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ABSTRACT. This paper deals with an active control system for base isolated structures.
The isolator device has a hysteretic nonlinear behavior. An adaptive backstepping ap-
proach is used for the control design in order to handle the nonlinearity and the presence
of uncertainties. The control is formulated in continuous time and further discretized
into a discrete time control algorithm to go closer to a digital implementation. The pa-
per shows that the implementation of this algorithm with a zero-order hold is able to keep
uniformly all the signals of the closed loop within certain bounds and to give an upper
bound of the asymptotic tracking error.

Keywords: Backstepping, Discrete-time control, Base-isolated structures, Hysteresis

1. Introduction. Combinations of passive devices with active or semi-active feedback
controllers have been proposed in recent years in the framework of smart base isolated
structures [1-5]. The feasibility of adding a feedback control system to a passive design
is based on the premise that only a control action is to be applied at the base with force
magnitudes which are not excessive due to the high flexibility of the isolators. The benefits
of the inclusion of the control lie mainly in that the application of this force can avoid
large displacements of the base isolator, which could endanger the scheme integrity; and it
may also introduce an additional resistant scheme not dependable of the inter-story drifts,
which are already small due to the effect of the isolator. This may be useful, particularly
for structures having sensitive installations, like hospitals, public services and computer
facilities.

One of the conceptual challenges for the development of a control law is associated
with the nonlinear behavior of the base isolators and with the uncertainties in the model
describing the structure-base-isolator system and in the seismic excitation. Robust non-
linear control laws have been proposed by [1,6-10]. Recently a new tool has been proposed
in the control theory to design nonlinear schemes for uncertain systems [11]. Backstepping
is an appealing alternative since it gives computable explicit bounds for the closed loop
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tracking error as a function of the size of the uncertainties [12]. A backstepping controller
for a base isolation scheme has been recently proposed by [13].

Usually the control law design is performed based on a continuous time model of the
system to be controlled and the resulting controller has a continuous time mathematical
structure. Since the control law is to be finally implemented through a digital control
system, a discrete time control algorithm has to be obtained. The pure discretization of
the continuous control law is a common practice and intuition says that, if the sampling
period is small enough, the performance of the discrete version of the controller will meet
the theoretical continuous performance with a reasonable error. However, this intuition
has been only proved in a few cases. The reference by [14] gave a prove that a discretization
of a backstepping controller is able to stabilize a continuous time system under some
conditions. In this paper, this approach is used to formulate a discretized version of the
hybrid controller of [13]. In this work we consider two different systems: a base isolated
single degree of freedom model and an eight-storied building structure. The first one is
used as a model for the design of the control algorithm and as a first test of its effectiveness.
The second one is used to perform a more extensive assessment on a more realistic case.
In the implementation of the control algorithm, special attention is given to some issues
related to the joint selection of the sampling period and controller parameters.

2. Design Models. Consider a base isolated structure with an active controller as illus-
trated in Figure 1. The passive component consists of a hysteretic base isolator.

The whole system can be described by a model composed of two coupled systems: ¥,
(the structure) and 3, (the base).

The absolute equations of motion are the following:

Eg . mla'él + (01 + 02)51'3'1 + (kl + kg)l’l = kgxg + 023‘72 — q)(l'l — d, t) + Cld + kld +u (1)
E? : m2".1}2 + Cgi‘g + le‘Q - CQi‘l - kQ!L‘l =0 (2)

where m; and mqy are the mass of the base and the structure, respectively; ¢; and ¢y are
the damping coefficients; k; and k, are the stiffness coefficients; x; and x5 are the absolute
displacement of the base and the structure, respectively; the excitation is produced by a
horizontal seismic ground motion characterized by an inertial displacement d(t), velocity
d(t) and acceleration d(t); the base displacement relative to the ground is y; = x1—d, while
Yo = w9—d is the relative structure displacement; ® is the restoring force characterizing the
hysteretic behavior of the isolator material, which is usually made with inelastic rubber
bearings; and w is the control force supplied by an appropriate actuator.
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FIGURE 1. Building structure with hybrid control system (left) and phys-
ical model (right)
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The hysteretic force ® is described by the Bouc-Wen model [15,16] in the following
form:

®(x) = akoxr + (1 — a)Dkoz (3)
i =D [Ai - BlE||z]" 'z — ¢l|z|"] (4)

where ®(z,t) can be considered as the superposition of an elastic component akyz(t) and a
hysteretic component (1 — a)Dkyz(t), in which D > 0 is the yield constant displacement
and « € [0,1] is the post to pre-yielding stiffness ratio. The hysteretic part involves
a dimensionless auxiliary variable z which is the solution of the nonlinear first order
differential Equation (4). In this equation, A, § and ¢ are dimensionless parameters
which control the shape and the size of the hysteresis loop, while n is a scalar that
governs the smoothness of the transition from elastic to plastic response.

3. Control Strategy and Controller Design. Looking at Equation (1), it is clear
that a feedback control law can be designed to supply a force u able to control the
absolute displacement of the base against the earthquake excitation, which is now a linear
combination of the ground displacement and velocity. We may observe that this excitation
does not appear in Equation (2), so control of the base motion leads to control of the
structure’s motion. The origin of the use of absolute coordinates can be found in [1], based
on the idea of keeping the whole structure stationary relative to its initial configuration
(i.e., relative to an inertial reference frame) and, roughly speaking, “letting the ground
move under it”.

We consider the following strategy for the feedback control design: measure and regulate
the absolute base displacement z;.

3.1. Controller design. In this section, we design a discrete-time backstepping control
system for the base isolated uncertain structure in Figure 1. The choice of a discrete-time
backstepping adaptive control allows to consider that the parameters of the models are
uncertain and to have an upper bound on the asymptotic tracking error — proportional
to the sampling period. Furthermore, the control error can be reduced by increasing the
design gains up to a certain limit.

In order to use the discrete-time adaptive backstepping approach for the control design,
we need to describe the model (1)-(2), along with Equations (3) and (4), in the transfer
function form.

3.2. Model description. Applying the Laplace transform to Equations (1) and (2) and
eliminating the variable x5, this model, along with Equations (3) and (4), can be written
as

21(t) = igi;u(t) +j3£((;))d(t) n ]f((;))z(tz (5)
p:a)
B(s)
= a0 +2ul) (6)
where
Als) = $ 4 micCo + Coma + 1Mo o3

mimyo
m1k2 + k1m2 + kaQ + CkkomQ + ci1e9 32

miymso
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In the model (6), we consider both the earthquake motion d(t) and the hysteretic
variable z(¢) as unknown disturbances. This is why we define the signal p,(t). The direct
transfer function between the control force v and the controlled output is:

where the coefficients are

by
b

bo

as

a2

a1

Qg

b282 + b18 + bg
st + a3s? + a2 + a15 + ag

B(s) _

1

)
my
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ks
mlmg’
miCo + C2Mo + C1 Mo

Y

mimeo
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mims
. klcg + ak002 + Cle
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On one hand, we assume that the earthquake motion d(¢) is bounded. On the other
hand, it has been shown in a previous work [16], that the hysteretic component z(t) is
always bounded under a particular choice of the parameters A, 5 and ¢ (A > 0, B+¢ > 0,
f—d>00r A>0,5—¢<0,3>0).

The boundedness of the signals d(¢) and z(¢) and the stability of the polynomial ex-
pression A(s) [13] allow us to consider p,(t) as a bounded disturbance.

3.3. Discrete-time adaptive backstepping control. Since we consider that the pa-
rameters of the models are uncertain, we use adaptive control to stabilize the control loop.
Denoting by p anyone of the parameters m;, k;, ¢;, (i = 1,2), ko and a, we assume that
P € [Pmin, Pmax)s Pmin and Pmax being known, i.e., we assume the knowledge of an interval

for each parameter.
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FIGURE 2. The continuous controller u(t) is constructed from the discrete
controller u(kA) by using a zero-order hold, that is, u(t) = u(kA), t €
kA, (E+1)A), k>0

In order to digitally implement backstepping adaptive control, we use the discrete-
time backstepping approach described in [14]. In this respect, at every sample time
kA, k =0,1,2,... we measure the absolute base displacement x;(kA) and compute the
corresponding control force u(kA). The continuous controller u(¢) is then constructed
from the discrete controller u(kA) by using a zero-order hold, as can be seen in Figure 2.
Throughout the rest of the paper, the discrete-time signals w(kA) are denoted w(k).

Our objective is to design a continuous control law generated by the zero-order hold
such that

(i) all the closed-loop signals remain uniformly bounded,
(i) the plant output z(¢) tracks as closely as possible the reference signal x,(t).

Figure 3 summarizes the step-by-step algorithm that, starting from the discrete-time
measurement x,(kA), ends up with the computation of the discrete-time control value
u(kA). The details of the derivations and some of the variables of this algorithm are
omitted for space reasons, but the complete developments and definitions can be found
in [14]. For the practical use of the control algorithm, it is important to remark that the
quantities (i, (2, t1, L2, Osp, 05 and v are positive design parameters, I" is a 7-dimensional
square matrix, and My, M, are defined as

3 2
My= > a?+> b, M, =][1/b)]
=0 =0

3.4. Robustness analysis. In this section we summarize the robustness and asymptotic
performance results which are derived following the reference by [14, Theorem 6.1].

If we consider the system (6) and the discrete-time adaptive controller composed of the
control law and the parameter update law described in Figure 3, then there exists a real
A* > 0, a positive integer ¢, and a positive constant ¢ independent of A and the initial
conditions such that, for:

(i) 0< A <A

(i) [IA(0), x(0)| < /A2,
(iif) [|z/]loo + 102/ [0 + (0221 [0 < C/A1/2qa
the following holds:

(1) all the signals (discrete and continuous) of the closed loop remain bounded,
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Error variables
21(k) = y(k) =y (k),  22(k) = v2,2(k) — 0(k)dy: (k) — a1 (k)
Stabilizing functions
a1 (k) = 5(k) i (k)
a1 (k) = = (G + 1)z (k) = Eap(k) — @ (R)D(k)

s (k) = —bazi (k) — |Ca + 2 (%)2] z2(k)

+ (k) + ‘9(%1 (k)

Balh) = G (€aa(h) + T (RO(R)
+ S (Ao (h) + eay() + G0 (1) + v ()
+ ‘;;:I(—mxl(k) + (k) + %(—ng)\l(k) + (k)
+ %(—ngh(k) + (k) — (m(k) + ag;) so(k)

Tuning functions
(k) =T(w(k) — o(k)(dyr (k) + a1 (k))er)z1 (k)
— Loy (l61)8(k),
0
(k) =1 (k) — r%w(km(k)
Y
Parameter update laws
00(k) =7>(k),
60(k) = — ysgn(b2) (dy- (k) + a1 (k)) z1(k)
—0.(lel)e(k)
Switching o-modification
A 0, 181l < Mo
ao(ll6l) = ¢ o, 161l > 2Ms
smooth connecting function, otherwise

a,(la]) = Oso, |é| > 2M,

smooth connecting function, otherwise

{ Oa |é| S MQ

Adaptive control law

u(k) = az(k) —va2,3(k) + 8(k)3"ys (k)

FI1GURE 3. Discrete tuning functions control algorithm

(2) the magnitude of the output is proportional to the sampling rate according to:

A S S
lim sup 7 (t) < c\/_+09+ag,

t—00 07

(8)

where « is a known function of, among others, the design parameters (y, (s, t1, to,
and x(0) is a vector of initial conditions.

On one hand, the condition in (i) states that the choice of the sampling time is limited
by an unknown positive real number A*. On the other hand, conditions (ii) and (iii) es-
tablish a limitation in the region of initial conditions and in the amplitude of the reference
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signal and its derivatives. However, in the numerical simulations, these last two condi-
tions are trivially satisfied because we have chosen zero-initial conditions and a constant
zero function as a reference signal. From a practical point of view, the implementation
of the discrete-time backstepping control requires the choice of the sampling time A, the
positive constants (i, (2, t1, L2, Os, O and 7.

4. Numerical Simulations. In this section the control algorithm is applied to the design
model presented in Section 2 and to an eight-storied building structure.

4.1. Base-isolated single degree of freedom model. Consider the system in Figure
1, whose parameters are listed in Table 1. The hysteretic parameters are also described
in Table 2. We remark that this particular choice of the hysteretic parameters satisfies
A>0,8+4+¢>0and f— ¢ > 0, that is, the hysteretic component z(¢) will be always
bounded, as can be seen in [16]. In order to investigate the efficiency of the proposed
control algorithm on this simple structure, we consider the 1952 Taft earthquake.

Figure 4 displays the time histories of the motions of the base (displacement and ac-
celeration) and the control signal force for the control design using a sampling period

Base displacement — A=0.001 Base acceleration — A=0.001
0.08 T T T 03
0.061 ~
¢ 0.2
2 004 PN o @
§ 0020 [N Vo =
£ N . : H Y £
£ o 5
A telt ' ' Q
S 002} T <
N -0.1
-0.041
-0.06 ‘ ‘ : ~02 ‘ ‘ ‘
0 5 10 15 20 0 5 10 15 20
Time (s) Time (s)
s Control law — A=0.001
6X 10

Force (N)

0 5 10 15 20

Time (s)
FIGURE 4. Numerical simulations with sampling time A = 0.001 s and
design parameters (; = 1; = 6, ¢+ = 1,2. Closed loop base displacement
(solid) and open loop base displacement (dashed) (m) (top, left); closed loop

base acceleration (solid) and open loop base acceleration (dashed) (m/s?)
(top, right); control signal force, u(t) (N) (down).
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FIGURE 5. Numerical simulations with sampling time A = 0.01 s and
design parameters (; = 1; = 1.3, © = 1,2. Closed loop base displacement
(solid) and open loop base displacement (dashed) (m) (top, left); closed loop
base acceleration (solid) and open loop base acceleration (dashed) (m/s?)
(top, right); control signal force, u(t) (N) (down).

TABLE 1. Model coefficients of the single-degree-of-freedom system

base structure

mass my = 6 x 10° kg mo = 6 x 10° kg
stiffness || k; = 0.1185 x 10® N/m ky =9 x 10° N/m
damping || ¢; = 0.1067 x 10” Ns/m | c; = 0.2324 x 107 Ns/m

TABLE 2. Parameters of the hysteresis model

a=0.5 A=1
ko =61224.49 N/m | 5 = 0.5
D =10.0245 m $»=0.5

A = 0.001 s and design parameters (; = 1; = 6, ¢ = 1,2. Figure 5 gives the same infor-

mation for the control system using a sampling time A = 0.01 s and design parameters
Ci =l = 13, 1= 1,2
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Looking at Figure 4, it can be seen that the controlled absolute displacement and
acceleration are drastically reduced compared with the uncontrolled case. The control
action lies within the range of acceptable values.

In the numerical experiments in Figure 5 the sampling time is A = 0.01 s (ten times
greater). It is observed that the reduction is not as drastic as for A = 0.001 s but it is still
significant, while the acceleration reduction is small. The control action is smaller and
smoother than for the previous case. The bigger reduction in the displacement for the
smaller sampling period is understandable according to the inequality (8). This inequality
also indicates that the displacement reduction can rely on increasing the value of a.
Although the details are omitted in the paper for space reasons, it can be shown that the
value of o can be increased by increasing the values of the design parameters (i, 1, (o,
1. However, this increase and the corresponding base displacement reduction cannot be
arbitrarily big. A practical limit exists beyond which the closed loop becomes unstable.
In Figure 6, for a fixed A = 0.01 s, the control parameters are moved from 0.7 to 1.3. We
observe that the bigger control parameters, the bigger reduction displacement. Beyond
1.3, the closed loop becomes unstable.

Base displacement A=0.01
0.08 T T ‘

0.06

0.04

0.02

o

Displacement (m)

-0.02

-0.04

_006 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Time (s)

FIGURE 6. For a fixed sampling period A, the magnitude of the output
can be reduced by increasing the design gains up to a certain limit (0.7, 0.9,
1.1 and 1.3)

TABLE 3. Model coefficients of the base-isolated structure

| | mass (t) | stiffness (N/m) | damping (Ns/m) |

base 3565.7 919422 101439
1st floor 2580 12913000 11363
2nd floor 2247 10431000 10213
3rd floor 2057 7928600 8904
4th floor 2051 5743900 7578
5th floor 2051 3292800 5738
6th floor 2051 1674400 4092
7th floor 2051 496420 2228
8th floor 2051 49620 704
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The designer needs to appropriately fix the sampling time and the control parameters
within the technical restrictions and the expected performance.

4.2. Eighth-storied building structure. As a more realistic example, we consider now
a hysteretic base-isolated eight-storied building, whose parameters are listed in Table 3.
This building structure is illustrated in Figure 7. For control design, a dynamic model
composed of two coupled subsystems, namely the main structure or superstructure (.S,.)
and the base isolation (S.) is employed:

S, :M#%, + Cx, + Kx, = 0,
Sc Imgfi’g + (Eo + Cl)i’g + (]:70 + kl){L’g =
klfL’l + Cli’l - (I)(l‘o — Ty, t) + égi’g + iﬁgfL’g + u,

where z, and &, are the displacement and velocity of the seismic ground motion, respec-
tively, x, = [z1,%9,...,75]" € R® represents the horizontal absolute displacement with
respect to an inertial frame. The mass, damping and stiffness of the ith story is denoted
by m;, ¢; and k;, respectively. The base isolation is described as a single degree of free-
dom with horizontal absolute displacement xy. It is assumed to exhibit a linear behavior
characterized by mass, damping, stiffness mg, ¢y and kg, respectively, plus a nonlinear
behavior represented by a hysteretic restoring force ®(zo —z,,t). The matrices M, C and
K of the structure have the following form

M = diag(my, my, ..., mg) € R¥®,

[ 1+ ¢ —C9 0 tee 0 0
C - —Ccy Cy+c3 —cC3 - 0 O c B8
| 0 0 0 cre —Cg Cg
[ ki + ke —ko o -+ 0 O
| R Btk ko0 g
0 0 0 -+ —kg kg

The restoring force ® can be represented by the Bouc-Wen model as in Equations (3) and
(4), whose parameters are described in Table 2.

Finally, u is the control force supplied by an appropriate actuator.

The following equations of motion of the base and the first floor will be used in the
controller design:

Srl :mljv'l + (Cl + Cg)i‘l + (kl + kg)ib‘l =
Cli'() + kll'() + CQi‘Q + kgib‘g,
SC Imgi‘o + (Eo + Cl)j}‘o + (l%g + kl){L’g =
klxl + Cli'l — q)(l'() — Ty, t) + Eglt'g + I%UZUQ + u,
or, equivalently,

57"1 :mlil + Cli‘l + klfL’l =

Cli'0+k1$0 +62(i'2 —i‘l) +I€2(ZL’2 —l‘l)j (9)

-~

E[l‘l,fbl,fﬂQ,be}
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FIGURE 7. Base-isolated structure with active control

Sc Imgi‘o + (Eo + Cl)i‘o + (Eg + kl)fL‘g =

klxl + Cli'l — (I)(ZCU — Ty, t) + Egi'g + I;ZUZUQ + u. (10)
It is well accepted that the movement of the superstructure S, is very close to the one
of a rigid body due to the base isolation [17]. Then it is reasonable to assume that the
inter-story motion of the building, and in particular 5 — #; and xy — x; will be much
smaller than the absolute motion of the base [10]. Hence, the right-hand terms of S,, in
Equation (9) can be simplified as

Cli‘o + kll‘o + 6[1‘1, i‘l, Zg, IL‘Q] ~ Cli‘g + klfL‘g.

Consequently, the following simplified equation of motion of the first floor, together with
the equation of motion of the base, can be used in the subsequent controller design:

Srl :mljv'l + Cli'l + kll'l = Clit'g + kll'o, (11)
Sc Imgi‘o + (Eo + Cl)i‘o + (Eg + kl)fL‘g =
klfL‘l + Cli‘l - (I)(l‘o — Ty, t) + égi‘g + EOIL‘Q + u. (12)

Now, applying the Laplace transform to Equations (11) and (12) and eliminating the
variable z, this model can be written as
B(s)
A(s)
and consequently the same discrete time adaptive control described in Section 3.3 can be
applied to this structure.

In this case, in order to investigate the efficiency of the proposed control scheme, the
controlled structure is simulated for two earthquake ground accelerations: Newhall (1994)
and Kobe (1995).

Figures 8 and 9 display the time histories of the motions of the base (displacement and
acceleration) and the control signal force for the control design using a sampling period
of A =0.01 s and design parameters (; = 1; = 1.5, ¢« = 1,2, for both Newhall and Kobe
earthquakes. The benefit of this active control strategy is the significant reduction of

To(s) = u(s) + pa(t)
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Base displacement — A=0.01 Base acceleration — A=0.01

Displacement (m)
Acceleration (m/sz)

=031 y —controlled || -6 —controlled
- - -uncontrolled g - - -uncontrolled
_0'40 5 10 15 20 ) 5 10 15 20
Time (s) Time (s)
; Control law — A=0.01
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3 |
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k2
—1t
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4 ; ; ;
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Time (s)

Ficure 8. Numerical simulations of the eight-storey building in Section
4.2 under Newhall excitation with sampling time A = 0.01 s and design
parameters ¢; = 1; = 1.5, i = 1,2. Closed loop base displacement (solid)
and open loop base displacement (dashed) (m) (top, left); closed loop base
acceleration (solid) and open loop base acceleration (dashed) (m/s?) (top,
right); control signal force, u(t) (N) (down).

the base displacement without increase in accelerations. Hence, a controller that reduces
or does not increase accelerations while reducing the base displacement significantly, is
desirable for practical applications.

5. Conclusions. The paper has presented an active control scheme for hysteretic base
isolated structures. An adaptive backstepping control is formulated in continuous time
based on a model of the system in absolute coordinates. The control law is discretized into
a digital control algorithm. The implementation of this algorithm along with a zero-order
hold is able to keep uniformly all the signals of the closed loop within certain bounds and
to give an upper bound of the asymptotic tracking error. These bounds are related to the
sampling period.

Acknowledgment. This work is supported by CICYT (Spanish Ministry of Science and
Innovation) through grant number DPI2011-28033-C03-01.
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Base displacement — A=0.01 Base acceleration — A=0.01
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FIGURE 9. Numerical simulations of the eight-story building in Section 4.2
under Kobe excitation with sampling time A = 0.01 s and design parame-
ters (; = 1; = 1.5, i = 1,2. Closed loop base displacement (solid) and open
loop base displacement (dashed) (m) (top, left); closed loop base accelera-
tion (solid) and open loop base acceleration (dashed) (m/s?) (top, right);
control signal force, u(t) (N) (down).
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