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ABSTRACT. We integrated the techniques of multi-image accumulation and multi-resolu-
tion background subtraction to detect mura defects in low-contrast and high-noised TFT-
LCD images. First, several images of an LCD on a moving product conveyer are contigu-
ously captured and then a synthesized LCD image is used to calibrate the non-uniform
illumination of these images. Second, the images are aligned in position to accumulate
the gray levels of the pizels which all correspond to a point on the LCD. The multi-image
accumulation process enhances the contrast between the mura defects and the background;
moreover, visible mura problems due to the view angle and the uneven illumination are
also mostly resolved. Third, the multi-resolution backgrounds of the accumulated image
are progressively estimated based on the discrete wavelet transform (DWT) and the de-
fect candidates are extracted coarse-to-fine and accumulated by subtracting the background
from the accumulated image. The multi-resolution background subtraction strategy speeds
the detection process and solves the problem of different sizes of mura defects without re-
ducing the detection rate. Finally, a standard thresholding method is used to “threshold
out” the mura defects. The stability and effect of the proposed method are demonstrated
in experiments.

Keywords: Automatic optical inspection, Mura detection, Multi-image accumulation,
Multi-resolution background subtraction, TFT-LCD

1. Introduction. Currently, thin film transistor liquid crystal displays (TFT-LCDs) are
the most popular flat panel display devices. A critical task for TFT-LCD manufacturers
is to control their visual quality, that is, to quickly inspect the TFT-LCD for outward
appearance and mura defects. The outward appearance defects are generally made from
the existence of foreign bodies in flat panel units, non-uniform color filters, non-uniform
gap in glass bases, ill-functioning polarizers, or poorly backlit units [1]. These kinds of
defects generally appear microscopically, but can still be detected successfully [2-6]. In
contrast, macro-scope mura defects are difficult to perceive with the human eye, due
to their properties of low contrast and non-uniform brightness as shown in Figure 1.
Moreover, non-uniform illumination makes the mura harder to detect and some mura
defects can only be detected at a special angle, also shown in Figure 1.

There are many types of mura defects: lines, black spots, white spots, black regions,
white regions, and rings [7]. Many methods have been proposed to detect mura defects,
which can be categorized into three classes: spatial-domain [7-21], frequency-domain
[22,23], and feature-based [24] methods. The spatial-domain methods directly process
image pixels to detect mura defects. Those methods can be categorized into three sub-
classes: thresholding, template matching, and background estimation. In the thresholding
sub-class, Chen and Chiang [8] proposed a threshold method to detect mura defects; the
method is very fast but is not accurate for non-uniform backgrounds. Nakano and Mori
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FIGURE 1. Mura defects can be perceived in some special angles: (a) both
black and white mura defects, (b) only a white mura

[9], Oh et al. [10], and Ryu et al. [11] initially de-noised and enhanced mura defects in
the wavelet domain and then thresholded the mura defects in the spatial domain. Their
methods can only detect small-sized mura defects, but sizes of mura defects vary greatly.
Kim et al. [12] modified the standard deviation of gray levels to reduce the non-uniform
gray levels and then “thresholded out” mura defects. This method can detect most kinds
of mura defects other than line mura defects. In the template matching sub-class, Chen
et al. [13] proposed a Laplacian of Gaussian mask to detect region and line mura de-
fects. The method is quick, but the mask is unsuitable for other types and sizes of mura
defects. Oh et al. [14] proposed a directional filter bank to detect mura defects. Their
method can detect horizontal and vertical line mura defects, but it fails to detect other
shaped defects. Song et al. [15,16] proposed a blob mask to detect low-contrast blob
mura effectively but the mask is not suitable for other shaped defects. In the background
estimation sub-class, Lee et al. [17] used a B-spline surface to fit the image background
and then subtracted the background from the source image to detect mura defects. The
method could detect mura at a 90% detection rate, but normal panels have a 12% false
positive rate (i.e., mistaking non-mura pixels as mura pixels). Baek et al. [18] used one-
dimensional (1D) polynomial background estimation to detect region mura defects. Lee
and Yoo [7] used two-dimensional (2D) polynomial curves to estimate image background
in a moving window. These methods [7,18] can detect mura defects of any shape or ori-
entation. Overlapped windows, however, take more time to process; and if the defect size
is larger than the window, the defect cannot be detected. For time-consuming problems,
Wang and Ling [19] used recursive least square estimation to reduce the computational
complexity of polynomial background fitting. Chen and Chang [20] accelerated Lee and
Yoo’s [7] method by calculating Welsch’s distance for the 2D curve fitting. However, Chen
and Chang’s method still takes 500 seconds to process a 256 x 256-pixel image. Chen
and Jhou [21] accelerated background estimation by simplifying Chen and Chang’s fitting
method and proposing a one-search-time labeling method. Their method still takes 45
seconds to process an image, demonstrating that the background estimation method is
still not efficient enough to use in common practice.
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In the frequency-domain class, Fang et al. [22] used Laplacian of Gaussian filters on the
Fourier coefficients of images to detect blob mura defects. The method is more efficient
than the spatial-domain methods; however, different filters are required to detect mura
defects with different shapes and orientations. Chen and Kuo [23] acquired discrete cosine
transform (DCT) coefficients of a mura image to estimate image background and then
subtracted the background from the source image to detect mura defects. Chen and
Kuo’s method is fast and suitable for most kinds of mura defects, but the method cannot
detect low-contrast and line mura defects at the same time; moreover, it fails to estimate
backgrounds of large mura defects because DCT does not retain the spatial information
of the images.

The feature-based methods detect mura defects by the feature information of the im-
ages. Tsai and Tsai [24] used 1D optical flow to detect mura defects. This method is fast
and processes 20 200 x 200-pixel images per second, but the non-uniform environmen-
tal illumination may influence the detection, and the shapes of the detected defects are
fragmented.

Summarily, the above methods cannot simultaneously solve the eight problems previ-
ously mentioned: low contrast, non-uniform illumination, non-uniform background, dif-
ferent view angles, different mura direction, different mura shape, different mura size, and
time consuming.

In this study, we propose a method of LCD mura detection based on multi-image
accumulation and multi-resolution background subtraction. First, an LCD on a moving
product conveyer is contiguously captured by several images with different locations and
a synthesized LCD image is used to calibrate the non-uniform illumination of the images.
Second, the images are aligned in position to accumulate the gray levels of pixels which
all correspond to a point on the LCD. The accumulated images have the advantages of
enhancing the contrast, depressing the random noise, and solving the view-angle problem
where a point on the LCD has different view angles on different images. Third, the multi-
resolution backgrounds of the accumulated image are progressively estimated based on
the discrete wavelet transform (DWT). Here, we use a 2D plane polynomial to estimate
the backgrounds. Several studies [7,17-21] have shown that the estimation methods can
solve the problems of non-uniform background, different-shape, and different-direction
mura; however, these methods are time consuming. Additionally, using different-size
estimation windows to detect mura with different sizes will also take too much time. To
solve the different-size problem and to accelerate the background estimation, we take the
accumulated image into a multi-resolution and then refine the estimated background from
coarse to fine. The accumulated image subtracted from the estimated background leaves
the defect candidates. Finally, a standard thresholding method is used to “threshold out”
the mura defects. Figure 2 briefly describes the steps of the proposed method.

The remains of this paper are organized as follows. Section 2 presents the multi-
image accumulation method for non-uniform illumination and non-uniform displacement
of LCDs on product conveyers. Section 3 provides the mura detection method using
multi-resolution background subtraction. The experiments and their results are reported
and discussed in Section 4, and the conclusions are presented in Section 5.

2. Multi-image Accumulation. The non-uniformity of a background mainly results
from the non-uniform material of TFT-LCD and a fault of the producing processes. Non-
uniform material creates mura defects; however, the non-uniform environmental illumi-
nation also makes TFT-LCD non-uniform in appearance. Non-uniform illumination must
therefore be calibrated to eliminate false detections. On the other hand, we can accu-
mulate the gray levels of pixels which correspond to a point on the LCD to enhance the
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FIGURE 2. The steps of the proposed mura detection method

contrast between a mura and background. The accumulation of the pixels’ gray levels
needs to align the contiguous images on the product conveyer which move at unstable
speed.

2.1. Calibration of non-uniform illumination. Initially, m non-defected TFT-LCD
images were manually selected as referenced images for analysis. For each of the referenced
images, gray level f,(x,y) of pixel (z,y) is composed of illumination i(z, y) and material
reflectance r,.(x,y),

fr(z,y) = iz, y)re(2, y). (1)
We take the average gray levels of the m referenced images for pixel (x,y) as
fr(,y) = i(2,y)7 (2, y), (2)
and then divide every un-calibrated image
f(@,y) =iz, y)r(z,y) (3)

by fr(z,y) to get

flzy) _ r(zy)

g(z,y) = ) " Ry (4)
where g(z,y) is invariant to the non-uniform illumination and will be used to detect mura
defects. g(z,y) has the same signal-to-noise ratio (SNR) to f(z,y) as described in the
Appendix; but the contrast of g(z,y) is reduced. Here, we can enhance the contrast by
multiplying ¢(x,%) and constant ¢, where ¢ can be set as the average gray level of f, as

one example shown in Figure 3.

(a) (b) ()

FIGURE 3. Before and after illumination calibration: (a) the un-calibrated
image, (b) the background, (c) the calibrated image
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2.2. Alignment of multiple images. The gray levels of all calibrated images of an LCD
will be accumulated to enhance the contrast between mura and the background as one
example shown in Figure 4. Initially, the positions of all images must be aligned. There
is only a slight rotation, and it can be ignored. A 2D template matching is commonly
used for the alignment; however, the 2D matching is very time consuming. Moreover, as
the contrast of images is weak and features are not clear, the matching may not be as
stable. We propose a 1D profile matching method to enhance the contrast for matching
and to increase the speed of the matching process. First, the gray levels of an image
are horizontally and vertically accumulated to generate two profiles. Then the profiles of
each two adjacent images are matched to find the displacement based on the correlation
measurement.

The accumulations of gray levels in the vertical and horizontal directions are used to
enhance the features for the alignment. Let h(y) and v(x) be the horizontal and vertical
accumulations of calibrated image g(z,y),

h(y) = ijg(fv,y)

: (5)
v(z) = > g(z,y)

y
respectively. Assuming the ranges of longitudinal and latitudinal displacements are [—,,, [,]
and [—l,,[,], respectively, the displacement of two adjacent (ith and ¢ 4+ 1th) images is
calculated by maximizing the correlation

/ ( (

2 Alvilw) = Bl i (z = d7) = B}

la
d, = arg ¢ max {
di=—1lo

T

) ) 1/2
{z fos(a) = 5 X [ossa (@ — d2) — Fia] }
L E ) C©
Zyj {[hi(y) = hi] [Piga(y — d) — hita] }

N/~

d, = arg ¢ max ¢

ds=—Io _ B . 1/2
[ 1050) = 3" oty = )~ Ro) )

y Y

\ \

where d, is the horizontal displacement, d, is the vertical displacement, v is the average
of v(x), and h is the average of h(y).

FIGURE 4. A sequence of calibrated images
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The displacement calibration may be somewhat inaccurate because there is no obvious
feature or contrast in mura images. Stable speed of a product conveyer is useful for
estimating the longitudinal displacement and helpful for finding an accurate displacement.
Fortunately, an inaccurate location does not influence the detection result if there is no
mura defect; moreover, if there are some mura defects in an image sequence, a slightly
inaccurate location only slightly enlarges or reduces the size of mura defects without the
existence of defects disappearing. Therefore, the proposed displacement calibration is still
usable.

After aligning every two adjacent images, we accumulate the same-position gray levels
of all contiguous images to obtain an accumulated image.

3. Multi-resolution Background Subtraction. A TFT-LCD image is composed of
background, noise, or mura defects as shown in Figure 5. We detect defects by subtracting
the background from the image and “thresholding out” noise from the subtracted image.
In general, the sizes of the mura defects vary so that a fixed-sized mask is unsuitable
to detect all possible mura defects. We here use a multi-resolution detection method to
extract mura as follows:

Step 1. Decompose an image into a hierarchical multi-resolution image structure with
three levels.

Step 2. Estimate initial backgrounds for the three different-resolution images.

Step 3. Determine suspected defect blocks in every resolution.

Step 4. Refine the background of the finest resolution image according to the coarse res-
olution images.

Step 5. Subtract the refined background of the finest-resolution image from the calibrated
image and “threshold out” the mura defects.

4
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Ficure 5. Components of an image profile

To construct the hierarchical multi-resolution image, we use the Haar function as the
basis function to decompose the calibrated image into a wavelet hierarchy of three levels
with ten subbands. Then the three different-scaled low-frequency subbands, named Ls,
Ly, and Ly, are sequentially used to estimate the background from the coarsest-resolution
subband L3 to the finest-resolution subband L; as shown in Figure 6.

3.1. Initial background estimation. We divide every L; subband into several /2-pixel
blocks. Initial backgrounds of L; and L, are estimated block by block. In a block, all
pixels (x,y) are used to fit a 2D plane as the background by the least square estimation
method. To estimate the initial background of the L3 subband, mean p and standard
deviation o of Ljz pixels are calculated. Then the values of all L3 pixels (z,y) whose
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L; @ 3 coarse

FIGURE 6. The L subbands in a dyadic wavelet tree

values satisfy |Ls(z,y) — p| < o are used fit 2D plane S3 as the background by the least
square estimation method. The initial backgrounds will be refined from the coarsest Ls
to the finest L;.

3.2. Background refinement. A block may contain defects; the background of a defect
block should be refined; otherwise, the defect may be undetectable. The background
refinement is not very sophisticated. Let Sj(z,y) be a pixel on the background of the jth
block in L, subband, we use the criterion

(7)

to determine whether a pixel is a suspected defect. If a block contains less than p%
suspected defect pixels, the block’s background is called pure; otherwise the background
is non-pure and needs to be refined. In general, p can be set as 25 because a wavelet
coefficient in a coarse subband is calculated from its four super coefficients in the fine
subband.

The coarse-to-fine refinement of a block uses its eight neighboring blocks to fit a new
background replacing the block’s initial background. Actually, only L; blocks need to be
refined; the blocks in Ly and L3 need no refinement, but only need tags to indicate that
they are pure or non-pure.

(x,y) is a suspected defect pixel, if ‘Li(x, y) — S,z (, y)‘ > 20;
(x,y) is not a suspected defect pixel, otherwise.

Step 1. Every L3 block is tested pure or non-pure.

Step 2. Every L, block is tested pure or non-pure.

Step 3. Every Ly block is tested pure or non-pure. If the background of L; block A is
non-pure and needs to be refined, three cases are considered.

3.1 If block A’s sub-block on L is pure, the pixels of A’s eight neighboring L,
blocks (whose Ly sub-blocks are pure) are used to fit a new background instead
of A’s background, as illustrated in Figure 7(a).

3.2 If block A’s L, sub-block is non-pure and A’s Lz sub-block is pure, the pixels
of A’s 12 neighboring L; blocks (whose L, sub-blocks are pure) are used to fit
a new background instead of A’s background. There are four sub-cases based
on the wavelet structure and one example is illustrated in Figure 7(b).

3.3 If block A’s L, sub-block and L3 sub-block are non-pure, the pixels of A’ 20
neighboring L; blocks (whose L, sub-blocks are pure) are used to fit a new
background instead of A’s background. There are sixteen sub-cases based on
the wavelet structure and one example is illustrated in Figure 7(c).
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FIGURE 7. The neighboring blocks for refinement: (a) sub-block is pure,
(b) only sub-block on Ls is non-pure, (¢) both sub-blocks on Ly and L3 are
non-pure

3.3. Post-processing. After the process of the background refinement, the final back-
ground image b(z,y) is reconstructed from the background of L; by inverse discrete
wavelet transform. Then, the mura defect pixels are extracted by the criterion

— L, if |g(x,y)—b(x,y)| > 20;

M(z,y) = { 0, otherwise. (8)
where “1” indicates a mura pixel and “0” is a non-mura pixel. Finally, we use the opening
and closing morphology operations to prune the mura defects. A time-consuming adaptive
thresholding method seems to be more suitable for this extraction; actually, with our

complete consideration on the process of images, the simple thresholding is fully sufficient
for this extraction.

4. Experiments. In the experiments, we detected several different-typed mura defects
with different numbers of accumulation images. The detection power and efficiency of the
proposed method were evaluated and compared with five other methods.

We used the real contiguous images to demonstrate the proposed mura detection
method; however, not all types of mura images were available; thus, several artificial
mura images were generated for the test and comparison. Non-uniform background and
noise were also generated in the artificial images. The test images include region, line,
ring, and cloud muras as shown in Figure 8, where (a) and (b) are real images and (c),
(d), (e), and (f) are artificial images. Contrasts between mura defects and backgrounds
of the images are ranges of: (a) 5~ 8, (b) 2~4, (¢c) 3~6, (d) 3~ 6, (e) 2~ 5, and (f)
4 ~ 6 gray levels. The size of all images is 256 x 256 pixels.

Without pruning the defect regions, the detection results with different numbers of
accumulation images were compared as shown in Figure 9. The higher an accumulation
number, the less detected noise and the more compact structure of mura defects. A greater
number of accumulation images, however, will take more computation time. Thus, we
accumulated eight images accompanied with morphology operations to quickly solve the
view-angle problem.

The mura defects shown in Figure 8 have different types, sizes, shapes, and directions;
they were detected as shown in Figure 10. All types and shapes of mura defects were
detectable. Large-size mura defects are shown in Figure 10(a) and (b), and small-size
mura defects are shown in Figure 10(d). The minimum detectable contrast between
defect and background by the proposed method was 3 gray levels.

We took twelve image sequences with four kinds of mura defects to statistically analyze
the precision and accuracy of the proposed methods, as shown in Tables 1 and 2. The
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FIGURE 8. Test images: (a) real region mura, (b) real region mura, (c)
artificial line and region muras, (d) artificial cloud mura, (e) artificial ring
mura, (f) artificial line mura

precision and accuracy were defined from the testing of the hypothesis [25]. The null
hypothesis was defined as the tested pixel is assumed to be a non-mura pixel. Then four
values are defined for evaluation:

i. True positive: number of mura pixels that were detected as mura pixels;
1. False positive: number of non-mura pixels that were mistaken as mura pixels, the
number is also called type I error;
114. True negative: number of non-mura pixels that were detected as non-mura pixels;
and
. False negative: number of mura pixels that were mistaken as non-mura pixels. This
number is also called type II error.

The precision is defined as
True positive

Precision = 9)
This is the ratio of “number of mura pixels which were correctly detected as mura pixels”
to “number of pixels which were detected as mura pixels”. The accuracy is defined as

10)

This is the ratio of “all correctly detected pixels” to “all pixels.” From Table 2, we can
see that the precision and accuracy of the proposed methods were 0.9818 and 0.9876,
respectively. If we count the mura regions, all mura regions were detected; that is, the
detection rate for mura regions is 100%.

True positive + False position’

True positive + True negative

Accuracy = .
Y~ True positive + False positive + True negative + False negative

”
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(e) (f) ()

FIGURE 9. The comparisons of accumulation times: (a) a region mura, the
detection results of (a) with accumulating (b) 4 images, (c) 8 images, and
(d) 16 images; (e) two unapparent region muras, the detection results of (e)
with accumulating (f) 4 images, (g) 8 images, and (h) 16 images

Ten image sequences of 256 x 256 pixels and ten image sequences of 1024 x 1024 pix-
els were used to evaluate the efficiency of the proposed detection method. Each image
sequence was accumulated eight times. The average processing time of every step of the
proposed method is listed in Table 3. The average processing time of a 256 X 256 image
sequence and a 1024 x 1024 image sequence are 5.576 seconds and 23.268 seconds, respec-
tively. Most of the total processing time was spent on the multi-resolution mura detection,
which spent 77% and 67% processing time for the two-sized images, respectively. This
is a hierarchically non-overlapped and block-by-block process, which means that we can
easily accelerate processing time by using more processors.

The performance of the proposed method and the other five methods were compared
and are listed in Table 4. The proposed method has the minimum detectable contrast over
other methods and has no undetectable mura types. Furthermore, the proposed method
accumulates contiguous images to solve the problem of inspecting angles. Although the
processing speed of the proposed method is not the fastest, the processing time of the
proposed method is easy to improve by adding hardware processors.

5. Conclusions. In this paper, an online TFT-LCD mura defect detection method is
proposed. The method consists of illumination calibration, multi-image accumulation,
and multi-resolution background subtraction. The multi-image accumulation of gray lev-
els and the multi-resolution background subtraction are two special techniques in this
study. The multi-image accumulation technique is the first trial in the optical inspection
of objects on product conveyers. This technique enhances the contrast between objects
and their backgrounds to make the mura detection more stable. The multi-resolution
background subtraction reduces the processing time without influencing the detection
rate. Experiments show that the proposed method is powerful and is able to simultane-
ously solve problems of low contrast, non-uniform illumination, non-uniform background,
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FIGURE 10. The detected results of images in Figure 8: (a) real region
mura, (b) real region mura, (c) artificial line and region muras, (d) artificial
cloud mura, (e) artificial ring mura, (f) artificial line mura

TABLE 1. Numbers of mura and non-mura pixels in the experimental images

. Mura | Non-mura Detected Detected
Pixels . i . :
pixels pixels mura pixels | non-mura pixels

Region mura 7 | 65536 | 3876 61660 3505 61660
Region mura iz | 65536 | 3500 62036 3102 62036
Region mura 2 | 65536 | 2952 62584 2756 62584
Region mura v | 65536 | 2000 63536 1856 63536
Region mura v | 65536 985 64551 270 64551
Line mura ¢ 65536 | 4560 60976 3586 60976
Line mura 7 65536 | 4801 60735 2504 60735
Line mura %1 65536 | 4756 60780 2895 60780
Line mura v 65536 | 4689 60847 3952 60847
Line mura v 65536 | 4523 61013 4358 61013
Ring mura 65536 | 2065 63471 2680 62856
Cloud mura 65536 | 3678 61858 2098 61858
Total 786432 | 42385 744047 33862 743432

different view angles, different mura direction, different mura shape, and different mura
size. The performance of the proposed method is dependent on the stability of product
conveyers. The more stable the conveyer, the more regular the captured images. A more
stable carrying speed and less vibration of the conveyers make the proposed techniques
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TABLE 2. Hypothesis testing for mura and non-mura pixels

True positive | False positive | True negative | False negative

Region mura ¢ 3505 0 61660 371
Region mura 3102 0 62036 398
Region mura 4 2756 0 62584 196
Region mura v 1856 0 63536 144
Region mura v 270 0 64551 415
Line mura 7 3586 0 60976 974
Line mura 2504 0 60735 2297
Line mura 4 2895 0 60780 1861
Line mura 7v 3952 0 60847 737
Line mura v 4358 0 61013 165
Ring mura 2065 615 62856 0

Cloud mura 2098 0 61858 1580
Total 33247 615 743432 9138

TABLE 3. The average processing time for each step (seconds)

Steps\Image size 256 x 256 pixels | 1024 x 1024 pixels
illumination calibration 0.063 1.133
Displacement calibration 1.200 6.463
Multi-resolution mura detection 4.313 15.672
Total time 5.576 23.268

TABLE 4. The detection comparison among six methods

Limitation Minimum View-angle | Processing time
Methods\Effect in mura types | detectable contrast probleri (256 x 256gpixels)
Kim et al. [12] | Line mura 4 yes < 1 sec.
Chen-Kuo [23] Line mura 6 yes < 1 sec.
Lee-Yoo [7] No limitation 8 yes Not available
Chen-Chang [20]| No limitation 5 yes > 500 sec.
Chen-Jhou [21] | No limitation Not available yes 45 sec.
The proposed | No limitation 3 no 5.576 sec.

more practicable. These techniques have been tested for mura detection on the LCD con-
veyers at Chunghwa Picture Tubes, LTD in Yangmei City, Taiwan. The performance of
the conveyer was acceptable, and the detected regions were enlarged without decreasing

the detection rate.
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Appendix. To see if a mura has disappeared or if noise is enhanced after the illumination
calibration, the signal to noise ratio (SNR) is analyzed.

We use the SNR defined by Bushberg et al. [26] to define the SNR of un-calibrated
image f. The SNR was defined as the ratio of the mean gray level to the standard
deviation of the image noise. That is, the SNR of f is

SNR; = f/oy, (11)

where f is the mean of f and oy is the standard deviation of the noise of f. The SNR of
calibrated image g is

SNR, = g/oy, (12)
where g is the mean of g and o, is the standard deviation of noise of g. Donoho and John-
stone [27] have defined the standard deviation of the image noise as media(|w|)/0.6745,
where median(-) is a median filter and w is the set of wavelet coefficients in the HH;
subband. A wavelet transform can convolute an image with a set of wavelet functions.
Thus, Equation (11) can be rewritten as

SNR; = 0.6745f /median(|]W x f|), (13)
where W is a wavelet convolution function. Equation (12) can be rewritten as
SNR, = 0.6745g/median(|W * g|) = 0.6745(f/ f,)/median(|W * (f/ f,)]). (14)
Since f, is a constant,
SNR, = 0.6745(f/ f,)/median(|W = f|/ f,) = 0.6745 f /median(|W = f|) = SNR;. (15)

This means that the non-uniform illumination calibration does not change the signal-to-
noise ratio of the un-calibrated images.



