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Abstract. This study focuses on designing a new class of kernels to incorporate the
prior information into the training process of support vector regressions. The prior in-
formation in the form of fuzzy rules is considered for regression problems. First, the
antecedent of each fuzzy rule is represented by some fuzzy equivalence relations. More-
over, the properties of kernels and pseudo-metrics are employed to discuss the conditions
for fuzzy equivalence relations to be kernels. Then the kernels for each of the fuzzy rules
are obtained by using the given additive generators and arbitrary pseudo-metrics as well
as triangular norms. Furthermore, a class of kernels is obtained by linearly combining
the kernels corresponding to each rule via fuzzy entropies for all the fuzzy rules. Finally,
we apply this class of kernels to support vector regressions. The experimental results help
quantify the performance of the proposed approach.
Keywords: Kernel, Fuzzy rule, Fuzzy equivalence relation, Support vector regression

1. Introduction. Support vector machines were first developed for pattern recognition
by representing the decision boundary with support vectors. They minimize the upper
bound of generalization error by using the structural-risk minimization principle [1-3].
Support vector machines have been a popular method in machine learning and are widely
used in many areas, such as isolated handwritten digit recognition, text categorization,
face detection and the control of dynamic systems [4, 5]. By introducing Vapnik’s ε-
insensitive loss function, support vector machines were generalized to the case of regres-
sion estimation, referred to as support vector regressions (SVRs). SVRs compute linear
regression function in a high-dimensional feature space where the input data are mapped
via a feature map.

1.1. Summary of related work and motivation. A certain disadvantage of the stan-
dard SVR stems from the fact that prior information about the problems cannot be
incorporated into the learning process. Since the prior information is capable of enhanc-
ing the performance of algorithms, extensive work in [6-13] has focused on modifying the
standard SVR to make full use of prior information in the training process. Concluding
the above mentioned work, there are three ways of prior information incorporation into
SVRs: namely, prior information is transformed into constraints of the related optimiza-
tion problem [6, 7, 12]; prior information is incorporated to weight the kernels or support
vector regressors [8-11]; prior information is used to construct kernels [12, 13]. Further-
more, prior information takes different forms, such as information with certainty [6, 7, 12],
probabilistic information [9-11] and information in the form of fuzzy rules [8, 13].

In particular, prior information in the form of fuzzy rules is usually obtained from field
information and experts. Fuzzy rules are capable of dealing with uncertainty in learning

4811



4812 F. LIU AND X. XUE

problems in a way of human reasoning. Therefore, the incorporation of fuzzy rules and
SVRs has been investigated. For example, some positive definite kernels are represented
by fuzzy bi-implications based on fuzzy-logical concepts in [13]. Fuzzy rules are usually
transformed into weights of training samples so that they can be incorporated into kernels
or regression algorithms [8, 14, 15]. However, there is no consideration on how to use the
kernels as well as the performance of kernel-based algorithms from theoretical aspects
and applications in [13]. The work in [8, 14, 15] only transforms the prior information
into the weights of training points and neglects the weights of test points. That is, they
do not deal fairly with training and test points though the points are always assumed to
be independent and identically distributed. Consequently, the corresponding SVRs fail
to generalize from the training set to the test set. The generalization ability of SVRs
decreases. Additionally, we note that the methods in [6, 7, 10-12] transform the prior
information into the constraints of the related optimization problems. By these methods,
the prior information is transformed into new training data before it is included in the
learning procedure. Thus, this method cannot be used to ensure that the parameters
determined by the derived optimization are suitable for all the data determined by the
prior information. The algorithms might not generalize the training samples to the test
samples corresponding to the prior knowledge. Therefore, it becomes important to develop
a systematic and effective approach to incorporate fuzzy rules into SVRs.

1.2. Main idea and contributions. This study aims at developing an approach to
integrate SVRs with fuzzy rules to improve the performance of SVRs. We construct a new
class of kernels according to the antecedents of fuzzy rule by fuzzy equivalence relations
and fuzzy entropy theory. By using the designed kernels, fuzzy rules are incorporated into
the training process of SVRs.
The contribution of this work is three-fold. First, we provide a valid method to con-

struct kernels. These kernels are more suitable than the positive definite kernels by free
choice for the regression problem with fuzzy rules in applications. In fact, the classi-
cal techniques are concerned with constructing the positive definite kernels [1, 13]. To
the best of our knowledge, few references focused on the construction of negative defi-
nite and conditionally positive definite kernels by some additive generators and arbitrary
pseudo-metrics. Second, compared with the methods in [8, 14, 15], the proposed method
is capable of dealing fairly with all the samples because the obtained kernels are symmet-
ric. Additionally, the proposed approach integrates fuzzy rules into the training process
by the designed kernels, which ensures that the optimal parameters are suitable for test
points with the information. Thus, the SVRs based on the designed kernels are able to
generalize from training data to test data in the applications. Finally, compared with the
method of directly applying fuzzy rules to regression problems, such as Takagi-Sugeno
models, Vapnik-style results are able to guarantee keeping the generalization error low for
the kernel-based SVRs. However, to the best of our knowledge, it may not be the case
for the methods of directly applying fuzzy rules to regression problems.
The remaining paper is structured as follows. Prerequisites are given in Section 2.

The regression problem is stated in Section 3. Fuzzy rules are kernelized in Section 4.
Applications of the proposed approach are given in Section 5. Finally, conclusions are
drawn in Section 6.

2. Prerequisites. We introduce some definitions and results in fuzzy mathematics and
kernel theory which will be used in this study. Triangular norms and conorms are in-
dispensable tools for inference and aggregation of fuzzy rules. We only use triangu-
lar norms (t-norms) in this study. The minimum TM(x, z) = min{x, z}, the product
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TP (x, z) = xz and the  Lukasiewicz TL(x, z) = max{x+ z − 1, 0} are three basic t-norms.
Let f : [0, 1] → [0,∞] be an additive generator, i.e., a strictly decreasing, which is right-
continuous at 0 with f(1) = 0. We can construct Archimedean t-norms by using additive
generators [16]. From [16], a t-norm T : [0, 1]2 → [0, 1] is an Archimedean t-norm if and
only if there exists an additive generator f such that for any (x, z) ∈ [0, 1]2

T (x, z) = f−1 (min(f(x) + f(z), f(0))) . (1)

The concept of fuzzy equivalence relation was first introduced by Zadeh in [17] as a
generalization of the concept of an equivalence relation. Fuzzy equivalence relations play
important roles in different fields as a measure of similarity.

Definition 2.1. [17] Let G be a non-empty set. E : G×G → [0, 1] is called a fuzzy relation.
E is called a fuzzy equivalence relation with respect to the t-norm T , if the following
conditions: (1) reflexivity: i.e., E(x, x) = 1, (2) symmetry: i.e., E(x, y) = E(y, x), and
(3) T – transitivity: i.e., T (E(x, y), E(y, z)) ≤ E(x, z) are satisfied for any x, y, z ∈ G.

Let BT be the transpose of a matrix B. 1r stands for the r × r identity matrix.
diag(a1, · · · , an) denotes the diagonal matrix with entries given by a1, · · · , an. E is a
nonempty set. For arbitrary x, z ∈ E , 〈x, x〉E := xT Ip,qx is an inner product, where p and
q are positive integers, and Ip,q = diag(1p,−1q). ‖ x ‖2E= 〈x, x〉E and dE : E × E → R is
defined as d2E(x, z) = 〈x− z, x− z〉E for arbitrary x, z ∈ E . dE is called a pseudo-Euclidean
distance. A pseudo-Euclidean space is a set E equipped with dE , usually denoted by
R(p,q). Denote (p, q) as the signature of pseudo-Euclidean space E . Unlike in a metric
space, points in a pseudo-metric space need not be distinguishable; that is, one may have
d(x, z) = 0 for x 6= z.

Lemma 2.1. [18] Let E be a non-empty set, d : E × E → [0,∞) a pseudo-metric and
f : [0, 1] → [0,∞] an additive generator. A binary function E : E × E → [0, 1] given by

E(x, z) = f−1(min(d(x, z), f(0))) (2)

is a fuzzy equivalence relation with respect to Archimedean t-norm T represented by (1).

Now, we introduce the concepts of kernels, positive definite (p.d.), conditionally positive
definite (c.p.d.), negative definite (n.d.) kernels and indefinite (i.n.d.) kernels.

Definition 2.2. [1, 19] Let X be a non-empty set and K : X ×X → R a real-valued and
symmetric function. K is called a kernel if there exists an isometric embedding φ : X → E,
such that K(x, z) = 〈φ(x), φ(z)〉E , where E is an inner product space equipped with inner
product 〈·, ·〉E . In particular,

• K is called a p.d. kernel if and only if it is p.d., that is,
∑n

i,j=1 cicjK(xi, xj) ≥ 0 for
all n ∈ N, xi ∈ X and ci ∈ R.

• K is called a c.p.d. kernel if and only if it is c.p.d., that is,
∑n

i,j=1 cicjK(xi, xj) ≥ 0

for all n ∈ N, xi ∈ X , ci ∈ R and
∑n

i=1 ci = 0.
• K is called an n.d. kernel if and only if it is n.d., that is,

∑n
i,j=1 cicjK(xi, xj) ≤ 0

for all n ∈ N, xi ∈ X , ci ∈ R and
∑n

i=1 ci = 0.
• K is called an i.n.d. kernel if and only if it is i.n.d., that is, if for some x1, x2, · · · , xn
∈ X , c1, c2, · · · , cn ∈ R and c′1, c

′
2, · · · , c′n ∈ R exist such that

∑n
i,j=1 cicjK(xi, xj) ≤ 0

and
∑n

i,j=1 c
′
ic

′
jK(xi, xj) ≥ 0.

3. Regression Problems with Fuzzy Rules. In this study, a regression problem P =
{X ,Y ,S,BF} is given as follows: X ⊂ Rn and Y ⊂ R are two non-empty sets. x =
(x1, x2, · · · , xn) ∈ X is the input-attribute vector; xi is the ith input-attribute; y ∈ Y is the
output-attribute. S = {s1, s2, · · · , sm} denotes the training set, where si = (xi, yi) ∈ X ×
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Y are independent and identically distributed, xi = (x1i , x
2
i , · · · , xni ) is the ith observation

value of input-attribute vector and yi is the ith observation value output-attribute. BF
represents the set of fuzzy rules for problem P . We focus on a suitable approximation to
the target function for problem P by incorporating BF into the SVR.
Let Dj ⊂ R and V ⊂ R be two given domains. Suppose that Fj and Q stand for the sets

of normal fuzzy sets µj,ij and ωq respectively. Here, Fj = {µj,ij |µj,ij : Dj → [0, 1], ij =
1, 2, · · · , pj} for j = 1, 2, · · · , n and Q = {ωq|ωq : V → [0, 1], q = 1, 2, · · · , s}. BF is a
fuzzy rule base and consists of the following fuzzy rules:

IF x1 is µ1,r and · · · and xn is µn,r THEN y is ωr, (r = 1, 2, · · · , l). (3)

We infer the antecedents of (3) by a t-norm T . Let hr(x) := T (µ1,r(x
1), · · · , µn,r(x

n))
and I = {1, 2, · · · , l}. hr(x) is said to be a fuzzy membership function of the antecedent
for r ∈ I.
This study aims at exploring the formulation of BF so that it can be incorporated

into the SVR. On the one hand, we will construct new kernels by BF , and then apply
them to the SVR. Consequently, the SVR effectively integrates fuzzy rules based on their
formulation.

4. Kernelizing Fuzzy Rules. In this section, we concentrate on kernelizing BF for P
by two classes of fuzzy equivalence relations and fuzzy entropies.

4.1. Constructing kernels for each fuzzy rule. First, we will use the fuzzy equiva-
lence relations Kr(x, z) : X × X → [0, 1] given by

Kr(x, z) =

{
T (hr(x), hr(z)) if x 6= z,
1 if x = z,

(4)

to kernelize BF , where hr(x) : X → [0, 1] for r ∈ I.

Theorem 4.1. For P = {X ,S,Y ,BF}, hr(x) is a fuzzy membership function of the
antecedent for r ∈ I. Then, Kr(x, z) expressed by (4) is p.d. if T (hr(x), hr(z)) is p.d..

Proof: Let ui := hr(xi), Tr(ui, uj) := T (hr(xi), hr(xj)) and ci be arbitrary constants
for i = 1, 2, · · · ,m. Since Tr(ui, uj) is p.d., we have

∑m
i,j=1 ciTr(ui, uj)cj ≥ 0. Accordingly,

m∑
i,j=1

ciKr(xi, xj)cj =
m∑

i,j=1,i6=j

ciKr(xi, xj)cj +
m∑
i=1

c2i

≥
m∑

i,j=1,i 6=j

ciTr(ui, uj)cj +
m∑

i,j=1,i=j

ciTr(ui, uj)cj ≥ 0.

This implies that Kr(x, z) is p.d..
We separately replace t-norm T in (4) with TP and TM . The corresponding fuzzy

equivalence relations are denoted by K
P
r and K

M
r . From Theorem 4.1, we have the

following results.

Corollary 4.1. For P = {X ,S,Y ,BF}, hr(x) is a fuzzy membership function of the
antecedent for r ∈ I. The following statements hold.
(i) K

P
r is p.d.; (ii) K

M
r is p.d..

Proof: From Theorem 4.1, it is enough to show TP and TM are p.d..
(i) Since

∑m
i,j=1 cicjTP (hr(xi), hr(xj)) =

(∑m
i=1 cihr(xi)

)(∑m
j=1 cjhr(xj)

)
≥ 0 for arbi-

trary hr(x) and c1, · · · , cm ∈ R, it follows that TP is p.d. from Definition 2.2.
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(ii) Let ui := hr(xi). From Definition 2.2, to prove TM is a p.d. kernel, it is clear that
we have to show

∑m
i,j=1 ciTM(ui, uj)cj = CTTC ≥ 0 for any u1, u2, · · · , um ∈ [0, 1]. Here,

C = (c1, · · · , cm)T ∈ Rm; T =
(
TM(ui, uj)

)
m×m

.
Without loss of generality, assume that m ≥ 2, u1 6= 0 and ui ≤ uj for i ≤ j. We need

to prove its kth order leading principal minors T(k) ≥ 0 (2 ≤ k ≤ m). By computing
T(k), we have

T(k) =

∣∣∣∣∣∣∣∣∣∣
u1 u1 · · · u1 u1
u1 u2 · · · u2 u2
· · · · · · · · · · · ·
u1 u2 · · · uk−1 uk−1

u1 u2 · · · uk−1 uk

∣∣∣∣∣∣∣∣∣∣
= u1

k−1∏
i=1

(ui+1 − ui). (5)

This implies that TM is a p.d. kernel.
Next, we construct kernels for each fuzzy rule by additive generators and pseudo-metrics

according to Lemma 2.1.

Theorem 4.2. For P = {X ,S,Y ,BF}, denote ar(x) = (µ1,r, µ2,r, · · · , µn,r) for r ∈ I.
Suppose that f : [0, 1] → [0,∞] is an additive generator and ρ : [0, 1]n× [0, 1]n → [0,∞) is
a pseudo-metric. Let Kr(x, z) : X × X → [0, 1] and Kr(x, z) = f−1(min(ρ(ar(x), ar(z)),
f(0))). If f satisfies

f−1 (min{f(u) + f(v), f(0)}) ≥ max{1−
(
(1− u)1/2 + (1− v)1/2

)2
, 0} (6)

for any u, v ∈ [0, 1], then Kr(x, z) is a kernel for arbitrary pseudo-metric ρ.

Proof: Define dr(x, z) := ρ(ar(x), ar(z)). Clearly, dr(x, z) is a pseudo-metric from
X ×X to [0,∞). From Lemma 2.1, the left of (6) is a t-norm denoted by T (u, v); Kr(x, z)
is a fuzzy equivalence relation with respect to t-norm T . Thus, for any x, y, z ∈ X , we
obtain

Kr(x, z) ≥ T (Kr(x, y), Kr(y, z)) ≥ max{(1−(1−Kr(x, y))
1/2+(1−Kr(y, z))

1/2)2, 0}. (7)

Define Γ =: 1− [(1−Kr(x, y))
1/2+(1−Kr(y, z))

1/2]2. If Γ < 0, then 2[(1−Kr(x, y))
1/2+

(1−Kr(y, z))
1/2]2 > 2. From (2− 2Kr(x, z)) ≤ 2, it follows that

(2− 2Kr(x, z))
1
2 < (2− 2Kr(x, y))

1/2 + (2− 2Kr(y, z) )
1/2.

If Γ ≥ 0, from (7), it follows that

Kr(x, z) ≥ Γ = 1− (1−Kr(x, y))− (1−Kr(y, z))− 2
[
(1−Kr(x, y))(1−Kr(y, z))

]1/2
.

Thus, we have

2Kr(x, z) ≥ 2− (2− 2Kr(x, y))− (2− 2Kr(y, z))− 2
[
(2− 2Kr(x, y))(2− 2Kr(y, z))

]1/2
.

That is, (2− 2Kr(x, z))
1/2 ≤ (2− 2Kr(x, y))

1/2 + (2− 2Kr(y, z))
1/2. Let Dr(x, z) = (2−

2Kr(x, z))
1/2. It is obvious that Dr(x, z) ≤ Dr(x, y) +Dr(y, z). Additionally, Dr(x, x) =

(2− 2Kr(x, x))
1/2 = 0 and Dr(x, z) = Dr(z, x). Thus, Dr(x, z) is a pseudo-metric.

On the other hand, for {xi}mi=1 ∈ Xm, Kr(x, z) is allowed to define the matrix K =
(Kr(xi, xj))

m
i,j=1. The eigen-decomposition of K is performed as K = ΥΛΥT , where Υ is

orthogonal, Λ is diagonal starting with p positive eigenvalues followed by q negative ones
as well as m− p− q zeros, where m− p− q ≥ 0. Assume that the eigenvalue λi of matrix
K corresponds to the orthonormal eigenvector vi = (vi1, vi2, · · · , vim)T . That is,

Kr(xi, xj) = λ1v1,iv1,j + · · ·+ λpvp,ivp,j − |λp+1|vp+1,ivp+1,j − · · · − |λp+q|vp+q,ivp+q,j
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for any i, j = 1, 2, · · · ,m. Denote φ(xi) = (|λ1|1/2v1,i, · · · , |λp+q|1/2vp+q,i)
T . It follows that

Kr(xi, xj) = φ(xi)
T Ip,qφ(xj) = 〈φ(xi), φ(xj)〉E (8)

where E = R(p,q) and φ is a map from X to E . By (8) and Kr(x, x) = 1, we have

D2
r(x, z) = 2− 2Kr(x, z) = 2− 2 〈φ(x), φ(z)〉

E

= 〈φ(x), φ(x)〉
E
+ 〈φ(z), φ(z)〉

E
− 2 〈φ(x), φ(z)〉

E

= ‖φ(x)− φ(z)‖2
E
= d2

E
(φ(x), φ(z)).

This means that φ : X → R(p,q) is an isometric embedding such that Kr(x, z) = 〈φ(x) ,
φ(z)〉

E
, which completes the proof.

Theorem 4.2 shows that a class of kernels can be obtained by selecting proper additive
generators for arbitrary pseudo-metrics. For example, fP (s) = − ln s and fF (s) = ln λ−1

λs−1

(λ ∈ (0, 1) ∪ (1,∞)) are additive generators. Clearly, they satisfy the condition (6).
Consequently, according to Theorem 4.2, we can construct the kernels by using these
additive generators and any pseudo-metrics.

Corollary 4.2. (i) For fP (s) = − ln s and any pseudo-metric ρ : [0, 1]n× [0, 1]n → [0,∞),

the corresponding fuzzy equivalence relation K
P
r (x, z) = e−ρ(ar(x),ar(z)) is a kernel.

(ii) For fF (s) = ln λ−1
λs−1

and any pseudo-metric ρ : [0, 1]n × [0, 1]n → [0,∞), the corre-

sponding fuzzy equivalence relation K
F
r (x, z) = logλ(1 + (λ − 1))e−ρ(ar(x),ar(z)) is a kernel

for λ ∈ (0, 1) ∪ (1,∞).

4.2. Kernels for fuzzy rule base. A usual way to generate new kernels from multiple
kernels is to linearly combine multiple kernels. From Theorems 4.1 and 4.2, we have
known that every fuzzy rule in BF corresponds to a structure of kernel Kr(x, z). In order
to apply Kr(x, z) to the SVR, we linearly combine these kernels. Namely, K(x, z) =∑l

r=1 αrKr(x, z), where αr (r ∈ I) are the weights of Kr(x, z).
In this study, we determine weights αr according to the certainty degree of every fuzzy

rule. The concept of fuzzy entropy means the fuzziness degree of fuzzy sets. We calculate
fuzzy entropy Hr of each fuzzy membership function of the antecedent as follows [21]:
Hr =

1
m ln 2

∑m
i=1 s(hr(xi)), where xi ∈ S for i = 1, 2, · · · ,m and

s(x) =

{
−x lnx− (1− x) ln(1− x), x ∈ (0, 1)
0, x = 0, 1

is the Shannon function. Let αr = 1−Hr. It follows that

K(x, z) =
l∑

r=1

(1−Hr)Kr(x, z) (9)

That is, we use the certainty degree of every fuzzy rule as the weight of Kr(x, z).
From Theorems 4.1 and 4.2, for an arbitrary choice of membership functions µ1,r(x

1),
µ2,r(x

2), · · · , µn,r(x
n), we obtain the kernels Kr(x, z). Furthermore, the linear combina-

tions of p.d., c.p.d. and n.d. Kr(x, z) are still p.d., c.p.d., and n.d. respectively [20].
For i.n.d kernels, we are unable to know whether their linear combinations are i.n.d. For
example, let

ρ(ar(x), ar(z)) =



n∑
i=1

|ar(xi)− ar(z
i)|q, 0 < q < 1

[
n∑

i=1

|ar(xi)− ar(z
i)|q

]1/q

, q ≥ 1
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and drq(x, z) := ρ(ar(x), ar(z)) for r = 1, 2, · · · , l. From Corollary 4.2, we obtain a great
number of kernels Kr, which are given for different parameters q in Table 1 Column 3.
The corresponding kernel combinations are given in Table 1 Column 4.

Remark 4.1. For Kr in Table 1, according to [25] when 0 < q ≤ 2, K
P

drq
(x, z) := e−drq(x,z)

is p.d.. Additionally, 1 + (λ − 1)e−drq(x,z) is n.d. when λ ∈ (0, 1) and 0 < q ≤ 2;
1 + (λ − 1)e−drq(x,z) is p.d. when λ ∈ (1,∞) and 0 < q ≤ 2. Furthermore, according to
[20], if K : X ×X → (0,∞) is n.d., then lnK(x, z) is n.d.; If kernel K : X ×X → (0,∞)

is p.d., then − lnK(x, z) is n.d. Let K
F

drq
(x, z) := ln(1 + (λ− 1)e−drq(x,z)). It follows that

K
F

drq
(x, z) is n.d. for λ ∈ (0, 1) and −KF

r (x, z) is n.d. for λ ∈ (1,∞) when 0 < q ≤ 2.

Thus K
F

drq
(x, z) is c.p.d. for λ ∈ (1,∞) and 0 < q ≤ 2.

Table 1. Several kernels represented by additive generators and pseudo-metrics

Additive generators Pseudo-metrics Kr Kernel combinations

fP

drq(x, z) for 0 < q ≤ 2 K
P
drq

(p.d.) K
P
dq

(p.d.)

drq(x, z) for q > 2 K
P
drq

(–) K
P
dq

(–)

fF for λ ∈ (0, 1) drq(x, z) for 0 < q ≤ 2 K
F
drq

(n.d.) K
F
dq

(c.p.d.)

fF for λ ∈ (1,∞) drq(x, z) for 0 < q ≤ 2 K
F
drq

(p.d.) K
F
dq

(p.d.)

fF for λ ∈ (0, 1) ∪ (1,∞) drq(x, z) for q > 2 K
F
drq

(–) K
F
dq

(–)

Finally, the proposed approach is summarized as follows.

• Step 1) Represent fuzzy rules BF . If we lack the field knowledge, we use the fuzzy
c-mean (FCM) clustering algorithm to get BF . Otherwise, we represent BF by using
the field knowledge.

• Step 2) Given either t-norm T or the additive generator f and pseudo-metric ρ, the
kernel Kr for each fuzzy rule is represented by Theorems 3.1 or 3.2 respectively.

• Step 3) Calculate the entropy Hr for each fuzzy rule and linearly combine Kr repre-
sented by (9).

• Step 4) Apply the kernels represented by (9) to SVRs.

5. Applications. In this section, three experiments are performed to validate the pro-
posed approach according to the four steps above. The following terms are used in the
experiments.

• Kernels: The constructed kernels K
P
and K

M
are obtained by substituting K

P
r

and K
M
r into (9) respectively. K

P

d2
, K

P

d3
, K

F

d2
and K

F

d3
stand for the kernels in Table

1, where the parameters λ = 0.5 in K
P

d2
and K

F

d2
, λ = 2 in K

P

d3
and K

F

d3
. Krbf stands

for Gaussian kernel used in the experiments.
• Three regression algorithms: SVR, fuzzy weight SVR (FWSVR) [8] and Takagi-
Sugeno model (TS). Here, all the kernels mentioned above are used in SVR; Krbf is
used in FWSVR.

• Parameters: c and γ stand for the regularization parameter and Gaussian kernel
parameter respectively. The parameter ε is in the ε-insensitive loss function. Nc and
η represent the number of clusters and the overlap parameter in the FCM clustering
algorithm [8] respectively. c and γ are chosen using a grid search method without
special explanation, where c ∈ {2−5, 2−4, · · · , 216} and γ ∈ {2−5, 2−4, · · · , 25}.
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• Two performance indices (PIs): Mse and Nsv. Here, Mse denotes the minimal
mean squared error on the validation set. Nsv = N/m, where N stands for the mean
number of support vectors and m the number of training data. In this study, Nsv is
given for the minimal Mse.

5.1. A nonlinear dynamic system approximation. The nonlinear dynamic system
in [8] is considered:

y(t+ 1) =
y(t)y(t− 1)[y(t) + 2.5]

1 + y2(t) + y2(t− 1)
+ u(t) +Noise,

y(0) = y(1) = 0, u(t) = sin(2πt/50).

(10)

It is shown in Figure 1 for t ∈ [1, 100] with a Gaussian noise [0, 0.25]. In this experiment,
501 training points are generated from (10) with a Gaussian noise [0, 0.25] for t ∈ [1, 50].
The number of test points is 1001. We use the FCM clustering algorithm to obtain BF .

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

2

3

4

5

t

y
(t

)

 

 

Desired model
 Data with  noise

Figure 1. A nonlinear dynamic system with a Gaussian noise

For comparisons the proposed approach with FWSVR and TS, the membership functions
in BF are the same with those in [8], where Nc = 3, 5, 7, 9 and η = 2.5. Additionally,
the values of parameters for Krbf and FWSVR are the same as those in [8] (i.e., σ = 1,
c = 1000 and ε = 0.2). The numerical results are summarized in Table 2.

From Table 2, Nsv appears stable with the increase of Nc for SVRs based on K
P
, K

P

d2

and K
F

d2
. However, it is not the case for SVRs based on K

M
, K

P

d3
and K

F

d3
when Nc is

small. On the other hand, Mse decreases with Nc for FWSVR, TS and SVRs based on
the designed kernels. Furthermore, Mse for our kernels are less than those for FWSVR,
TS and SVR based on the Gaussian kernels when Nc = 5, 7, 9. Therefore, the SVR based
on our kernels achieves better performance than that based on the Gaussian kernels. In
particular, i.n.d kernels K

P

d3
and K

F

d3
perform better than p.d Krbf .

5.2. A gas oven model identification. A real data set concerning an identification
of a gas oven model is used [22]. The data set consists of 296 pairs of input-output
pairs (u(t), y(t))(t = 1, 2, · · · , 296) shown in Figure 2 that can be downloaded from [22].
We use (u(t), u(t − 1), y(t − 1), y(t − 2)) as input data and y(t) as output data, where
t = 3, 4, · · · , 296. BF is obtained by the FCM clustering algorithm. Moreover, the values
of parameters in these experiments are the same as those in [8] for SVR based on Krbf
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Table 2. Numerical results for the dynamic system approximation

Nc PIs K
P

K
M

K
P
d2

K
P
d3

K
F
d2

K
F
d3

Krbf FWSVR TS

3
Nsv 5.3% 4.9% 5.1% 87.1% 6.1% 44.3% 11.0% – –

Mse 0.2047 0.2263 0.1232 0.3419 0.1742 0.7276 0.2276 0.2832 0.6798

5
Nsv 24.7% 64.2% 5.3% 6.1% 6.3% 7.0% – – –

Mse 0.1348 0.2003 0.1551 0.1551 0.1623 0.1864 – 0.2762 0.4779

7
Nsv 9.2% 5.7% 4.9% 4.9% 5.1% 5.9% – – –

Mse 0.2235 0.1989 0.1516 0.1537 0.1536 0.1846 – 0.2645 0.2780

9
Nsv 6.8% 4.9% 4.7% 5.0% 4.8% 4.7% – – –

Mse 0.2164 0.1965 0.1501 0.1522 0.1529 0.1521 – 0.2583 0.2560
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Figure 2. A gas oven model

and FWSVR (i.e., σ = 1.5, c = 1000 and ε = 0.1; Nc = 4, 8 and η = 3.5). 5-folds cross-
validation is employed to evaluate the performance. The numerical results are reported
in Table 3.

Table 3. Numerical results for the gas oven model identification

Nc PIs K
P

K
M

K
P
d2

K
P
d3

K
F
d2

K
F
d3

Krbf FWSVR TS

4
Nsv 95.1% 96.2% 97.1% 96.5% 96.6% 98.3% 97.4% – –

Mse 0.5141 0.7020 0.4959 0.5211 0.5005 0.6276 0.8242 0.5163 0.7576

8
Nsv 95.4% 96.4% 94.0% 89.5% 92.3% 93.1% – – –

Mse 0.4203 0.4824 0.3970 0.4534 0.3888 0.4799 – 0.4861 0.4976

From Table 3, all the Nsv are about 95 percent. Mse is decreasing with Nc for FWSVR,
TS and SVRs based on the designed kernels. Furthermore, Mse for our kernels are less
than those for FWSVR and TS when Nc = 8. Similar to the first experiment, the SVR
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based on our kernels achieves better performance than that based on the Gaussian kernels,
FWSVR and TS.

5.3. Forest-fire prediction. The forest-fire data set originates from the University of
California at Irvine (UCI) machine learning database, which were created by P. Cortez
and A. Morais [23]. Our aim is to predict the burned area of forest fires by using these
data.

5.3.1. Data sets. The forest-fire data set includes twelve input-attributes, one output-
attributes and 517 instances. According to the related field knowledge, the input-attributes
may be correlated, thus it is enough to apply some of them to predict the burned area of
forest fires. In fact, the SVR tends to produce the best predictions via the given feature
selection [23]. Referring to the results in [23], we perform the simulation with input-
attributes (i.e., four weather variables) and output-attribute (i.e., area), which are listed
in Table 4. As stated in [23], all entries denote fire occurrences and zero value means
that areas y lower than 1ha/100 = 100m2 was burned. Thus, the logarithm function
ψ = ln(y + 1) is used to improve the regression results for the right-skewed targets [24].
Let X1 = [0, 40] be the interval of x1, X2 = [10, 100] the interval of x2, X3 = [0, 10] the

interval of x3, X4 = [0, 7] the interval of x4 and Y = [0, 1100] the interval of y. Obviously,
X =

∏4
i=1Xi.

Table 4. Attribute description for forest-fires data set

Attribute Information Notation

temp – Temperature in Celsius degrees: 2.2 to 33.30 x1

RH – Relative humidity in %: 15.0 to 100 x2

wind – Wind speed in km/h: 0.40 to 9.40 x3

rain – Outside rain in mm/m2: 0.0 to 6.4 x4

area – the burned area of the forest in ha (hectares (ha)): 0.00 to 1090.84 y

5.3.2. Fuzzy rule formulation. It is known that temperature, air humidity, wind speed and
rain considered in this study affect fire occurrence. Based on the related field knowledge
and the present data set, x1 is described by three fuzzy sets: high temp, median temp and
low temp whose membership functions are µ1,i1 (i1 = 1, 2, 3); x2 is described by three fuzzy
sets: high RH, median RH and low RH whose membership functions are µ2,i2 (i2 = 1, 2, 3);
x3 is described by two fuzzy sets: high wind and low wind whose membership functions are
µ3,i3 (i3 = 1, 2); x4 is described by median rain; output-attribute y is described by three
fuzzy sets: large area, median area and small area, whose membership functions are ωk

(k = 1, 2, 3). In most cases, if temp is high, RH is low, wind is large and rain is median,
then area is larger ; if temp is low, RH is high, wind is low and rain is median, then
area is small ; if temp is median, RH is high, wind is low and rain is median, then area
is small. However, we are unable to know the other cases for the lack of field knowledge
based on the given data set. Thus, BF consists of the following 18 fuzzy rules:

If x1 is µ1,1 and x
2 is µ2,3 and x

3 is µ3,1 and x
4 is µ4,1 then y is ω1,

If x1 is µ1,3 and x
2 is µ2,1 and x

3 is µ3,2 and x
4 is µ4,1 then y is ω3,

If x1 is µ1,2 and x
2 is µ2,1 and x

3 is µ3,2 and x
4 is µ4,1 then y is ω3,

If x1 is µ1,i1 and x
2 is µ2,i2 and x

3 is µ3,i3 and x
4 is µ4,1 then y is unknown,

(11)
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where (i1, i2, i3) ∈ {(1, 3, 2), (1, 2, 1), (1, 2, 2), (1, 1, 1), (1, 1, 2), (3, 2, 2), (3, 3, 2), (3, 1, 1),
(3, 1, 3), (3, 2, 1), (2, 1, 1), (2, 2, 1), (2, 2, 2), (2, 3, 1), (2, 3, 2)} and i4 = 1 for the fourth fuzzy
rule in (11). In general, membership functions closely depend upon the field knowledge
and the statistical information of the training-samples. Their shapes are determined by
the semantics of the corresponding fuzzy sets. The parameters in them are obtained by
the statistical information of the data set. In this study, µj,ij (j = 1, i1 = 1; j = 2, i2 =
1; j = 3, i3 = 1) and ω1 are S-shaped; µj,ij (j = 1, i1 = 2; j = 2, i2 = 2) and ω2 are
Gaussian. µj,ij (j = 1, i1 = 3; j = 2, i2 = 3; j = 3, i3 = 3, j = 4, i4 = 1) and ω3

are Z-shaped. For S-shaped and Z-shaped membership functions, their parameters locate
the extremes of the sloped portion of the curves. These parameters are determined by
the minimal and maximal values of the data. The parameters in Gaussian membership
functions are determined by the standard deviation and the mean of the data.

5.3.3. Simulation procedure and numerical results. Parameter tuning is performed by
training SVR on 2/3 of the training set and choosing the minimal Mse on the remaining
1/3. Set ε = 0.5. The corresponding results are summarized in Table 5.

Table 5. Numerical results for the forest-fire prediction

K
P

K
M

K
P
d2

K
P
d3

K
F
d2

K
F
d3

Krbf FWSVR TS

Nsv 13.07% 27.15% 18.71% 21.06% 13.62% 22.90% 38.26% – –

Mse 2.1270 2.1903 1.9477 1.8906 1.6186 1.6946 2.6998 2.2850 3.955

By comparing these results in Table 5 for our proposed kernels with those for Krbf ,Mse

and Nsv for our kernels are less than those for FWSVR and SVR based on the Gaussian
kernels. Therefore, the SVR based on our kernels has better generalization ability than
that based on the Gaussian kernels. These prediction results are better than those in [23].

6. Conclusion. We have presented a method for the incorporation fuzzy rules into the
SVR. The proposed method is also suitable to other kernel-based algorithms with the
information in the form of fuzzy rules, e.g., classification. The construction of kernels
is the key to the incorporation. Notice that some of these kernels are i.n.d.. Thus,
exploring the new algorithms to solve the corresponding optimization problems is a further
research direction. Additionally, p.d. and c.p.d. kernels are still attractive because of the
obtained convex optimization problems for support vector algorithms. In order to avoid
the nonconvex optimization problems, exploring which t-norms and additive generators
can be used to construct p.d. and c.p.d. kernels by fuzzy rules is a further research
direction.
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