]. We estimated the complexity of the procedure
Reduce_Sorr via the complexity of an assembly-based subprocedure reducing the cubes
by Formula (1) and performing 6 bitwise operations per cube. Since this subprocedure
must be repeated for all off-cubes, the time complexity of the procedure Reduce_Sorr is
to be 6 X |Sorr| computer’s instruction cycles. Since |Sorr| = k x 2" where k < 1, the

worst-case time complexity (WCTC) of the procedure Reduce_Sorp is to be exponential
in n, i.e., W(Reduce_Sopr) = O(2").

2.2. The procedure Minimize_Sgr(P). This procedure removes from Sg(P) all cubes
absorbed by other ones present in Sg(P) [3,16,17,32]. The work of this procedure may be
formally expressed as follows:

For Vi,7: i € {]_, 2,..., |SOFF| —]_} and j € {2, Ceey |SOFF|}

22N 7 = 7
(Z1, 720 =4 ZI, it ZinZ =2t 2)
(77, 73), it Zi 0 Z; ¢ {Z], Z}}

We estimated the time complexity of this procedure via a subprocedure Minimize_Sg(P)
performing 3 bitwise, 2 conditional and 3 return instructions per comparison of type (2).
Since in worst case, the subprocedure Minimize_Sg(P) must be applied |Sorp| — j times
for each Z} € Sg(P), the WCTC of this procedure is to be quadratic in [Sorr|. But since

4336 F. BASCIFTCI, S. KAHRAMANLI AND M. SELEK

|SOFF| =k x 2n, W(MZTLZmZZG_SR(P)) = O(|SOFF|2) = O((k X 2”)2) = O(k X 22n) That
is, the WCTC of the procedure Minimize_Sr(P) is even worse than exponentional.

2.3. The procedure Generate_Sp;(P). The function realized by this procedure may
be expressed as follows [6,33,34].

Spi(P) = {z}"#Sru(P) = Spu(P) = Z{&Z3&. . &7, (3)

where {z}" is the n-dimensional Boolean cube, # is the sharp-product operation sign, and
m = |Sra(P)|. Formula (3) is realized as follows:

1. The set Sgas(P) is represented in a POS form,
2. The obtained POS is converted to a SOP form.

Example 2.1. Let P = 001 and Sorr = {000,100, 111}. Find Spy (001). In the solution
of this example given below, the conversions performed by Formulas (1), (2), and (3) are
denoted by Ty, Ty and T3, respectively.

Ty : (P,Sorr) — Sr(001) = {zx0, 120, 11x};

Ty : Sp(001) — Sgrar(001) = {zx0,11x}; // 120 was removed due to 120 C zx0

T3 : Srar(001) — Spr(001) =Sk (001) = {220} &{11x} = {z21}& {023, 202} = {021, 201}

Our experiments over a lot of functions have shown that usually the size of Sk (P)
does not exceed 2.5n. Namely, usually the maximum number of clauses forming a POS
is limited above by 2.5n. Since usually each clause contains at least two literals, the
expected size of non-minimized SOP may not be less than O(2%°"). In our opinion, this
is one of the main reasons making the reduced offset method time-consuming when Sorp
is unreasonable large and there are many on-cubes to be handled [3].

3. Reducing the Space Complexity of the Reduced Offset Method and Gen-
erating the Prime Implicants.

3.1. Representation of a reduced cube by a difference indicator. In order to rep-
resent the cubes, the reduced offset method uses positional-cube notation as well as most
other minimization methods. According to this notation, an uncomplemented variable
yi, a complemented variable g; and a ‘do not care variable’ (missing variable in a product
term) are represented by bit-pairs 01, 10 and 11, respectively [3,5,25,27]. If to denote the
left and right bits of each bit-pair by L and R, respectively, then a cube Z = 2,2, 1...2
may be represented by the pair Z = (71, Zg) = (Ly, Ly 1, ..., L1, Ry, Ry 1, ..., Ry) that is
the most suitable representation of cubes for computers [25,35]. For example, according to
this representation, the cube Z = 02120 is to be represented as (Z;,, Zr) = (11011,01110).
Namely, in positional-cube notation, each cube is represented by two n-bit strings. But
our studies show that each RC may be represented by a single n-bit string that allows us
to significantly reduce the space complexity (the amount of memory required) of the logic
minimization problem. As it is stated in [16], the time complexity of the POS (named
also as CNF) to SOP (named also as DNF) conversion is a square of its space complexity.
Consequently, by reducing the space complexity of this problem by a factor of g, at the
same time we can reduce its time complexity by a factor of g2. Our starting point is as
follows.

As it has been stated above, |Sg(P)| = |Sorr| = O(2"), VP € Soy. But usually
most of the RCs are absorbed by a small number of others RCs in Sg(P) [16,17,25,27,32].
Our experiments performed on a lot of functions show that usually |Sguy(P)| < 2.5n,
VP € Soy. Namely, usually there are approximately O(2") — 2.5n RCs in a Sg(P) that
should be removed from it. Hence, in order to simplify the generation of Sgy/(P) as
much as possible, we represent an RC in such a form that allows us to easily detect the

A REDUCED OFFSET BASED METHOD 4337

redundant RCs. For this aim we use the following relation that may be between any two
cubes Z; and Z;. The cube Z; is absorbed by the cube Z; if:

1) The set of do not care literals present in Z; is a subset of ones present in Z;,

2) The same literals appearing in Z; and Z; have the same values.

Notice that the second condition is always satisfied, due to Formula (1), for all pairs of
RCs. Therefore, it does not need to be checked. Thus, we may use only one n-bit string
per RC instead of two ones. Such a bit-string (BS) contains 0s and 1s in positions of
appearing and do not care literals of an RC represented by this BS, respectively. We call
such a BS a literally Difference Indicator (DI). According to this approach, the DI for a
cube Z; € Sopr can be generated by the following simple procedure.

Generate_D(P);(P, Z;)
D(P);=P"Z;
Return (D(P);)

FIGURE 2. The algorithm converting a Z; to the corresponding D(P);

In this algorithm, P is an on-cube for which D(P); is generated, Z; € Sopp is an
off-cube to be converted to the appropriate DI and " is the bitwise XOR operation sign.
We prove the correctness of the algorithm Generate_D(P); via the procedure Derive Z}
that unambiguously converts any D(P); € Sp(P) to the corresponding ZF € Sk(P).

Derive Z7 (P, D(P);)
Zjr, = Pi~ D(P)j; Zjp =~ P~ D(P);
Return (Z},, Z7y)

FIGURE 3. The algorithm converting a D(P); € Sp(P) to the correspond-
ing ZF € Sg(P)

In this algorithm, | is the bitwise OR operation sign, and Z;;, and Z7p are the strings
of the left and right bits of the reduced cube Z7.

3.2. Generating the minimal set of difference indicators. Recall that, according to
reduced offset method, in order to generate the set Sp;(P), first the set of reduced cubes
Sr(P) is generated, and second the set Sg(P) is reduced into the set Sk (P) by removing
all redundant cubes from it. It is obvious that the WCTC of Sg(P) to Sgas(P) reduction
is to be quadratic in the size of Sg(P). Since in the DIs approach |Sp(P)| = |Sgr(P)| and
|Spa(P)| = |Sra(P)|, the WCTC of Sp(P) into Spas(P) reduction is also to be quadratic
in the size of Sp(P). Unfortunately, the size of Sp(P) is exponential in n as well as the
size of Sg(P). In order to avoid this negativity we form the set Spy(P) directly from the
set Sorp without any need to the set Sp(P). For this aim we developed a Formula (2)-
based procedure comparing each new generated D(P); to those that already in Spa(P).
This comparison is continued until D(P); is absorbed by any cube in Spys(P) or until all
elements of Spy(P) are handled. In order to generate the set Spu(P) completely, the
procedure Generate_D(P); must be applied to all elements of Sopp [3,30,32]. This work
is done by the procedure Generate_Spy(P) (Figure 4).

Example 3.1. A single-output function f(xy,xs,x3,24,T5) is represented by Sony =
{00000, 00010, 00011, 01000,01001,01100,01101,01110, 10000, 10010, 11000, 11010, 11110}
and Sorr = {00110,01010,10011,10100, 10101, 10110, 11001}. Find the set Spa(P) for
the on-cube P = 11010 € Son. The initial content of Spy(P) is {1}". The D(P);
and the associated content of Spy(P) are to be computed by the statements 1 and 2 of

4338 F. BASCIFTCI, S. KAHRAMANLI AND M. SELEK

Generate_Spn (P)(P, Sorr)
Spu(P) = {1}, |Spu(P)| =1 // Setting the initial content and size of Spur(P)
For j =1 to |Sorr| Do
1. D(P); = P"Z, /] The body of the procedure Generate_D(P);
3. Minimize Spy(P) by removing redundant cubes from it by Formula (2)
Return (Spa(P))

FI1GURE 4. The algorithm generating the minimized set of difference indicators

the algorithm Generate_Spy(P), respectively. Note that the reason of choosing the cube
P = 11010 € Son for this example is that it causes appearance of all possible absorption
relations that may be between two cubes. In the solution given below the scratched cubes
are those that are redundant (absorbed by other cubes in the same set).

D(P), = 11100; Spu(P) = {3 11100}

D(P)y = 10000; Spp(P) = {1466, 10000}
D(P); = 01001; Spa(P) = {10000, 01001}
D(P), = 01110; Spa(P) = {10000,01001,01110}
D(P); = 01111; Spa(P) = {10000, 01001, 01110, 61111}
D(P)g = 01100; Spa(P) = {10000, 01001, 6410, 01100}
D(P); = 00011; Spa(P) = {10000, 01001, 01100, 00011}

If we had solved this example by Formula (1), we would generate a set Sg(P) of the
size 7, which has to be minimized additionally. As it is seen from Figure 4 and Example
3.1, the time complexity of the algorithm Generate_Spy(P) is linear in |Sopp|.

3.3. The expansion of a DI into a set of unit clauses. In the DI approach, the
set Spr(P) is generated by processing the set Spu(P). But to do this, the elements of
Spar(P) must be expanded into clauses to be processed by Nelson’s theorem. The theorem
states that the SOP form of a function can be obtained by multiplying out all clauses
of the POS form of the same function and removing the redundant implicates from the
result [3]. Let us first introduce some definitions:

Definition 3.1. A clause consisting of a single literal is called a unit clause [13].

Definition 3.2. The projection of a DI D = d,,_1d,_»...d;...dy on the coordinate i is
expressed as follows [16,17,36]:

D(P)[i]=00...0d;0...00, d;€{0,1} (4)
n—i—1 [

In order to represent a D(P); € Spym(P) as a corresponding clause, we have to decom-
pose it into its own unit clauses by the following formula [16].

C(P); = {D(P);[i] : di =1}, i=1,2,...n (5)

Example 3.2. Convert the result Spy(P) = {10000,01001,01100,00011} of Ezample
3.1 to the sets of unit clauses by using Formulas (4) and (5).

1. According to Formula (4):

1.1) D(P),[5] = 10000;

1.2) D(P)s[1] = 00001, D(P),[4] = 01000;

1.3) D(P)3[3] = 00100, D(P)3[4] = 01000;

1.4) D(P)4[1] = 00001, D(P)4[2] = 00010.

2. According to Formula (5):

A REDUCED OFFSET BASED METHOD 4339

2.1) C(P)y = {D(P):[5]} = {10000},

2.2) C(P)y = {D(P)3[1], D(P),[4]} = {00001, 01000} ;

2.3) C(P)s = {D(P)s[3], D(P)s[4]} = {00100, 01000}
[

2.4) C(P)y = {D(P),[1], D(P)4[2]} = {00001, 00010}.
The following algorithm implements Formulas (4) and (5) for all j =1 to [Spa(P)].

Generate_C(P)(Spy(P),n)
C(P) = 0;
For j =1to |SDM(P)|
C(P)j =0; By = D(P)ja
While BO #0 Do {
C(P) = C(P) o(p),
Return (C(P))

FiGURE 5. The algorithm generating the sets of unit clauses

As it is easy to see from Figure 5, the time complexity of the procedure Generate_C(P)
is to be linear in n. But it must be applied to each element of Spy(P) the number of
which can be as high as 2.5n. Hence, the WCTC of application of this procedure is to be
quadratic in n, i.e., W(Generate_C'(P)) = O(n?).

3.4. Generating the set of incompletely specified prime implicants. We will use
the sets C'(P)y, C(P)s, ..., C(P), where r = |Spy(P)], for generating the incompletely
specified PIs covering the on-cube P. We denote such a PI by I(P). In difference from an
exact PI, an I(P) indicates only the positions of the literals present in the PI it represents
but does not specify the states (complemented or uncomplemented) of these literals. For
example, a I(P) = 0101 for the function f(x,xs, x5 24) indicates that there is a PI
containing literals x5 and x4, with no specified states. As will be seen below, these states
are clarified by bitwise conjunction of each I(P) with the bitwise negation of P.

Formula (3) states that in order to generate I(P)s, it is sufficient to process the sets
C(P)1, C(P)a, ..., C(P), where r = |Spa(P)|, by the following iterative formula.

where instead of Z} used in Formula (3) the corresponding C(D); is used and the bitwise
AND operation is replaced by bitwise OR operation (]) due to De Morgan’s duality law.

Note that the initial state of I(P) is to be {0}". The bitwise OR operation on I(P) and
C(P); may be performed as follows:

I(P)|C(P); = {exvy : ex € I(P)) and v, € C(D),}, (7)
where kmax = |[I(P)], gmax = |C(P);l.

In [16,37], it has been shown that while the maximal possible number of PIs of a
function of n variables is SCp; = (2/2), the worst-case space complezity of a POS to SOP
conversion is SCys = (n/2)%/2). In the other words, the number of RIs generated in the
computation of Formula (7) may be as large as Np; = SCyps — SCpy = (n/2)0r2) — (n/2)-
Since (3) << (n/2)%/2) for n > 6, this expression can be reduced into Ng; = (n/2)%/2).
For instance, Npr = 1,9 x 10*? for n = 8. This is to say that even a memory with 236 =
1019® address space theoretically may be overflowed during processing of the datasets

with n > 7. In the theory of switching functions, to reduce this complexity, the well
known ezpand and remove approach is used. According to this approach, the clauses are

4340 F. BASCIFTCI, S. KAHRAMANLI AND M. SELEK

multiplied one by one and after each multiplication the redundant implicants are removed
from the result. But since the maximal possible number of implicants occurring in POS
to SOP conversion may be as large as 3"/n [27,31], the 64 GB memory available today
may sometimes overflow for n > 23 even at using the expand and remove procedure. To
avoid this negativity, the method preventing the occurrence of the redundant implicants
proposed in [17,37] can be used. For this aim, Formula (7) is represented in the following
recurrent form [37]:

I(P)o = {{0}"}
I(P); = I(P);—1|C(F;), forall j=12,...[Spu(P)| (8)
As it is seen from Formula (8), I(P); is formed by bitwise Cartesian summing I(P);_4

with C'(P;). If to look at each of I(P);, I(P);—1 and C(P); as a set, Formula (8) may be
reduced into the following one:

I(P); ={xz :x € I(P);_; and z € C(P),} 9)
In [17] it has been proved that
Vo € I(P);_ : 2&C(P); # {0}" — z|C(P); =z (10)

Formula (10) states that if there is an implicant x € I(P);; such that z&C'(P); # 0 then
it will occur as one of implicants generated by the operation x|C'(P); and will absorb all
other implicants generated by this operation. Therefore, all € I(P),_; satisfying the
condition z&C(P); # {0}" should be considered as a part Vj; of the final result without
summing them with C(P);. That is,

Vit ={x € I(P)1|z&C(P); #{0}"} (11)
The rest of the set I(P),_; is obtained as follows:
Vie =1(P)j—1 = Vj (12)
That is, C (D), is to be Cartesian-summed with only the set Vj,.
T; = ViaC(P); (13)

However, a few redundant implicants may occur during the computation of Formula (13).
They may be removed by the following formula.

T, =T Ve eTj:xe€xVj (14)
Finally, the set I(P); is formed as
I(P); =T; UV (15)

In [17,37], it is given an algorithm implementing Formula (8) with preventing the oc-
currence of redundant implicants by using Formulas (11)-(15). In [37], it is stated that
this algorithm generates only the essential (irredundant) implicants the total number of
which is R = 0.5x (7, 5) = O(100-32m)=1) times less than the total number of all implicants
(redundant and irredundant) generated by an algorithm based on ezpand and eliminate
principle. The dependency of the order of R on the number of attributes n is given in
Table 1. As it is seen from this table, with every increase of n by 10 the efficiency of the
algorithm increases roughly by a factor of 103.

TABLE 1. The dependency of the efficiency of the algorithm on the number
of attributes

n| 10 [20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120
R[10%[10°[10% [10" [10™ [10™" [10%° | 10?3 | 107 | 10% | 103 | 10%°

A REDUCED OFFSET BASED METHOD 4341

The set I(P) of incompletely specified Pls for an on-cube P can be generated by the
algorithm Generate_I(P) that is an ordered sequence of Formulas (11)-(15).

Generate_I(P)({C(P);}I*5m ") n)
j=1,I(P)y = {0}"
For j=1 to |Spu(P)| Do {
1) V;1 = {z € I(P);j_1]|z&C(P); # {0}"}; Vio = I(P)j—1 — Vi1 // Formulas (11) and
(12)
2) T; = Vjo|C(P), /] Formula (13)
3) T) =Ty —Vex €Ty v €xVy; I(P); =T] UV} /] Formulas (14) and (15)
Return (I(P) = I(P),)

FIGURE 6. The algorithm generating the set of incompletely specified prime implicants

Example 3.3. Generate the set I(P) for results of Example 3.2 by using the algorithm
Generate_I(P). The results of Example 3.2 for P = 11010 are C(P), = {10000}; C(P)y =
{00100,01000}; C(P); = {00001}; C(P)y = {00001,00010} and the initial content of
I(P) is I(P)y = {0}°. Since in all iterations the same formulas are computed, they will
be referred to only in the first iteration.

The iteration 1. I(P), = {00000}; C'(P); = {10000}.

1.1) According to Formulas (11) and (12), Vi; = {z € I(P)|z&C(P), # {0}"} = 0;
Vis = I(P)o — Vi, = {00000} — 0 = {00000}

1.2) According to Formula (13), T1 = ViolC(P); = {00000}/{10000} = {10000}.

1.3) According to Formulas (14) and (15), 77 = Vo € Ty: = ¢ xV;; = {10000};
I(P); =TT UVy; = {10000}.

The iteration 2. I(P); = {10000}; C(P), = {00001, 01000}.

2.1) Vor = {x € I(P)1[a&C/(P); # {0}"} = 0; Vi = I(P); — Viy = {10000}.

2.2) Ty = VarlC(P), = {10000}{00001, 01000} = {10001, 11000}.

2.3) T§ =Va € Ty: o ¢ 2!Var = {10001, 11000}; I(P)y = T} U Var = {10001, 11000}
The iteration 3. I(P), = {10001, 11000}; C'(P)3; = {00100, 01000}.

3.1) Va1 = {& € I(P)a|a&eC(P)s # {0}"} = {11000}, V5o = I(P)z — Va1 = {10001}.

3.2) Ty = VaplC(P)3 = {10001}{00100, 01000} = {10101, 11001}.

3.3) T0 =Vr € Ty z ¢ 2V, = {10101,12001}; I(P); = T7 U V3, = {10101, 11000}
The iteration 4. I(P); = {10101,11000}; C(P)s = {00001, 00010}.

4.1) Vg = {x € I(P)3|z&C(P)y # {0}"} = {10101}, Vo = I(P)3 — Vi3 = {11000}.

4.2) Ty = Vip!C(P)4 = {11000}{00001, 00010} = {11001, 11010}.

43) T] =Vz € Ty 1 ¢ 2Vl = {11001, 11010}; I(P)4 = T{ U Vj, = {11001, 11010, 101
01}.

If we had solved this example by the conventional POS to SOP conversion, we would
generate a set I(P)4 of the size 4, which has to be minimized additionally. As it is seen
from Figure 6 and Example 3.3, the time complexity of the algorithm Generate_I(P) is
linear in |Spas(P)|, while the algorithm solving this problem by conventional POS to SOP
conversion is NP hard [9,11,14].

3.5. Converting a set of incompletely specified Pls to the set of exact PIs and
selecting the E(P). In order to convert an incompletely specified PI G = ¢,¢, 1 ...
g1 € I(P) to the corresponding exact PI U = w,u, ;...u; represented in the positional
cube notation, it is sufficient to perform the following operation.

If g; = 0 then u; = z, else u; = p;, foralli=1,2,...,n (16)

4342 F. BASCIFTCI, S. KAHRAMANLI AND M. SELEK

where p; is the ¢th bit of the on-cube P for which the PI U is generated. All the PIs for
the given on-cube P can be generated by the following algorithm.

Generate_Spr(P)(P,1(P))
Spr(P) = 0
For j=1to |I(P)|{
Select Gj € I(P); If g; = 0 then u; =z, else u; = p;, for alli =1,2,...,n
Spi(PYUU;; j=3+1} /] gi, wi and p; are the ith bits of G, U and P, respectively
Return (Sp;(P))

FIGURE 7. The algorithm converting a set I(P) to the corresponding set Sp;(P)

Example 3.4. Using the algorithm Generate_Spr(P) convert the result I(P) = {11001, 11
010, 10101} of Example 3.3 to the set of exact Pls for P = 11010.

In the conversions given below, w is used as the operator realizing the 1F statement of
the algorithm Generate_Sp;(P).

1)w: (I(P);,P) =w:(11001,11010) — 11220,

2) w: (I(P)s, P) = w:(11010,11010) — 11z1z;

3)w: (I(P)y,P) =w: (10101 ® 11010) = 12020; Sp;(P) = {11220, 11zlz, 12020}.

There are many heuristic criteria in the related literature for selecting the E(P) from
the set Spr(P) [21-23,26,27] among which the most popular is that selecting as the E(P) a
PI covering the maximum number of on-cubes from the yet uncovered part of the set Sy .
The comparison of the PIs from the set Sp;(P) with the cubes from the set Sox shows
that the PIs 11z20, 11x1z and 12020 cover the subsets of cubes {11000,11010,11110},
{11010,11110} and {10000, 10010, 11000}, respectively. Therefore, as the E(P), either
11220 or 12020 should be preferred.

3.6. The main procedure. The main procedure Generate_Sp;(P) generating all PIs for
the given on-cube P € Spy is formed by sequencing the procedures given in this section.

Generate_Sprp) (P, Sorr)

{ Generate_Spy(P)(P, Sorr) /] Output: Spp(P)
Generate_C(P)(Spy(P),n) // Output: C(P)
Generate_I(P)(M(P)) // Output: 1(P)
Generate_Sp;(P)(P, I(P)) // Output: Sp;(P)

}

4. The Experimental Results. A lot of experiments were done to evaluate the run-
time and quality of the results of the algorithm Generate_Sp;(P) realizing the proposed
method. The computer used was a PC with Intel® Core 2 Quad CPU Q8400 2.66
GHz and 4096 MB RAM. The quality of the results was measured by numbers of Pls
forming the minimized functions. Since currently the best logic minimization method is
that named as Espresso, we compared the results generated by our method with those
generated by Espresso for the same functions. In the experiments, a set of 45 standard
single-output MCNC benchmarks was solved by FEspresso-Ezact, Espresso-Signature and
by the proposed method. Since the last two methods generated the same results and took
approximately the same time, here we refer to them simply as Espresso. In the exper-
iments, we did not applied any pre-ordering to the onsets and used the simplest E(P)
identification rule that selects as E(P) such a PI which covers more on-cubes from the set
Son than other ones. The results of processing of 45 benchmarks are shown in Table 2.
As seen from this table, for 16 benchmarks (group G1) the results generated by proposed

A REDUCED OFFSET BASED METHOD

TABLE 2. The results of experiments

4343

n/ Nurlnber of Time elapsed (ms)
result cubes
Benchmarks |Sonl/ Espresso Our Espresso Our meth. Tr/Tom
|SOFF| meth. TE TOM
bca 26/15/13 6 1 59,39 41,82 1,42
t10 10/134/189 49 45 55,23 18,62 2,97
brl 12/25/8 8 4 59,82 14,08 4,25
brll 12/28/5 8 3 57,51 26,46 2,17
br2 12/29/6 6 2 58,03 14,42 4,02
den 18/18/2 14 4 58,84 66,16 0,89
exp 8/18 /52 4 3 56,53 13,68 4,13
G1 expl 8/24/47 6 3 58,23 15,12 3,85
inc 7/12/22 7 6 57,33 14,99 3,82
max4 9/37/8 36 6 78,56 16,62 4,73
min 9/83/51 29 6 57,64 14,64 3,94
p82 5/11/13 5 4 58,68 15,16 3,87
pdc 16/29/1891 11 4 59,69 14,58 4,09
prom2 9/142/145 8 7 58,79 14,81 3,97
spla 16/67/2036 38 29 58,17 19,26 3,02
sqn 7/48/48 12 8 58,28 14,48 4,02
G2 m3 8/98/30 14 16 62,67 15,30 4,10
m4é 8/223/26 23 24 57,60 29,40 1,96
apex4 9/4/434 4 4 59,88 14,50 4,13
check 4/4/9 1 1 55,39 14,32 3,87
checkl 4/4/8 1 1 56,37 14,60 3,86
check?2 4/4/6 1 1 58,61 14,13 4,15
check3 4/8/5 2 2 58,06 14,19 4,09
dist 8/53/203 12 12 59,17 14,73 4,02
exb 8/33/223 2 2 61,29 14,61 4,20
exps 8/65/131 20 20 58,93 13,99 4,21
f51m 8/128/128 23 23 62,52 14,28 4,38
linrom 7/65/63 24 24 59,88 14,86 4,03
m 6,/27/5 4 4 58,61 14,01 4,18
mb 6/27/5 4 4 59,61 13,91 4,28
max1024 10/516/508 4 4 59,07 14,47 4,08
G3 max128 7/29/99 8 8 61,44 14,29 4,30
max3 7/12/116 7 7 59,38 14,50 4,10
max512 9/358/254 10 10 59,85 13,76 4,35
mlp4 8/32/224 9 9 61,91 14,43 4,29
new2 6/3/4 2 2 61,98 14,79 4,19
poperom 6/56/8 7 7 60,50 14,53 4,16
rd84 8/120/136 84 84 60,25 13,72 4,39
root 8/15/241 4 4 62,34 14,15 4,41
sqr 6/18/46 2 2 60,13 14,39 4,18
squar 5/9/23 2 2 59,38 14,77 4,02
t3 12/27/121 6 6 60,78 14,09 4,32
wim 4/9/1 4 4 60,14 14,31 4,20
z5xpl 7/25/103 3 3 58,84 13,79 4,27
e 8/65/128 20 20 61,54 14,17 4,34

4344 F. BASCIFTCI, S. KAHRAMANLI AND M. SELEK

method are significantly better than those obtained by Espresso. But there are 2 bench-
marks m3 and m4 (group G2) for which our method generated a little worse results than
Espresso. For all remaining 27 benchmarks (group G3) both methods obtained the same
results. In general, our method generated better, equivalent and worse result for 36%,
60% and 4% of the benchmarks, respectively. Our method has proved faster by a factor
of 3.55 for 44 benchmarks on average and a little slower for only one benchmark (den).

5. Conclusion. In this study we propose a new approach for simultaneously generating
all PIs covering a given cube of a function. This approach is based on the reduced offset
method proposed in [3]. The main property of our approach is that we represent each re-
duced off-cube by using only a single n-bit string instead of a 2n-bit string used in all other
methods. Such a representation of the reduced off-cubes allows us to reduce the memory
space required for storage the sets of such cubes by a factor of 2. Since the proposed
method generates all PIs covering the given on-cube simultaneously the algorithm imple-
menting this method works approximately 3.55 times faster, on average than FEspresso.
The quality of the results generated by our method can be significantly improved by using
some convenient pre-ordering the onsets and more sophisticated E(P) identification rules
given in [21-24,26,38]. Our approach can also be applied to minimization of multiple-
output functions by taking into consideration the well known relations existing between
multiple-output PIs [5,27,34,38]. Currently, we work on the logic minimization of a func-
tion by partitioning its bit-based conjunctive normal form by the method proposed in
[16]. The preliminary estimations show that this approach would increase the efficiency
of the algorithm on a large scale.

Acknowledgement. This work is supported by Selguk and Mevlana Universities Scien-
tific Research Projects Coordinatorships, Konya, Turkey.

REFERENCES

[1] A. Mishchenco and T. Sasao, Large-scale SOP minimization using decomposition and functional
properties, DAC, pp.149-154, 2003.

[2] T. Sasao, Worst and best irredundant sum-of-product expressions, IEEE Trans. on Comput., vol.50,
pp.935-947, 2001.

[3] A. Malik, R. K. Brayton, A. R. Newton and A. Singiovanni-Vincentelli, Reduced offsets for mini-
mization of binary-valued functions, IEEE Trans. Comput., vol.42, pp.1325-1342, 1993.

[4] R. A. Bergamaschi, D. Brand, L. Stok, M. Berkelaar and S. Prakash, Efficient use of large don’t
cares in high-level and logic synthesis, International Con. on Comp.-Aided Design, pp.272-278, 1995.

[5] P. Fiser and J. Hlavicka, Boom — A heuristic boolean minimizer, Journal of Computing and Infor-
matics, vol.22, pp.1001-1033, 2003.

[6] N. Allahverdi, S. Kahramanli and K. Erciyes, A fault tolerant routing algorithm based on cube
algebra for hypercube system, Journal of System Architecture, vol.46, pp.201-205, 2000.

[7] P. Diindar and E. Kulig, Finding a fault-tolerant routing on neighbor — Faulty hypercube, Interna-
tional Journal of Computer Mathematics, vol.81, pp.1043-1049, 2004.

[8] S. Giines, N. Yizlmaz and N. Allahverdi, A fault — Tolerant multicast routing algorithm based on
cube algebra for hypercube networks, The Arabian Journal for Science and Engineering, vol.28,
pp.95-103, 2003.

[9] R. W. Swiniarski and A. Skowron, Rough set methods in feature selection and recognition, Pattern
Recognition Letters, vol.24, pp.833-849, 2003.

[10] Y. Matsumoto and J. Watada, Knowledge acquisition from time series data through rough sets
analysis, International Journal of Innovative Computing, Information and Control, vol.5, no.12(B),
pp.4885-4897, 20009.

[11] J. Komorowski, L. Polkowski and A. Skowron, Rough set: A tutorial, http://folli.loria.fr/cds/199
9/library/pdf/skowron.pdf, 1999.

A REDUCED OFFSET BASED METHOD 4345

[12] M. Inuiguchi and M. Tsurumi, Measures based on upper approximations of rough sets for analysis of
attribute importance and interaction, International Journal of Innovative Computing, Information
and Control, vol.2, no.1, pp.1-12, 2006.

[13] R. Jensen and Q. Shen, Rough Set Based Feature Selection: A Review, htp//cadair.aber.ac.uk/ds
pace/ handle/2160/490, 2007.

[14] A. Skowron, The rough sets theory and evidence theory, Fundamenta Informaticae, vol.13, pp.245-
262, 1990.

[15] W. Chen, S. Tseng and T. Hong, An efficient bit-based feature selection method, Expert Systems
with Applications, vol.34, no.4, pp.2858-2869, 2008.

[16] S. Kahramanli, M. Hacibeyoglu and A. Arslan, Attribute reduction by partitioning the minimized
discernibility function, International Journal of Innovative Computing, Information and Control,
vol.7, no.5(A), pp.2167-2186, 2011.

[17] S. Kahramanli, M. Hacibeyoglu and A. Arslan, A boolean function approach to feature selection
in consistent decision information systems, Ezpert Systems with Applications, vol.38, no.7, pp.8229-
8239, 2011.

[18] H. Sakai and M. Nakata, On rough sets based rule generation from tables, International Journal of
Innovative Computing, Information and Control, vol.2, no.1, pp.13-31, 2006.

[19] S. J. Hong, R-MINI: An iterative approach for generating minimal rules from examples, IEEE Trans.
Knowledge and Data Eng., vol.9, pp.709-717, 1997.

[20] M. Muselli and D. Liberati, Binary rule generation via hamming clustering, IEEE Trans. on Knowl-
edge and Data Engineering, vol.14, no.6, 2002.

[21] G. Promper and J. Armstrong, Representation of multivalued functions using the direct cover
method, IEEE Trans. Comp., vol.30, no.9, pp.674-679, 1981.

[22] G. W. Dueck and D. M. Miller, A direct cover MUL minimization using the truncated sum, Proc.
of the 17th Int. Sem. MV Logic, pp.221-227, 1987.

[23] P. W. Besslich, Heuristic minimization of MUL functions: A direct cover approach, IEEE Trans.
Comp., pp-134-144, 1986.

[24] O. Coudert, Two level logic minimization: An overview, Integration the VLSI Journal, vol.17, pp.97-
140, 1994.

[25] D. M. Giovanni, Synthesis and Optimization of Digital Circuits, Mccraw-Hill, New York, 1994.

[26] P. P. Tirumalai and J. T. Butler, Minimization algorithms for multiple-valued PLAs, IEEE Trans.
on Comput., vol.40, pp.167-177, 1991.

[27] R. K. Brayton, G. D. Hachtel, C. T. Mcmullen and A. Singiovanni-Vincentelli, Logic Minimization
Algorithms for VLSI Synthesis, Kluwer Academic, Boston, 1984.

[28] C. Umans, T. Villa and A. Sangiovanni-Vincentelli, Complexity of two-level logic minimization,
IEEE Tran. on Comp.-Aided Design of Integrated Circuits and Sys., vol.25, pp.1230-1246, 2006.

[29] C. Umans, The minimum equivalent DNF problem and shortest implicants, Journal of Computer
and System Sciences, vol.63, pp.597-611, 2001.

[30] S. Kahramanle, S .Giineg, S. Sahin and F. Baggiftgi, A new method based on cube algebra for the
simplification of logic functions, The Arabian Journal for Science and Engineering, vol.32, pp.101-
114, 2007.

[31] A. Malik, R. K. Brayton, A. R. Newton and A. Singiovanni-Vincentelli, Two-level minimization of
multivalued functions with large offsets, IEEFE Trans. on Computer-Aided Design, vol.10, pp.413-424,
1991.

[32] S. Kahramanli and F. Basciftci, Boolean functions simplification algorithm of O(N) complexity,
Journal of Mathematical and Computational Applications, vol.8, pp.271-278, 2003.

[33] D. L. Dietmeyer, Logical Design of Digital Systems, 2nd Edition, Boston, 1978.

[34] R. E. Miller, Switching Theory, Moscow, Mir, 1970 (in Russian).

[35] J. F. Wakerly, Digital Design Principles and Practices, http://www.ddpp.com/DDPP3_mkt/cO4sam
pl.pdf.

[36] D. Brand, R. A. Bergamaschi and L. Stok, Don’t cares in synthesis: Theoretical pitfalls and practical
solutions, IEEE Tran. on Comp.-Aided Design of Integrated Circuits and Sys., vol.17, pp.285-304,
1988.

[37] M. Hacibeyoglu, F. Bagciftci and §. Kahramanls, A logic method for efficient reduction of the space
complexity of the attribute reduction problem, Turkish Journal of Electrical Engineering € Computer
Sciences, vol.19, no.4, pp.643-656, 2011.

[38] R. Sharon and T. Rhyne, An algorithm for identifying and selecting the PI’s of a multiple-output
boolean function, IEEE Trans. Computer-Aided Design, vol.7, pp.1215-1218, 1988.

