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Abstract. The aim of this paper is to introduce a unified model between the generalized
ordered weighted averaging (GOWA) operator and the generalized probabilistic aggrega-
tion. We present the generalized probabilistic OWA (GPOWA) operator. It is a new
aggregation operator that unifies the probability with the OWA operator considering the
degree of importance that each concept has in the analysis. It includes a wide range of
particular cases including the GOWA operator and the probabilistic OWA (POWA) op-
erator. We also study the applicability of this new approach and we see that it is very
broad because all the previous studies that use the probability or the OWA operator can
be revised with this new approach. We develop an application in multi-person decision
making concerning the selection of the optimal strategies.
Keywords: Decision-making, OWA operator, Probability, Aggregation operators

1. Introduction. Aggregation operators are very common in the scientific literature [1-
4]. One of the most popular one is the probabilistic aggregation [3] because it considers
some kind of study that permits to make assumptions regarding the degree of importance
that the information has. Another interesting type of aggregation operator is the ordered
weighted averaging (OWA) operator [5]. It provides a parameterized family of aggregation
operators between the minimum and the maximum. Since its introduction, it has been
studied by a lot of authors [6-18].

A further interesting type of aggregation operators are those that provide a general
formulation based on the use of generalized and quasi-arithmetic means. These types of
functions are known as generalized aggregation operators [1,19-27]. Their main advantage
is that they can provide a more complete representation of the problem considered by using
different particular cases. For example, it is worth noting the generalized OWA (GOWA)
operator [25] and its extensions [22-24,26,27].

Recently, Merigó [28] has suggested the probabilistic OWA (POWA) operator. It is a
new aggregation operator that provides a parameterized family of aggregation operators
between the minimum and the maximum in a unified model between the probabilistic
aggregation and the OWA operator. Thus, we are able to under- or over-estimate the
probabilistic information or we can introduce probabilistic information in the OWA op-
erator.

The aim of this paper is to present a new aggregation operator that provides a more
complete representation of the GOWA operator [25] by using probabilistic information
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[29-33]. Thus, we are able to introduce objective information (based on some kind of
experiment) in the analysis. Note that our objective is to focus on the process of ag-
gregating the information rather than focusing on probability theory. We present the
generalized probabilistic OWA (GPOWA) operator. It is a new aggregation operator that
unifies the probability with the OWA operator considering the degree of importance that
each concept has in the analysis. A key advantage of the GPOWA is that it is able to
consider a wide range of particular cases including the maximum, the minimum, the gen-
eralized probabilistic aggregation, the GOWA, the maximum probabilistic aggregation,
the minimum probabilistic aggregation, the arithmetic probabilistic aggregation (A-PA),
the arithmetic OWA (A-OWA), the probabilistic OWA (POWA), the geometric POWA,
the quadratic POWA and the harmonic POWA operator.
We study the applicability of this approach and we see that it is very broad because

all the previous studies that use the probability or the OWA operator can be revised and
extended with this new approach. Its main advantage is that it deals with probabilistic
information and with the attitudinal character of the decision maker in the same formu-
lation considering the degree of importance of each concept in the analysis. For example,
we can apply it in statistics, economics, engineering and physics. We study several exam-
ples such as the development of a probabilistic variance, covariance and a simple linear
regression model.
We further extend this approach in a multi-person decision making problem where

we are able to assess the information in a more complete way because we can consider
the opinion of several persons (experts) in the analysis. We introduce the multi-person
GPOWA (MP-GPOWA) operator. Its main advantage is that it can consider the opin-
ion of several elements in the analysis and a wide range of particular cases in a unified
model between the probability and the OWA operator. Among others, the MP-GPOWA
operator includes the multi-person arithmetic mean (MP-AM), the multi-person general-
ized probabilistic aggregation (MP-GPA), the multi-person GOWA (MP-GOWA) and the
multi-person POWA (MP-POWA) operator. We focus on a multi-person decision making
application regarding the selection of strategies. We see that depending on the particular
type of aggregation operator used, the results may lead to different decisions.
This paper is organized as follows. In Section 2, we briefly describe some basic pre-

liminaries such as the probabilistic aggregation, the OWA operator, the GOWA operator
and the POWA operator. In Section 3, we present the GPOWA operator. Section 4
analyzes a wide range of families of GPOWA operators. In Section 5, we give a general
overview of the applicability of the GPOWA operator and we focus on the applicability
in multi-person decision making. Section 6 presents an illustrative example and Section
7 summarizes the main conclusions of the paper.

2. Preliminary Concepts. In this section, we briefly review some basic concepts re-
garding the probabilistic aggregation, the OWA operator, the GOWA operator and the
POWA operator.

2.1. Probabilistic aggregation. Probabilistic aggregation functions (or operators) are
those functions that use probabilistic information in the aggregation process. Some exam-
ples are the aggregation with simple probabilities, the aggregation with belief structures
[6,31], the concept of immediate probabilities [29,30,32] and the probabilistic OWA oper-
ator [28].
The POWA operator is an aggregation operator that provides a parameterized family of

aggregation operators between the maximum and the minimum that unifies probabilities
and OWAs in the same formulation [28]. Its main advantage is that it is able to include
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both concepts considering the degree of importance of each case in the problem. It is
defined as follows.

Definition 2.1. A POWA operator of dimension n is a mapping POWA: Rn → R that has
an associated weighting vector W of dimension n such that wj ∈ [0, 1] and

∑n
j=1wj = 1,

according to the following formula:

POWA(a1, . . ., an) =
n∑

j=1

p̂jbj, (1)

where bj is the jth largest of the ai, each argument ai has an associated probability pi with∑n
i=1 pi = 1 and pi ∈ [0, 1], p̂j = βwj + (1− β)pj with β ∈ [0, 1] and pj is the probability

pi ordered according to the jth largest of the ai.

2.2. The OWA operator. The OWA operator was introduced by Yager [5] and it pro-
vides a parameterized family of aggregation operators between the maximum and the
minimum. It can be defined as follows.

Definition 2.2. An OWA operator of dimension n is a mapping OWA: Rn → R that has
an associated weighting vector W of dimension n with

∑n
j=1wj = 1 and wj ∈ [0, 1], such

that:

OWA(a1, a2, . . ., an) =
n∑

j=1

wjbj, (2)

where bj is the jth largest of the ai.

The OWA operator is a mean or averaging operator. This is a reflection of the fact that
the operator is commutative, monotonic, bounded and idempotent. Different families of
OWA operators can be used by choosing a different manifestation of the weighting vector
[18,22-24,34].

2.3. The GOWA operator. The generalized OWA (GOWA) operator [25] is an ag-
gregation that generalizes a wide range of aggregation operators that includes the OWA
operator with its particular cases, the ordered weighted geometric (OWG) operator, the
ordered weighted harmonic averaging (OWHA) operator and the ordered weighted qua-
dratic averaging (OWQA) operator. It can be defined as follows.

Definition 2.3. A GOWA operator of dimension n is a mapping GOWA: Rn → R that
has an associated weighting vector W of dimension n such that the sum of the weights is
1 and wj ∈ [0, 1], then:

GOWA(a1, a2, . . ., an) =

(
n∑

j=1

wjb
λ
j

)1/λ

, (3)

where bj is the jth largest of the ai, and λ is a parameter such that λ ∈ (−∞,∞).

As it is demonstrated in [25], the GOWA operator is commutative, monotonic, bounded
and idempotent. It can also be demonstrated that the GOWA operator has as special
cases the maximum, the minimum, the generalized mean and weighted generalized mean.
Other families of GOWA operators can be studied as shown in [16].
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2.4. The POWA operator. The POWA operator is an aggregation operator that pro-
vides a parameterized family of aggregation operators between the maximum and the
minimum that unifies probabilities and OWAs in the same formulation [28]. Its main
advantage is that it is able to include both concepts considering the degree of importance
of each case in the problem. It is defined as follows.

Definition 2.4. A POWA operator of dimension n is a mapping POWA: Rn → R that has
an associated weighting vector W of dimension n such that wj ∈ [0, 1] and

∑n
j=1wj = 1,

according to the following formula:

POWA(a1, . . ., an) =
n∑

j=1

p̂jbj, (4)

where bj is the jth largest of the ai, each argument ai has an associated probability pi with∑n
i=1 pi = 1 and pi ∈ [0, 1], p̂j = βwj + (1− β)pj with β ∈ [0, 1] and pj is the probability

pi ordered according to the jth largest of the ai.

3. The Generalized Probabilistic OWA Operator. The generalized probabilistic
OWA (GPOWA) operator is an aggregation operator that provides a parameterized family
of aggregation operators between the minimum and the maximum that uses probabilities
and OWAs in the same formulation. Its main advantage is that it unifies these two
concepts considering the degree of importance we want to give to each case depending
on the specific problem considered. Moreover, it also uses generalized means providing a
more complete representation that includes a wide range of particular cases. It can be
defined as follows.

Definition 3.1. A GPOWA operator of dimension n is a mapping GPOWA: Rn → R that
has an associated weighting vector W of dimension n with wj ∈ [0, 1] and

∑n
j=1wj = 1,

such that:

GPOWA(a1, . . ., an) = β

(
n∑

j=1

wjb
λ
j

)1/λ

+ (1− β)

(
n∑

i=1

pia
δ
i

)1/δ

, (5)

where bj is the jth largest ai, β ∈ [0, 1], and λ and δ are parameters such that λ and
δ ∈ (−∞,∞)− {0}.

Note that it is possible to distinguish between the descending GPOWA (DGPOWA)
and the ascending GPOWA (AGPOWA) operator by using wj = wn−j+1, where wj is the
jth weight of the DGPOWA and w∗

n−j+1 the jth weight of the AGPOWA operator. Note
that this reordering is in the OWA aggregation. However, it is possible to consider a more
general reordering process by using p̂j = p̂n−j+1. In this case, we consider descending and
ascending orders in the OWA and in the probabilistic aggregation. Another interesting
transformation can be developed [34] by using w∗

i = (1 + wi)/(m − 1). Furthermore, we
can also analyze situations with buoyancy measures [34]. In this case, we assume that
wi ≥ wj, for i < j. Note that it is also possible to consider a stronger case known as
buoyancy measure extensive where wi > wj, for i < j. Additionally, we can also consider
the contrary case, that is, wi ≤ wj, for i < j, and the extensive measure wi < wj, for
i < j. The GPOWA operator is monotonic, bounded and idempotent.
Another interesting issue to analyze are the measures for characterizing the weighting

vectorW . Following a similar methodology as it has been developed for the OWA operator
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[5,25] we could formulate the orness measure (attitudinal character) as follows:

α(P̂ ) = β

(
n∑

j=1

wj

(
n− j

n− 1

)λ
)1/λ

+ (1− β)

(
n∑

j=1

pj

(
n− j

n− 1

)δ
)1/δ

. (6)

where pj represents the probabilistic weights reordered according to the values of the
arguments bj. Note that if β = 1, we get the orness measure of Yager [25] and if β = 0,
the orness measure of the generalized probabilistic aggregation.

Note that other measures such as the entropy of dispersion, the divergence of W and
the balance operator could be used in the analysis [24].

4. Families of GPOWA Operators. A further interesting issue is the analysis of dif-
ferent families of GPOWA operators by analyzing particular cases in the coefficient β, in
the parameter λ and in the weighting vector W . If we analyze the coefficient β, we get
the following:

• If β = 1, we get the GOWA operator.
• If β = 0, we get the generalized probabilistic approach.

The more β approaches to 1, the more importance we give to the GOWA operator, and
vice versa. If we analyze different values of the parameter λ, we obtain another group
of particular cases such as the usual POWA operator, the geometric POWA (POWGA)
operator, the harmonic POWA (POWHA) operator and the quadratic POWA (POWQA)
operator.

Remark 4.1. When λ = 1, the GPOWA operator becomes the POWA operator.

GPOWA(a1, a2, . . ., an) = β
n∑

j=1

wjbj + (1− β)
n∑

i=1

piai. (7)

Note that if wj = 1/n, for all ai, we get the arithmetic probabilistic aggregation (A-PA).
Note also that if pi = 1/n, for all ai, we get the arithmetic OWA (A-OWA) operator.

Remark 4.2. When λ → 0, the GPOWA operator becomes the geometric probabilistic
ordered weighted geometric averaging (GPOWGA) operator.

GPOWA(a1, a2, . . ., an) = β
n∏

j=1

b
wj

j + (1− β)
n∏

i=1

apii . (8)

Note that if wj = 1/n, for all ai, we get the geometric probabilistic geometric aggre-
gation (G-PGA). Note also that if pi = 1/n, for all ai, we get the geometric probability
OWGA (G-OWGA).

Remark 4.3. When λ = −1, we get the harmonic probabilistic ordered weighted harmonic
averaging (GPOWHA) operator.

GPOWA(a1, a2, . . ., an) = β
1

n∑
j=1

wj

bj

+ (1− β)
1

n∑
i=1

pi
ai

. (9)

If wj = 1/n, for all ai, we get the harmonic probabilistic harmonic aggregation (H-
PHA). Note also that if pi = 1/n, for all ai, we get the harmonic probability OWHA
(H-OWHA) operator.
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Remark 4.4. When λ = 2, we get the quadratic probabilistic ordered weighted quadratic
averaging (QPOWQA) operator.

GPOWA(a1, a2, . . ., an) = β

(
n∑

j=1

wjb
2
j

)1/2

+ (1− β)

(
n∑

i=1

pia
2
i

)1/2

. (10)

Note that if wj = 1/n, for all ai, we get the quadratic probabilistic quadratic aggregation
(Q-PQA). Note also that if pi = 1/n, for all ai, we get the quadratic probability OWQA
operator.

Remark 4.5. When λ = 3, we get the cubic probabilistic ordered weighted cubic averaging
(CPOWCA) operator.

GPOWA(a1, a2, . . ., an) = β

(
n∑

j=1

wjb
3
j

)1/3

+ (1− β)

(
n∑

i=1

pia
3
i

)1/3

. (11)

Note that if wj = 1/n, for all ai, we get the cubic probabilistic cubic aggregation
(C-PCA). Note also that if pi = 1/n, for all ai, we get the cubic probability OWCA
operator.

Remark 4.6. When λ → ∞ and δ → ∞, we get the maximum.

Remark 4.7. When λ → −∞ and δ → −∞, we get the minimum.

Remark 4.8. Moreover, we can use different values in λ and δ. For example, if λ = 2 and
δ = 3, we form the probabilistic cubic ordered weighted quadratic averaging (PCOWQA)
operator.

GPOWA(a1, a2, . . ., an) = β

(
n∑

j=1

wjb
2
j

)1/2

+ (1− β)

(
n∑

i=1

pia
3
i

)1/3

. (12)

And if we look to the weighting vector W , we get, for example, the following ones:

• The probabilistic maximum (w1 = 1 and wj = 0, for all j 6= 1).
• The probabilistic minimum (wn = 1 and wj = 0, for all j 6= n).
• The generalized mean (GM) (wj = 1/n, and pi = 1/n, for all ai).
• The arithmetic GOWA (A-GOWA) (pi = 1/n, for all ai).
• The arithmetic generalized probabilistic aggregation (A-GPA) (wj = 1/n, for all ai).
• The step-GPOWA (wk = 1 and wj = 0, for all j 6= k).
• The general olympic-GPOWA operator (wj = 0 for j = 1, 2, . . ., k, n, n − 1, . . ., n −
k + 1; and for all others wj∗ = 1/(n− 2k), where k < n/2).

• The centered-GPOWA (if it is symmetric, strongly decaying from the center to the
maximum and the minimum, and inclusive).

Note that other families of GPOWA operators could be studied following Merigó and
Gil-Lafuente [24] and Yager [25,34].
The GPOWA operator can be further generalized by using quasi-arithmetic means

[19,24] forming the Quasi-POWA operator. It can be defined as follows.

Definition 4.1. A Quasi-POWA operator of dimension n is a mapping QPOWA: Rn → R
that has an associated weighting vector W of dimension n with wj ∈ [0, 1] and

∑n
j=1wj = 1,

such that:

QPOWA(a1, . . ., an) = βg−1

(
n∑

j=1

wjg (bj)

)
+ (1− β)h−1

(
n∑

i=1

pih (ai)

)
, (13)
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where bj is the jth largest ai, β ∈ [0, 1], and g(b) and h(a) are strictly continuous mono-
tonic functions.

Note that all the properties and particular cases commented in the GPOWA operator
are also included in this generalization. Thus, we could study a wide range of particular
cases as it has been done previously in this section.

5. Group Decision Making with the GPOWA Operator. In this Section we study
the applicability of the GPOWA operator focussing on a multi-person decision making
problem in strategic management.

5.1. Applicability of the GPOWA operator. The GPOWA operator can be applied
in a wide range of disciplines because all the studies that use the probability or the
OWA operator can be revised and extended with this new approach. The reason is
that we can always reduce it to the classical case where we only use probabilities or
OWA operators. Thus, all disciplines that use these types of statistical techniques can
be revised with this new approach [35,36]. For example, we could mention statistics,
economics, engineering, business, physics, biology, chemistry and medicine. Focusing in
statistics, we could develop a new variance and covariance formula with the GPOWA
operator as follows. For the variance, we obtain the following equation:

V ar-GPOWA(X) = β

(
n∑

j=1

wjD
λ
j

)1/λ

+ (1− β)

(
n∑

i=1

pi
(
(xi − µ)2

)δ)1/δ

, (14)

where Dj is the jth largest of the (xi−µ)2, xi is the argument variable, µ is the average (in
this case, the GPOWA operator), wj ∈ [0, 1] and

∑n
j=1wj = 1, each argument (xi − µ)2

has an associated probability (PA) pi with
∑n

i=1 pi = 1 and pi ∈ [0, 1], β ∈ [0, 1], and λ
and δ are parameters such that λ and δ ∈ (−∞,∞)− {0}.

In a similar way, we can represent the covariance by using the GPOWA operator as
follows:

Cov-GPOWA(X,Y ) = β

(
n∑

j=1

wjK
λ
j

)1/λ

+(1−β)

(
n∑

i=1

pi[(xi − µ)(yi − ν)]δ

)1/δ

, (15)

whereKj is the jth largest of the (xi−µ)(yi−ν), xi is the argument variable of the first set
of elements X = {x1, . . ., xn} and yi the argument variable of the second set of elements
Y = {y1, . . ., yn}, µ and ν are the average (in this case, the GPOWA operator) of the sets
X and Y , respectively, wj ∈ [0, 1] and

∑n
j=1wj = 1, each argument (xi − µ)(yi − ν) has

an associated probability (PA) pi with
∑n

i=1 pi = 1 and pi ∈ [0, 1], β ∈ [0, 1], and λ and δ
are parameters such that λ and δ ∈ (−∞,∞)− {0}.

Furthermore, we can formulate a linear regression process using the GPOWA operator.
To construct the linear regression model yh = α + βxh, we calculate β as follows:

β̂GPOWA =
Cov-GPOWA(X,Y )

V ar-GPOWA(X)
. (16)

Next, we calculate the α̂GPOWA value as follows: α̂GPOWA = ȳGPOWA−βGPOWAx̄GPOWA,
where x̄GPOWA and ȳGPOWA are the average of the sets X and Y calculated by using a
GPOWA operator. Once we have α̂GPOWA and β̂GPOWA, we can construct the linear
regression model with the GPOWA operator as follows:

yh = α̂GPOWA + β̂GPOWAxh. (17)
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Note that it is straightforward to extend this approach to a multiple linear regression
model based on the use of the GPOWA operator [37].

5.2. Multi-person decision making approach. In the following, we are going to an-
alyze the use of the GPOWA operator in multi-person problems. We are going to analyze
a multi-person decision making problem in the selection of strategies. We focus on the
selection of national strategies at a general level, that is, on the main directions that the
government wants to follow in order to accomplish its objectives. Since this involves deci-
sions that are very complex, the input of many experts is required to assess the problem.
Thus, by using a multi-person analysis we can assess the information in the most efficient
way.
The procedure to select national strategies with the GPOWA operator in multi-person

decision-making is described in this section. Note that many other group decision-making
models have been discussed in the literature [38-47].
Step 1: Let A = {a1, a2, . . ., an} be a set of finite alternatives, S = {s1, s2, . . ., sn},

a set of finite states of nature (or attributes), forming the payoff matrix (ahi)m×n. Let
E = {e1, e2, . . ., ep} be a finite set of decision-makers. Let U = (u1, u2, . . ., up) be the
weighting vector of the decision-makers such that

∑q
k=1 uk = 1 and uk ∈ [0, 1]. Each

decision-maker provides his own payoff matrix
(
a
(k)
hi

)
m×n

.

Step 2: Calculate the weighting vector P̂ = β×W+(1−β)×P to be used in the GPOWA
aggregation. Note that W = (w1, w2, . . ., wn) such that

∑n
j=1wj = 1 and wj ∈ [0, 1] and

P = (p1, p2, . . ., pq) such that
∑n

i=1 pi = 1 and pi ∈ [0, 1].
Step 3: Aggregate the information of the decision-makers E using the weighting vector

U . In this example, we use the weighted average (WA). The result is the collective
payoff matrix (ãhi)m×n. Thus, ahi =

∑q
k=1 uka

k
hi. Note that we can use different types of

aggregation operators instead of the WA to aggregate this information such as different
types of GPOWA operators in case we have some probabilistic information to weight the
information.
Step 4: Calculate the aggregated results using the GPOWA operator explained in Equa-

tion (5). Consider different families of GPOWA operators as described in Section 4.
Step 5: Adopt decisions according to the results found in the previous steps. Select the

alternative (s) that provides the best result (s) and establish a ranking of the alternatives.
The previous multi-person decision process can be summarized using the following

aggregation operator that we call the multi-person – GPOWA (MP-GPOWA) operator.

Definition 5.1. A MP-GPOWA operator is a mapping MP-GPOWA: Rn×Rp → R that
has a weighting vector U of dimension q with

∑q
k=1 uk = 1 and uk ∈ [0, 1] and a weighting

vector W of dimension n with
∑n

j=1wj = 1 and wj ∈ [0, 1], such that:

MP -GPOWA((a11, . . ., a
q
1), . . ., (a

1
n, . . ., a

q
n)) =

n∑
j=1

p̂jbj, (18)

where bj is the jth largest of the ai, each argument ai has an associated probability pi with∑n
i=1 pi = 1 and pi ∈ [0, 1], p̂j = βwj + (1− β)pj with β ∈ [0, 1] and pj is the probability

pi ordered according to bj, that is, according to the jth largest of the ai, ai =
∑q

k=1 uka
k
i ,

aki is the argument variable provided by each person (or expert).

Note that the MP-GPOWA operator has similar properties to those explained in Section
3, such as the distinction between descending and ascending orders.
The MP-GPOWA operator includes a wide range of particular cases following the

methodology explained in Section 4. Thus, it includes the multi-person – probabilistic
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aggregation (MP-PA) operator, the multi-person – OWA (MP-OWA) operator, the multi-
person – arithmetic mean (MP-AM) operator, the multi-person – generalized probabilistic
aggregation (MP-GPA), the multi-person – GOWA (MP-GOWA), the multi-person – gen-
eralized mean (MP-GM), the multi-person – arithmetic-GPA (MP-AGPA) operator and
the multi-person – arithmetic-GOWA (MP-AGOWA) operator.

6. Illustrative Example. In the following, we present a numerical example of the new
approach in a decision-making problem regarding the selection of national strategies. We
analyze an economic problem regarding the general strategy of a country in national
decision-making problems.

Step 1: Assume the government of a country has to decide on the type of general
strategy to follow the next year. They consider five alternatives:

• A1 = Develop strategy A.
• A2 = Develop strategy B.
• A3 = Develop strategy C.
• A4 = Develop strategy D.
• A5 = Develop strategy E.

In order to evaluate these strategies, the government has brought together a group of
experts. This group considers that the key factor is the situation of the world economy
for the next period. They consider 5 possible states of nature that could happen in the
future:

• S1 = Very bad economic situation.
• S2 = Bad economic situation.
• S3 = Regular economic situation.
• S4 = Good economic situation.
• S5 = Very good economic situation.

The experts are classified in 3 groups. Each group is led by one expert and gives different
opinions than the other two groups. The results of the available strategies, depending on
the state of nature Si and the alternative Ak that the decision-maker chooses, are shown
in Tables 1-3.

Step 2: In this problem, we assume the following weighting vector for the three groups
of experts: U = (0.5, 0.3, 0.2). The experts assume the following weighting vector for the
OWA: W = (0.1, 0.2, 0.2, 0.2, 0.3). The three groups assume the following probabilistic

Table 1. Group of experts 1

S1 S2 S3 S4 S5

A1 60 40 70 80 20
A2 30 70 50 60 80
A3 60 80 70 40 30
A4 40 60 70 50 60

Table 2. Group of experts 2

S1 S2 S3 S4 S5

A1 40 80 60 50 70
A2 40 70 60 60 70
A3 50 70 70 40 40
A4 40 60 50 50 80
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Table 3. Group of experts 3

S1 S2 S3 S4 S5

A1 40 70 60 80 30
A2 50 70 60 60 80
A3 40 70 70 60 30
A4 40 60 80 50 60

Table 4. Collective results

S1 S2 S3 S4 S5

A1 48 61 64 71 38
A2 39 70 56 60 77
A3 51 74 70 46 33
A4 40 60 67 50 66

Table 5. Aggregated results

AM PA OWA POWA A-PA A-OWA
A1 56.4 58 53.1 56.53 57.52 55.41
A2 60.4 59.3 56.6 58.49 59.63 59.26
A3 54.8 61.3 50.7 58.12 59.35 53.57
A4 56.6 57.7 53.9 56.56 57.37 55.79

Table 6. Ranking of the national strategies

Ordering Ordering
AM A2 � A4 � A1 � A3 POWA A2 � A3 � A4 � A1

PA A3 � A2 � A1 � A4 A-PA A2 � A3 � A1 � A4

OWA A2 � A4 � A1 � A3 A-OWA A2 � A4 � A1 � A3

information for each state of nature: P = (0.2, 0.3, 0.3, 0.1, 0.1). First, we aggregate the
information of the three groups into one collective matrix that represents the information
of all the experts of the problem. The results are shown in Table 4.
Step 3: Next, we calculate the attitudinal weights by mixing the weighting vectors W

and P . Note that the OWA operator has an importance of 30% while the probabilistic
one has 70% in this particular example.
Step 4: With this information, we can aggregate the expected results for each state of

nature in order to make a decision. For this, we use Equation (4) or (5) to calculate the
GPOWA aggregation. In Table 5, we present the results obtained using different types of
GPOWA operators. Obviously, we get the same results with both methods.
Step 5: If we establish a ranking of the alternatives, then we get the results shown in

Table 6. Note that the first alternative in each ordering is the optimal choice.
Obviously, the order preference for the national strategy to follow may be different

depending on the aggregation operator used. Therefore, the decision about which strategy
to select may be also different.

7. Conclusions. We have presented the GPOWA operator. It is an aggregation operator
that unifies the probability and the OWA operator in the same formulation and considering
the degree of importance that each concept has in the aggregation. Moreover, it also
uses generalized aggregation operators providing a general formulation that includes a
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wide range of particular cases including the POWA, the POWGA, the POWQA and the
POWHA operator. We have studied some of its main properties and we have seen that
the generalized probabilistic aggregation and the GOWA operator are particular cases of
this generalization. Furthermore, the simple probabilistic aggregation, the OWA and the
POWA operator are also particular types of GPOWA operators.

We have extended this analysis to multi-person decision making problems obtaining
the MP-GPOWA operator. This operator provides a more general representation of the
information because it permits us to deal with the opinion of several persons (elements) in
the analysis. We have seen a wide range of particular cases of the MP-GPOWA operator
including the MP-AM, the MP-PA, the MP-OWA, the MP-PGA, the MP-GOWA and the
MP-POWA operator. We have applied this new approach in a decision making problem
regarding the selection of strategies. We have seen that depending on the particular type
of aggregation operator used, the results may lead to different decisions. Furthermore, we
have seen how to deal with probabilistic information and with the attitudinal character
of the decision maker in the same formulation.

In future research we expect to develop further extensions to this approach by adding
more concepts in the GPOWA and MP-GPOWA operators such as the use of distance
measures, uncertain information represented in the form of interval numbers, fuzzy num-
bers or linguistic variables. We will also consider other applications in other areas giving
special attention in other statistical problems and in other decision making problems
including political and juridical decision making.
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[12] J. M. Merigó and A. M. Gil-Lafuente, New decision-making techniques and their application in the
selection of financial products, Information Sciences, vol.180, no.11, pp.2085-2094, 2010.
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