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ABSTRACT. This study provides a resolution to the separation of specular and diffuse re-
flectance components in images of textured scenes. The proposed method can be used to
solve several challenging tasks associated with computer vision applications ranging from
specularity removal, image filtering, and surface reconstruction. We present a unified
framework to achieve object surface reflectance separation by studying the dissimilarities
between the reflectance components distribution in scene images delineated on a normal-
ized color space. A simple but robust reflectance decomposition technique is introduced
based on the Figen-decomposition transform we named the Mean-Shift Decomposition
(MSD) method. This technique provides a direct access to surface shape information
through diffuse shading pizels isolation. In addition, the proposed method does not require
any local color segmentation process as it differentiates between both reflectance compo-
nents efficiently. This is viewed as a significant contribution to the prevailing approach
of several proposed methods in the literature that operate on images by aggregating color
information along each image plane. To recover objects surface geometry information,
we formulate a specularity removal process by shifting the specular reflectance compo-
nents toward the decomposed diffuse reflectance distribution. An empirical evaluation of
the proposed reflectance separation technique is performed on several images comprising
uniform color surfaces, multicolor surfaces, and highly textured surfaces.

Keywords: Reflection separation, Shape invariants, Specular reflection removal, Surface
reconstruction, Image restoration, Dichromatic reflection model

1. Introduction. In computer vision, the modeling of surface reflectance is a topic of
vital importance for purposes involving surface analysis and image understanding. By
separating objects surface reflectance properties, powerful Lambertian-based methods can
be applied for tracking, classification, reconstruction and recognition accurately to real-
world scenarios [1]. Scenarios are assumed by many algorithms to consist only of diffuse
reflections while specular ones are considered in many occasions to be negligible. Specular
reflections confuse many vision problems since they produce image attributes that do not
bind directly with intrinsic surface properties such as shape and spectral reflectance. Thus,
methods that successfully separate both reflectance components in images are desired to
advance current and future methods that do or will suffer from this complex reflectance
occurrence.

This paper addresses the separation of reflection components in scene images as means
to improve the effectiveness of the aforementioned applications. Unlike many of the
existing methods, which limit their application to the reflectance component [2,3], our
approach considers analyzing the image intrinsic properties relating to both diffuse and
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specular reflectance components. We restrict our consideration to surfaces that are well
represented by the dichromatic reflectance model introduced by Shafer [4]. This model
suggests the possibility of decomposing surfaces into two-distinct reflectance constituents
solely based on color image information. Our approach studies the dissimilarities between
the diffuse and specular reflectance distributions projected in a normalized color space
in order to isolate information about the material properties in an image scene while
preserving the surface geometry information.

We introduce a simple but efficient reflectance decomposition technique based on the
Eigen-decomposition transform that we refer to as the Mean-Shift Decomposition (MSD)
method. This technique provides a direct access to surface shape information through
diffuse shading pixels seclusion. In addition, the proposed method does not require any
local color segmentation process as it differentiates between both reflectance components
through the proposed MSD method which differs from several proposed methods in the
literature that operate by aggregating color information along each image plane.

The contributions involved in the proposed reflectance separation method reside in:

e Analyzing and separating the image reflectance component using the Mean-shift
decomposition technique derived based on the Eigen-decomposition transform.

e Recovering the surface geometry information by isolating the image diffuse reflectance
distribution.

e Formulating a specular reflectance removal process by shifting the specular reflectance
components toward the decomposed diffuse reflectance distribution.

e Evaluating the proposed algorithm on several images comprising uniform color sur-
faces, multicolor surfaces, and highly textured surfaces.

The rest of the paper is organized as follows. We begin by introducing a literature
review on different related methods used for accomplishing the diffuse/specular separation
task as summarized in Section 2. In Section 3, a review is given on several types of
reflectance models used for reflection measurements. This same section also describes
the model as employed in the reflectance separation approach considered in this study.
Section 4 presents the chromaticity-color space used as a basis to the MSD technique.
Sections 5 and 6 describe the classification of the image reflectance components using the
MSD method and the specular removal process, respectively. An outline of the proposed
algorithm implementation is presented in Section 7. Finally, we evaluate and summarize
our proposed method in Sections 8 and 9.

2. Related Work. Many methods have been proposed for separating reflection compo-
nents using single or multiple input images of non-Lambertian objects (these are objects
that deviate from the Lambert Law which assumes that luminance of a diffuse surface is
the same in all directions; as formulated in 1760 by J. Lambert).

Based on color and image intensities, Sato and Ikeuchi [5] introduced a four-dimensional
temporal-color space to analyze the diffuse and specular reflections. Their method has
the ability to separate the reflection components using local interactions; however, it
requires numerous input images with variation of illuminant directions. The benefit of
using local analysis is that it admits highly textured scenes that do not contain piecewise
constant diffuse colors. Lin et al. [6] used color histogram differencing to identify specular
reflectance with multi-baseline stereo-vision. Their method makes use of the image pixel
color stability to the field of view changes, since colors of specular pixels are dependent
on the scene viewing positions while the diffuse pixel colors are not. Lin and Shum [7]
introduced a method that uses several sparse images registered under different illumination
positions. Their method uses the neutral interface reflection model that combines finite
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dimensional basis functions [8] and the dichromatic reflectance model [4] to form a closed
form linear surface reflectance.

Other methods based on multiple input images make use of extrinsic cues such as po-
larizing filters to enable the recovery of a spatially-varying source colors [9,10]. Wolff and
Boult [11] used a polarizing filter to separate both specular and diffuse reflection compo-
nents from grey images. They noticed that diffuse reflections tend to be less polarized
than the specular reflections along most incident reflection angles. On the other hand,
reflectance separation methods that use a single input image have also attracted sev-
eral considerations from the research community. Shafer [4] introduced the dichromatic
reflectance model suggesting the ability of decomposing an image into its specular and dif-
fuse components based on the parallelogram distribution of colors in RGB space. Klinker
et al. [12] showed that the color histogram of the image diffuse reflection color forms a
T-shaped distribution when the diffuse colors are the same along each point on an ob-
jects surface. The color distribution they proposed forms linear clusters representing the
diffuse and specular pixels. By separating these clusters, the image becomes segmented
into several regions of homogeneous reflectance color. Later, Tan et al. [13] iteratively
compared the intensity logarithmic differentiation of an input image and its specular-free
image. Their method reduced the specular component value of each pixel iteratively by
considering one of its neighbor pixels as having a similar diffuse component characteristic.
Mallick et al. [14] applied a family of partial differential equations (PDE) that iteratively
erodes the specular reflectance component at each pixel. Similarly, Khosrayy et al. [15]
presented a method based on PDF-matched measure of short-term linear image signal
prediction. The image source signals (i.e., image reflectance) are recovered by finding an
un-mixing matrix that maximizes the predictability of each extracted surface reflectance.

3. Reflection Model and Image Formation. The use of physical reflectance mea-
surements has shown to benefit the rendering of surface reflectance effectively. Such
measurements can provide an ideal choice of parameters for existing reflectance models
and can be used also to provide the basis for entirely other new reflectance models. For in-
stance, the bidirectional reflectance distribution function (BRDF) measurement describes
the reflection of an opaque surface by measuring the ratio of the radiance L reflected from
the surface in a certain direction to the incident irradiance I at a particular wavelength
A. We consider the BRDF to be a five-dimensional function of wavelength and imaging
geometry, whose measurement function f can be described as:

dL(0,, o)
d1(0,, 6) M

where © = (6;, ¢;, 0., ¢,) defines the directions of the incident and reflected radiance in the
local spherical coordinate system. A simple model that can be generated from the BRDF
measurement is the Lambertian reflectance model where the BRDF is a constant function
of the imaging geometry so that f(©,) = f(A). Another common BRDF model is the
dichromatic model of reflectance derived by Shafer [4] to represent dielectric materials.
According to this model, the BRDF of the surface can be decomposed into two additive
components: (1) the specular reflectance representing the surface interface, and (2) the
diffuse reflectance representing the surface body. This model assumes that each reflectance
component can be expressed as being a function of wavelength and imaging geometry,
which leads to the following expression of the dichromatic BRDF model observed from a
surface point n:

f(n,A) = mg(n)Sa(n, \)E(n, ) + ms(n)Ss(n, \)E(n, A) (2)

f(©,2) =
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where my and m, are the geometrical scale factors for the diffuse and specular reflectance,
respectively, which depend on the surface properties and illumination geometry ©. The S,
and Sy components are the diffuse spectral reflectance function and the specular spectral
reflectance function, respectively, while E is the spectral distribution function of the
illuminant, and n is the position of the surface point in a three-dimensional coordinate
system.

Most methods that operate on dielectric inhomogeneous objects use the neutral inter-
face reflection assumption (NIR) introduced by Lee et al. [16]. This assumption suggests
that the spectral reflectance distribution of the specular reflection component S is simi-
lar to the spectral energy distribution of the incident light E, [17-19]. As a result of this
assumption Equation (2) can now be expressed as follows:

f(n, A) = mg(n)Sy(n, \)E(n, \) + mg(n)E(n, \) (3)

By combining the dichromatic reflectance model represented by Equation (3) with the
camera intrinsic properties, the image formation equation for a surface element illuminated
by a light source is described as follows:

pr(n) = ma(n) Di(n) +ms(n)Sk(n) (4)

where Dy(n) = [, Sa(n, A\)E(n,A\)Ci(A\)dA and Si(n) = [, E(n,\)Ci(A\)dA. Here p, =
{pr,pg,pb} is the RGB color vector response from a typlcal camera, consisting of k =
{r, g,b} measurements, and Cy = {C,,C,,C}} is the sensor sensitivity of the three color
channels over the range of the visible spectrum €2. D, and S} are the diffuse and specular
image components and are assumed to be unit length vectors ||Dg|| = ||Sk|| = 1.

Even though the dichromatic model was originally established to process materials such
as glass, plastics, cloths, or even plant leaves, the model has also shown to be useful for
applications involving human skin [20-22].

Throughout this paper, we use the BRDF dichromatic model described in Equation
(4), and we assume that the illumination spectral power distribution is formed using a
single and uniform illumination color E(\) independent from the image coordinates n.
We note that the camera properties employed for image formation ignores the read noise
and gain factor.

4. Image-Chromaticity Color Space. Color space transformations have shown to help
exploring the knowledge of the illuminant attributes in color images which results in de-
scribing the image diffuse information independently [23-25]. By shifting or projecting
image intensities into a specified color space, depending on the motivated application, one
can linearly combine the three image color channels to obtain either one or two distinct
diffuse channels. Zickler et al. [24] proposed a color space referred to as SUV color space
that isolates two-predominantly diffuse channels while retaining the entire specular com-
ponents information apart. Similarly, Park [23] isolated the diffuse reflectance channels
while maintaining a similarity to the HSI color space using a linear transformation de-
scribed by a matrix L and a rotational transformation represented by a matrix R. The
two matrices, L and R, are chosen in a way that the third axis of the image color is aligned
with the illumination color vector; this reveals an image channel highly insensitive to spec-
ular reflections and other two channels consisting mainly of diffuse components. On the
other hand, Tan et al. [13] obtained a specular free image channel using a source depen-
dent non-linear transformation of the RGB space. This transformation yields a positive
monochromatic image that depends directly on diffuse shading information. Similar to
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Tan and colleagues method, Yoon and Kweon [26] proposed another non-linear transfor-
mation strictly relied on white illumination that produces also a positive grayscale image
dominated by diffuse reflectance components and independent from specular effects.

In this study, we consider a different approach from the color transformation meth-
ods discussed. It is important to analyze the reflectance components distribution in the
RGB color space to efficiently describe the correlation between those two reflection con-
stituents. As mentioned in the previous section, assuming a dichromatic model object,
the spectral reflectance distribution of the specular reflection component is similar to the
spectral energy distribution of the incident light. Tan et al. [27] introduced a new space
transformation to analyze the relationship between illumination color and image intensity
identified as inverse-intensity chromaticity space (IIC). Initiated mainly for illumination
color estimation, we base our method on the ITC-space to identify the image pixels rep-
resenting the diffuse and specular reflections. By projecting an RGB image into the
11C-space, the distribution of the image reflectance forms a set of straight lines expressed
by the following equation:

oh = et wi(n) (5)
e
where r = mg(n)(wqr(n)—wsk(n)). Here, oy is the image intensity chromaticity of py,, wa
and wyj, are the diffuse and specular reflectance chromaticities of Dy and S}, respectively.
Figures 1(b) and 1(c) show the distribution of the image green-channel projected on the
I1C-space. These straight lines portraying both reflection components consist of several
sets of different m, values representing the geometrical surface properties of the diffuse
reflectance. These values depict the orientation of the reflection lines since they are
associated with the gradient r in Equation (5). It can be observed empirically that as the
object surface texture measurement is small (i.e., smooth surface), the diffuse reflectance
distribution characterized in the IIC-space is relatively dense and is prone to merge with
the specular reflectance components. However, if the object surface texture measurement
is large (i.e., rough surface), the diffuse reflectance distribution becomes instead relatively
sparse. Therefore, by understanding the distribution of the image reflectance properties
in the ITC-space, the specular/diffuse separation process can be accomplished by finding
the maximum reflectance disparities between the image pixels representing the specular
and diffuse reflections.
In the next section, we describe how these reflection lines differences can be categorized
to separate the image diffuse and specular components using a simple method based on
the Eigen-decomposition transformation, we call Mean-Shift Decomposition (MSD).

5. Image Reflectance Components Classification. The ability to determine the
specular highlight regions has always been an ill-posed problem for several specular/diffuse
separation methods. Previously, some methods require explicit color segmentation tech-
niques to handle specular regions in multicolored surfaces especially when dealing with
objects having highly textured surfaces and when processing single input images. In com-
parison with those methods, our proposed technique finds the maximum variance of image
reflectance pixels to isolate both reflectance component distributions distinctly. This sec-
tion introduces the Mean-shift decomposition method, a simple technique for specular
and diffuse reflectance distribution classification over the IIC-space based on the Eigen-
decomposition transform. Here we consider a two-class problem where the classes are
labeled to describe a diffuse reflectance class or a specular reflectance class.

Consider a vector x; : R> — [0,1] where i = 1,2,..., N, representing a sample point of
the image reflectance components projected on the IIC-space and a matrix X denoting
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a set of all N points X = [z1,Zs,...,2x]. Our objective is to find a separation line that
maximizes the variance of the projected reflectance data. Let U denote the direction
of this line defining a new orthonormal basis of the projected reflectance values. These
points can be expressed such that:

Y =U"X (6)

where Y = [y1,¥a,...,yn] denotes the coordinates of the reflection points in the new
basis, here we choose UTU =1 as a constrain to maximize the reflectance variance. The
mean of the projected reflectance components into the new basis line is U7 X where X is
the sample set mean given by:

1 X
X= ; X; (7)
and the variance of the image reflectance components is given by:
var(X) = - i (UT"X, -UTX} =UTcU (8)
N

where C' is the image reflection components covariance matrix defined as:
| N
CZWZI(XZ'_X)(XZ'_X)T (9)
1=
By maximizing the projected variance in Equation (8) with respect to U, the new
orthogonal basis is represented by the eigenvectors of the covariance matrix C' such that:

CU = AU (10)

where A is a diagonal matrix of decreasing eigenvalues and U is an orthonormal matrix
of corresponding eigenvectors. The maximum variance separating the image diffuse and
specular reflectance is obtained when the vector U corresponds to the highest eigenvalue.
It is clear that the line separating the reflectance components into diffuse and specular
reflections intersects both reflection distributions and is oriented according to the direction
variations of the straight lines obtained by projecting the image into the IIC-space.

The MSD method finds the correlated features associated with each reflectance compo-
nents mainly promoted in the center of the projected image cluster. This correlation oc-
curring between both reflectance distributions rises for the fact that the image reflectance
components projected on the IIC-space are characterized according to the image inten-
sities distribution. Therefore, shifting the separation line represented by the direction of
the new basis axis U to the center of the reflection distribution approximates the location
that considerably relates both reflectance components in the I7C-space. The separation
line is consequently shifted toward the center of the distance separating the diffuse and
specular reflectance distributions means. We define the expression of the MSD separation
line as:

- 1 _ _
fr(n) =1 (Zjek () «Tl,k) + Tok (11)
where the gradient u denotes the direction derived from the eigenvector of the orthonor-
mal basis U corresponding to the highest eigenvalue in A. z;; and z,j are the means
of the projected image reflectance on the IIC-space corresponding to the matrix X. The
proposed separation line in Equation (11) can efficiently partition the reflection distribu-
tion into two separate reflection classes as shown in Figure 1(d). Finally, the specular
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FIGURE 1. Reflectance distribution separation over the I7C-space. (a)
Input image. (b) Mapping image intensities of (a) over the ITC-space.
(c) Separating the reflectance distribution into two distinct classes using
the separation line (black) obtained from the proposed MSD method. (d)
Classification of the projected image reflectance into diffuse reflectance dis-
tribution (red) and specular reflectance distribution (blue).

reflection components represented in the image can now be easily located by mapping the
mean value of the brightest specular blob into the IIC-space.

6. Specular Reflection Removal. The dichromatic reflectance model suggests the pos-
sibility of decomposing an image into its specular and diffuse components based on image
color information. After locating the image pixels representing the image diffuse and
specular reflectance using the approach proposed in the previous section, in this section,
we recover the diffuse properties of the specular distribution components by shifting the
specular reflectance distribution components within the diffuse reflectance distribution in
the I1C-space. This process has the advantage of preserving the surface color information
and the diffuse reflection properties encoded in the geometric scale factor my.

Finding the shifting distance between each specular element and its new diffuse value
is an important process for robust diffuse reflectance estimation. Let C;; where ¢ =
1,2,..., N, denote the current specular reflection value projected on the ITC-space. And
let IV; ;, denote the newly shifted Cj ;, into the diffuse reflectance distribution by a Euclidean
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FIGURE 2. Specular reflectance shifting process: (a) specular reflectance
components (blue-dotes) shifting toward the new projected value (green-
circle) in the ITC-space, (b) specular reflectance new positioning (green-
squares) within the diffuse reflection distribution

distance D; expressed as:
") 2 \1/2
D;= (&, +d?)) (12)

where d;, and d;, are the shifting distances over the inverse-intensity axis and image
chromaticity respectively, Figure 2(a). We derive d;, as follows:

1 1
diz = — (13)
>k Nig  2jer Ciy
1 1
dig = — (14)
> enCig—er  2jen Ciy
d;p = ok (15)
2jer Ci <2j€k Cij = é‘k)
and d;, as follows:
Ci k Nl k
di, — ’ - ’ (16)
Y ek Cig o Djer Ni
Cik Cik — €k
diy = s ’ (17)
ek Cii o YierCig —en
ek | Dicr Cii — Cik
di, = ( Jek ) (18)

> e Cig (Zjek Cij — 51«)

where the threshold ¢ defines the minimum value measured of C;; and the difference
of the maximum diffuse reflectance value of D, with respect to the minimum specular
reflectance value of S; j, expressed as follows:

ek = (Cig)min + (Sik)min — (Dik)min (19)
The importance of Equation (12) is to shift the specular reflectance distribution towards
the direction of the image elements representing the diffuse reflectance, the threshold

specified in Equation (19) preserves the information of the surface geometry by adding
the difference of both reflectance classes.
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Algorithm 1 Specular reflection removal algorithm flow

Require: [ :{Ig, I, I5} RGB image of N element
Ensure: Ig,.. — Specular image components
Ensure: Ip;s; — Diffuse image components
Ensure: Isyccuiarrree — Specular-free RGB image
L Irpysum < inverseSum(Ig, Iq, Ip)
2: for k € R,G, B do
3: oy < imageChromaticity(Iy,)
i < calcul Mean(ok, Iysum) // Equation (7)
Cy « calculCovariance(og, Ippsum) // Equation (9)
{ Ak, v} < eigenDecomposition(Cy)// Equation (10)
{\e, 0} « sortEigen(\g, vg)
fr < lineSeparation(y, [ )
Lnax < mazBlob(I})
10: ISpec,k < Omax € Ok
1: Ipippr < I N Ispec
12:  for n € [1,N] do

13: e < distanceThreshold(Ispecr) // Equation (19)
14: dn g < shiftDx(e) // Equation (15)

15: dny < shiftDy(e) // Equation (18)

16: D,, < shiftDist(dp 4, dny) // Equation (12)

17: jSpec,k: — shiftSpec([Spec,k, Dn)

18:  end for y

19: I, + IDiff,k: U ISpec,k

20: end for

21: Ipigy <= Ipifr,r YU Ipipre U Ipisrs
22: [Spec — ISpec,R U [Spec,G U [Spec,B
23: [SpecularFree — IR U IG U IB

7. Algorithm Implementation. Algorithm 1 outlines the steps and general data flow
(Figure 3) of the proposed specular reflectance decomposition algorithm described in this
paper. The algorithm proceeds as follows. As a first stage, the input image intensities
are mapped to the IIC-space by calculating the inverse-intensity sum and the image
chromaticities for every channel & (line 1-3). The next step is to find a separation line that
classifies each image intensity components into diffuse reflectance or specular reflectance.
The means of the IIC-space coordinates representing the inverse image intensities and
the image chromaticities are determined in order to find the image covariance matrix in
Equation (9) (line 4-5) and to shift the separation line toward the center of the reflectance
distribution (line 8).

A final step for obtaining the separation line is to calculate the gradient of line expression
in Equation (11). After sorting the eigenvalues (line 7), the eigenvector direction of the
highest eigenvalue is used as the gradient of the line separation equation. The next stage
consists of finding the distance separating the targeted new location of the specular pixel
in the diffuse reflectance distribution and its current location.

The distance along the inverse-intensity axis (line 14) and the image chromaticity (line
15) are calculated for every specular reflectance distribution constituent. The Euclidian
distance in Equation (12) is then obtained before the specular value is shifted (line 16-17).
Finally, the three processed RGB channels are combined to produce a specular-free image
(line 23).
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FIGURE 3. Flowchart of the proposed reflection decomposition method

8. Experimental Results and Discussions. The proposed method was evaluated us-
ing several real and synthetic images from the color image dataset used in [13]. Different
image surfaces were targeted in our experiment especially images consisting of uniform
colored surfaces, multicolored surfaces, and highly textured surfaces. The images were
registered using a progressive 3-CCD digital camera SONY DXC-9000, by setting the
camera correction option off. Also to ensure that the output of the camera is linear to
the flux of incident light, a Photo Research PR-650 spectrometer was used for this task.

Figure 6 shows the results of recovering the diffuse image reflectance from a uniform
surface color image. The obtained result is achieved using only two iterations and correctly
handles all reflectance regions altered by the specular reflections. Also, since the proposed
method processes each channel independently, all image color channels recovered the
surface shape efficiently. The images in this case were processed without making use of
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(a) (b) (c)

FIGURE 4. Reflection separation results: (a) input image, (b) separation
result using our method, (c) separation result using Tan et al. method [13]

the illuminant color and by setting the calculated Euclidian distance D in Equation (12)
to a constant value along all reflectance distribution components.

It is important to note that this practice of keeping D constant does well only on images
with uniform color surfaces. However, for multicolored images, this distance has to be
calculated independently for every specular reflectance component in order to achieve
acceptable results. In Figure 7, cross-sections of all input image three-color channels
are shown to describe the iteration process performance. The solid blue horizontal line in
Figure 7(a) represents the cross-section area used to portray the iteration results in Figures
6(d)-6(f). In each iteration process, it is noticeable that the surface color tone is preserved
and attempts to complete the signal shape of the diffuse reflectance components. On the
third and fourth iteration, we notice the specular signal flattening on a nearly constant
pixel value resulting in wrong reflectance component separation.

Another experiment performed on multicolored and significantly textured images is
presented in Figure 5. Looking closely at the pear image in Figures 5(a)-5(c), we notice
that the diffuse texture barely visible in the input image is exposed when the specular
effects are removed. Similarly in Figures 5(d)-5(f), the fish texture is recovered while
preserving the surface color of the object. Figures 5(g)-5(i) show the results of processing
several object surfaces grouped in one single image. Some of the surfaces are effectively
recovered such as the fish object and the dole with blue scarf; however, other objects such
as the yellow ball and some of the monster figurine surface were still suffering from the
specular reflection effects.

Finally, we compare our algorithm with one of the well-known specular/diffuse reflection
separation methods in the literature proposed by Tan et al. [13] in Figure 4. The figure
compares both methods’ results applied to a 3D head object with a uniform surface color.
Both the shape surface color and the surface shade properties were efficiently estimated
using our proposed method, similarly to Tan’s et al. method where the surface shape
was effectively reconstructed and the specular reflections were well removed; however, the
surface color was estimated inaccurately.

9. Conclusions. This paper presented a framework for specular and diffuse reflectance
separation in color images based on a newly introduced Mean-shift decomposition tech-
nique. This approach relies mainly on image reflectance correlations in defining a suitable
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FIicURE 5. Reflection separation results of images having multicolor sur-
faces. (a), (d), (g) portrays the original input images. (b), (e), (h) the
resulted diffuse reflectance, and (c), (f), (i) the specular reflectance of the
input images respectively.

linear expression that separates a scene image into two distinct sets of image reflectance.
The approach described relies solely on image color information of dichromatic surfaces
without requiring segmentation procedures. Furthermore, by isolating the image diffuse
reflectance distribution, we showed that image object geometry information can be recov-
ered using the proposed specular reflectance shifting process. We evaluated our proposed
method on several color images comprising uniform and multicolor surfaces. For uniform
surfaces, the reflectance separation process can be achieved simply by shifting all specular
reflectance image pixels toward the diffuse reflectance distribution using a single constant
value for each of the image color channels. On the other hand, for multicolor surfaces,
the shifting distance is processed independently for each specular reflectance pixel. An
important next step is to explore the correlation of each specular reflectance component
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(a) (b) (c)

() (k) ()

FiGURE 6. Reflection separation results “Red face front view” having a
uniform color surface along RGB color channels. Row 2-4 represents color
channels Red, Green and Blue respectively.
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neighbor. A more precise shifting process can also be considered to correct highly textured
image surfaces.
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