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Abstract. Bayesian Optimization Algorithm (BOA), a multivariate estimation of dis-
tribution algorithm, needs incorporating with efficiency enhancement techniques to be
capable of solving difficult large-scale problems in a reliable and scalable manner. In this
paper, we present a novel evaluation relaxation method which is based on the conditional
entropy measurement. The concept of conditional entropy is rigorously analyzed and then
is used to investigate the stability of the population. Especially, we utilize the evaluation
relaxation strategy (ERS) proposed herein to determine whether a candidate solution
should be evaluated by actual functions or be estimated by surrogate models. BOA cou-
pled with our entropy-based ERS, termed en-BOA, shows its superiority in significantly
reducing the total number of expensive fitness evaluations until reliable convergence. Ex-
perimental results prove that the entropy-based ERS enhances the efficiency of BOA while
not negatively affecting the scalability of the original algorithm. In addition, the effects
of our efficiency enhancement technique on population sizing requirements are also dis-
cussed.
Keywords: Bayesian optimization algorithm, Conditional entropy, Efficiency enhance-
ment, Evaluation relaxation, Fitness evaluation

1. Introduction. Inspired by biological mechanisms in nature, such as natural selection
or genetic inheritance, evolutionary algorithms (EAs) [1, 2] have been widely employed
to solve optimization tasks in system design problems [3, 4]. For the last two decades,
research in EAs has been diversified toward various directions, most notably Estimation
of Distribution Algorithms (EDAs) [5, 6]. A key difference between traditional EAs and
EDAs is that EDAs replace the conventional crossover and mutation operators of EAs by
building and sampling probability distributions that model promising solutions found so
far in order to generate new offspring for the next iteration. Categorized into three groups:
Univariate EDAs [7], Bivariate EDAs [8] and Multivariate EDAs [9, 10], EDAs employ
machine learning techniques to capture explicitly the underlying (in)dependencies among
design variables of the problem at hand. Exploiting such information to evolve their
populations, EDAs can avoid disruptions of building blocks, caused by random variation
operators, such as crossover and mutation. The effectiveness of EDAs depends upon the
accuracy of the underlying probabilistic models, i.e., discovering correctly relationships
of different variables. Using Bayesian networks to model promising candidate solutions,
Pelikan et al. [11] proposed the Bayesian optimization algorithm (BOA) to solve various
classes of optimization problems efficiently and reliably. Furthermore, Ahn et al. [12, 13]
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extended BOA into the continuous optimization domain: Real-coded Bayesian Optimiza-
tion Algorithm (rBOA).
Optimization algorithms evolve their search efforts toward promising regions where indi-

viduals of high fitness values locate on the problem landscape. Fitness values of candidate
solutions reflect their suitability for solving the problem at hand. EAs require adequate
amounts of fitness evaluations before reaching their optimal solutions. In many real-world
applications, fitness functions are complicated and expensive in terms of computational
time and resources. Advanced branches of EAs, such as EDAs, are shown to be capable
of solving bounded difficult problems reliably and scalably in polynomial time. However,
polynomial complexity in evaluating whole populations when solving large-scale com-
plex problems would still be impractical for both traditional GAs and advanced EDAs.
Therefore, efficiency enhancement techniques (EETs) [14, 15, 16] are always crucial in
developing competent EAs which are able to converge toward the optima in a timely
practical manner. Basically, while EAs are effective in finding acceptable solutions for
hard problems of extremely large search spaces, they need to be assisted with EETs to
become applicable in real-world problems.
Efficiency enhancement techniques can be classified into four categories: Parallelization,

Hybridization, Time continuation/utilization, and Evaluation relaxation [17]. In paral-
lelization [18, 19], multiple processors are employed at the same time to divide and allocate
computational resources according to some topologies, such as master-slave, fine-grained,
coarse-grained, or hierarchical. Hybridization techniques [20, 21] combine global searchers
(i.e., evolutionary algorithms) with local searchers (e.g., greedy search or hill-climbing) to
accelerate the convergence speed toward optimal solutions. Time continuation/utilization
[22, 23] enables practitioners to choose between an EA that has a small population, but
performs for many generations, and an EA that has a large population, but performs
for fewer generations. Finally, evaluation relaxation [24, 25] tries to replace accurate
and costly fitness functions with other inaccurate but more economical estimation models
when possible.
Similar to other EDAs, the performance of BOA is strongly influenced by two factors:

the probabilistic model construction (i.e., the Bayesian network) and the computational
cost of fitness evaluations. In industrial optimization tasks, the time complexity of BOA
is mainly associated with the latter factor. Thus, research has been conducted to reduce
the number of expensive fitness evaluations. Beside the abovementioned EETs, other
techniques have also been proposed specifically for BOA. Pelikan et al. [26] applied fitness
inheritance as an evaluation relaxation strategy (ERS) to improve the performance of
BOA. This ERS helps BOA reduce significantly the number of actual fitness evaluations
by allowing new offspring to inherit fitness values of individuals from previous generations.
Lima et al. [27] designed a substructural local search to investigate candidate solutions’
neighborhoods whose topologies are defined by dependencies encoded in the Bayesian
networks. As a result, BOA incorporated with the local search explores search spaces
more efficiently and thus uses smaller amounts of costly fitness evaluations.
To improve the performance of the standard BOA, this paper proposes a mechanism

to identify when and which individuals should be estimated or evaluated by using the
concept of entropy [28]. Luong et al. [29, 30] proposed a similar entropy-based ERS, but
the research focused on the effects of a small promising portion of the population, called
the elite set. In this paper, we consider and investigate the effects of both the selected set
and the unselected set (i.e., whole population) on entropy computation. The remaining
of this paper is organized as follows. In Section 2, we briefly describe the standard BOA
procedures and some of its related evaluation relaxation methods. Section 3 reviews the
formula for entropy computation of populations in BOA. Section 4 proposes our approach
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using the entropy concept for evaluation relaxation. We demonstrate experiments and
results in Section 5. Finally, Section 6 concludes this paper, and the prospects for future
work are also discussed.

2. Related Work.

2.1. Original BOA framework. Bayesian optimization algorithm (BOA) belongs to
the class of multivariate EDAs. Instead of using traditional variation operators (i.e.,
crossover, mutation), we build Bayesian networks [31] to model high-order interactions
among variables and consequently sample the constructed model to generate new off-
spring. It combines the prior information about the structure of the problem and the set
of promising solutions found so far to estimate their distribution. The underlying proba-
bility distribution is estimated as the product of conditional probability distributions of
each variable Xi given its parents Πi.

p(X0, X1, . . . , Xn−1) =
n−1∏
i=0

p(Xi|Πi) (1)

where (X0, X1, . . . , Xn−1) is the vector of random variables, Πi is the set of parent nodes of
Xi, and p(Xi|Πi) is the conditional probability of Xi given its parents Πi [11]. Moreover,
n denotes the problem size. The framework of standard BOA is described in Algorithm
1.

Algorithm 1 Bayesian optimization algorithm

1: Set t:= 0.
2: Generate the first population P(0) at random.
3: Evaluate P(0).
4: while termination criterion is not met do
5: Select a parents set S(t) from P(t).
6: Construct the Bayesian network B(t) to model the selected set of parents S(t).
7: Generate offspring O(t) by sampling from B(t).
8: Evaluate O(t).
9: Replace some solutions of P(t) with O(t) to create new population P(t+ 1).
10: t:= t+ 1.
11: end while

Constructing Bayesian networks from the selected promising individuals requires two
procedures: learning the structure (i.e., conditional (in)dependencies) and learning the
parameters (i.e., conditional probabilities). Usually, a greedy search algorithm is employed
to build an acceptable Bayesian network for BOA [32]. After that, parameters for the
constructed structure can be computed as the relative frequencies of all the possible
building blocks described by the decomposition of the networks [32]. Each node of the
Bayesian network stores its corresponding conditional probability table having information
about the relationship of that node with its parent nodes.

After modeling the Bayesian network, we would sample it to produce new candidate
solutions having similar characteristics of the learned data. Variables of an offspring are
generated following the Probabilistic Logic Sampling mechanism that the values of parent
variables Πi are calculated before generating children variables Xi [5].
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2.2. Evaluation relaxation in BOA. This paper handles the problem of efficiency
enhancement in EDAs. We concentrate on evaluation relaxation methods. In evaluation
relaxation techniques [33], an accurate, but expensive fitness function is replaced by a less
accurate, but inexpensive surrogate function. Therefore, we can reduce the total number
of costly fitness evaluations.
In this paper, we utilize the fitness model proposed by Pelikan et al. [26]. Their method-

ology uses the probabilistic model to construct a surrogate fitness model. The fitness
values of some individuals are estimated based on the surrogate model. Only a certain
proportion of new offspring are evaluated by the actual evaluation function in each itera-
tion. All the individuals evaluated by the actual fitness function are used to estimate the
coefficients of the surrogate model. The fitness values of the individual in BOA can be
estimated as

fest(X0, X1, . . . , Xn−1) = f̄ +
n−1∑
i=0

(
f̄(Xi|Πi)− f̄(Πi)

)
, (2)

where f̄ denotes the average fitness of all individuals used to construct model, f̄(Xi|Πi)
denotes the average fitness value of solutions with Xi and Πi, and f̄(Πi) is the average of
all solutions with Πi [26].
The above surrogate model has a substantial speedup on several additively separable

problems of bounded difficulty. However, it requires a larger population size; when the
problem size increases, the speedup slows down. In this paper, we also employ this
surrogate model to estimate the fitness values of candidate solutions. But our contribution
lies in designing a mechanism to determine whether the fitness value of an individual
should be evaluated (by the actual function) or be estimated (by the surrogate model).
In the decision-making process, we use a theory of conditional entropy measurement
presented in Section 3.

3. Conditional Entropy Measurement. In simple case, the classical entropy [28] of
an observation with discrete probability distribution pi is defined as:

H(X) = −
∑
i

pi log(pi).

The population entropy is a measure of the diversity of the evolutionary population. Thus,
the entropy can determine the rate of convergence of the current population. Extending
from the original entropy measure, Ocenasek [34] derived the entropy H(X) of a certain
population in BOA as the sum of local conditional entropies according to the factorization
of the probability distribution p(X) in Equation (1):

H(X) =
n−1∑
i=0

H(Xi|Πi) =
n−1∑
i=0

∑
πi∈Pi

p(πi)H(Xi|Πi = πi)

= −
n−1∑
i=0

∑
πi∈Pi

p(πi)
∑
xi∈Xi

p(xi|πi) log2 p(xi|πi)

= −
n−1∑
i=0

∑
πi∈Pi

∑
xi∈Xi

p(xi, πi) log2 p(xi|πi)

= −
n−1∑
i=0

∑
πi∈Pi

∑
xi∈Xi

(
m(xi, πi)

N

)
log2

(
m(xi, πi)

m(πi)

)
(3)
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where Pi denotes the set of possible vectors that can be assigned to Πi, Xi is the set
of all possible values of Xi, m(xi, πi) is the number of solutions having parameter Xi

set to xi and parameters Πi set to πi, m(πi) counts the solutions with Πi set to πi, and
N is the number of individuals in the population. We can compute the entropy value
of some particular portions of the population with respect to the current network by
using Equation (3). Figure 1 demonstrates an example of a Bayesian network and its
corresponding entropy computation.

The research in [34] showed that the entropy values of the population can be used
to determine when to terminate BOA. In this paper, we use Equation (3) to compute
the entropy values of some particular portions of the BOA population. We compute the
entropy value of parents set (i.e., the set of selected individuals on which the Bayesian
networks are built) and unselected set (i.e., the set of individuals which would be discarded
due to low fitness values) in each iteration. Figure 2 shows how the entropy values of the
unselected set and the selected set (parents set) vary during the optimization progress.
We perform the experiment with a BOA solving an Order-5 separable deceptive problem
(γ = 1.0) of 90 bits (see Section 5.1). The entropy of the unselected set monotonically
reduces except for the last generation. The entropy of the parents set decreases after
every generation and then reaches its minimum value ‘0’. Moreover, the parents set has
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H(X) = H(S1) +H(S2|S1) +H(S3) +H(S4) +H(S5|S3,S4) +H(S6|S3,S5) +H(S7)

Figure 1. A Bayesian network and conditional entropy measurement
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Figure 2. Entropies in a BOA solving an order-5 separable deceptive prob-
lem (γ = 1.0) of 90 bits
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entropy values smaller than those of the unselected set at all the generations. This proves
that the parents set is more stable than the unselected set in terms of entropy.
Pelikan et al. [26] introduced an effective surrogate fitness model in order to improve

the performance of standard BOA in terms of reducing the number of fitness evaluations.
In relation to this, we propose a new evaluation relaxation strategy (ERS) based on the
entropy measurement for BOA in the next section.

4. BOA with Conditional Entropy Measurement-Based Evaluation Relaxation
Strategy. The idea behind this approach is to recognize whether a new offspring belongs
to the better half or the worse half of the population, using the concept of entropy mea-
surement. In other words, it needs to judge whether a newly generated individual should
be estimated by a surrogate model or be evaluated by the actual fitness function. To
this end, each offspring is put into the better half and the worse half of the population,
and then compute their corresponding entropy values, respectively. It is clear that a new
offspring is associated with the set having the smaller new entropy value. If the offspring
is similar to candidate solutions of the better set, we can estimate its fitness value by the
surrogate model. If it belongs to the worse set, it should be evaluated by the actual fitness
function. Algorithm 2 outlines the overall procedures of our algorithm, termed en-BOA.

Algorithm 2 BOA with conditional entropy measurement-based ERS(en-BOA)

1: Set t:= 0.
2: Generate the first population P(0) at random.
3: Evaluate P(0).
4: while termination criterion is not met do
5: Divide population P(t) into two sub-populations: selected set Ps and unselected

set Pu.
6: Learn a Bayesian network B(t) to model the selected set Ps.
7: Compute entropies Hs(t) and Hu(t) of Ps and Pu, using Equation (3).
8: Generate offspring O(t) by sampling from B(t).
9: if Hs(t) ≤ δ ∗ Hs(0) then
10: Consider each new offspring ϑ of O(t).
11: Put ϑ into Ps and Pu to create P ′

s and P ′
u.

12: Compute H′
s(t) and H′

u(t) of P ′
s and P ′

u, using Equation (3).
13: if H′

s(t) ≤ H′
u(t) then

14: Estimate ϑ by using Equation (2).
15: else
16: Evaluate ϑ.
17: end if
18: else
19: Evaluate O(t).
20: end if
21: Replace some solutions of P(t) with O(t) to create P(t+ 1).
22: t:= t+ 1.
23: end while

It starts with evaluating all individuals (of the initial population) using the actual fitness
function. We divide the population into two sets: the parents set Ps and the unselected
set Pu. Let Hs(0) and Hs(t) be entropy values of Ps at the initial generation and tth

generation, respectively. The parameter δ, taking a value in [0, 1], is considered as the
starting point to initiate the proposed ERS. Thus, the standard BOA is run unlessHs(t) ≤
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δ ∗ Hs(0); after that, our en-BOA starts to operate. Notice that if our ERS is applied
earlier, the estimation model may not be accurate enough to give a good approximation.
On the contrary, if we apply our ERS nearly at the end of the optimization progress, the
minimal number of evaluations cannot be achieved. As for different problems, we need to
assign different appropriate values to the starting point δ. More details on this issue is
investigated in the next section.

Evaluating the fitness of a candidate solution is often a very expensive task; it is
economical if we are able to replace the fitness function with a cheaper approximate
function. In this work, the fitness inheritance in Equation (2) is used to estimate the
fitness values of individuals. Whether a new offspring ϑ is estimated or evaluated depends
on the entropy values H′

s(t) and H′
u(t), which are obtained after putting ϑ into the

parents set Ps and the unselected set Pu. The set having a smaller entropy value would
be considered more stable; thus, the offspring should belong to that set. Here, all the
information needed for computing the conditional entropy using Equation (3) is already
obtained in the Bayesian network construction phase. If H′

s(t) is smaller than H′
u(t), the

individual (ϑ) is estimated; otherwise, it is evaluated. These procedures iterate until the
population converges.

5. Experiments and Results.

5.1. Test problems. To validate the effectiveness of our method, we perform experi-
ments on some widely-known test problems: OneMax, Separable Deceptive and Nonsepa-
rable Deceptive.

In the OneMax problem, the fitness value is defined as the sum of all bit values:

fonemax(X0, X1, . . . , Xn−1) =
n−1∑
i=0

Xi, (4)

where (X0, X1, . . . , Xn−1) denotes the string of n bits. OneMax is a simple problem
whose optimal solution is a string of all 1s. Since the fitness contribution of each bit is
independent, most algorithms can work well on this problem; thus, any linkage learning
is not required for solving the problem.

Prior to describing the deceptive problems, we need to introduce a trap function defined
as follows:

ftrap k(u) =

{
k if u = k,
γ · (k − 1− u) otherwise,

(5)

where u is the number of 1s in the input of k bits, and γ ∈
(
0, k

k−1

)
is the noise-to-signal

ratio. Note that the problem becomes harder as γ goes to k
k−1

.
Separable deceptive problem is formed by disjointly concatenating several trap functions

of order k; thus, the values of all the trap functions are added together to obtain the overall
fitness value. The problem is formulated as

fdec k(X0, · · · , Xn−1) =

n
k
−1∑

i=0

ftrap k(Xki, Xki+1, · · · , Xki+k−1). (6)

It has one global optimum at a string of all 1s. Any algorithm can hardly solve this
problem without performing a proper decomposition of order k.

Nonseparable deceptive problem also consists of order-k trap functions, but each trap
function is laid overlapped by m bits with its direct left and right adjacent functions



6378 H. T. T. NGUYEN, H. N. LUONG AND C. W. AHN

(m < k). It can be formulated as follows with d = k −m:

foverlap m k(X0, · · · , Xn−1) =

n−k
d∑

i=0

ftrap k(Xdi, Xdi+1, · · · , Xdi+k−1). (7)

The optimum is a string of all 1s. This problem becomes even harder than the previous
ones due to its complicated structure.

5.2. Experiments for the starting points of ERS. The juncture of applying our
proposed ERS depends on each problem. In relation to this, we test en-BOA with different
starting points of ERS on all the benchmark problems. Specifically, the experiments are
conducted in terms of entropy reduction.
Let Hs(0) and Hs(t) be the entropy values of the parents set (i.e., selected set) at the

initial iteration and at the tth iteration, respectively. The starting point for our en-BOA
is defined as ρ = 1 − δ, where the parameter ρ indicates the percentage of reduction in
the initial entropy value before applying our ERS to BOA. If ρ is set at 0%, our ERS
starts at the beginning of the optimization process. When parameter ρ is 100%, en-BOA
becomes the standard BOA, which means no ERS is applied.
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(b) Order-5 separable deceptive problem
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(c) Order-3 separable deceptive problem
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Figure 3. Performance of en-BOA with different starting points
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Empirical results are demonstrated in Figure 3, exhibiting that the en-BOA achieves
the minimal number of evaluations when ρ is 95% for OneMax problem, and 50% for the
deceptive problems. At such junctures, the structure of Bayesian network has become
robust enough for operating ERS and computing the surrogate model.

5.3. Bisection method for experiments. We use a bisection method as the test frame-
work to find the minimal population size for each test case. Bisection will be run many
times to obtain sufficient statistical results. Every bisection begins by running an algo-
rithm (BOA or en-BOA) with a small population size as the initial lower bound. After
each run, if the algorithm cannot find the optimal solution, the current population size
will be the new lower bound, and we start again with a double population size. If the
optimum is reached, the current population size will be the new upper bound, and then
the algorithm starts again with the population size as the middle point of lower bound
and upper bound. Bisection terminates when the algorithm converges to the optimum
under the condition that the distance between the lower bound and upper bound is small
enough so that any change in the current population size would not yield significant dif-
ferences. Our bisection method is described in Algorithm 3. Truncation selection is used
to select the better half of the population as the parents set (i.e., threshold = 50%). New
offspring replace the worse half of the previous generation to construct the new popula-
tion. The optimization process terminates when 99% of all individuals in the population
are the same (i.e., the population converges to a specific point) or the maximal generation
is reached.

Algorithm 3 Bisection method for supplying the minimum population size

1: lower ← initial lower bound
2: upper ← initial upper bound
3: current ← initial population size
4: while true do
5: success ← current population size can find the optimum?
6: if success = false then
7: lower ← current
8: current← current ∗ 2
9: else
10: upper ← current
11: if |upper − lower| ≥ current

10
then

12: current← upper+lower
2

13: else
14: break
15: end if
16: end if
17: end while
18: return current

5.4. Empirical results and discussion. The proposed en-BOA is compared with the
traditional BOA on benchmark problems of different sizes: 30, 60, 90, 120, 150 bits for
OneMax and Separable deceptive problems, and 31, 61, 91, 121, 151 bits for Nonseparable
deceptive problems. The population size and the number of fitness evaluations required for
discovering the optimum are used as the performance measures. All results are averaged
over 50 independent runs on our bisection test framework.
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Figure 4. Population size and number of evaluations required in solving
the OneMax problems

Table 1. Statistical comparison of the population size for the OneMax problem

Size 30 60 90 120 150

BOA 31.4 47.5 67.1 77.5 90.2
σ 7.28 7.74 15.5 14.7 15.9

en-BOA 28.4 42.4 60.4 74.9 82.9
σ 7.38 7.54 10.18 9.36 14.2

Statistical t-test: (BOA and en-BOA)
p-value 0.2 0.0156 0.0583 0.4302 0.0561

†Significance by a paired, two-tailed test with α = 0.01.

Table 2. Statistical comparison of the number of evaluations for the One-
Max problem

Size 30 60 90 120 150

BOA 240.7 512.4 877 1166.4 1470.5
σ 55.6 75.2 191.7 204.7 235.2

en-BOA 196.5 398.2 690.9 988.7 1235.7
σ 70.0 84.3 121.9 99.9 193.4

Statistical t-test: (BOA and en-BOA)
p-value 0.0348 1.86E-5† 7.69E-5† 2.38E-4† 8.37E-5†

†Significance by a paired, two-tailed test with α = 0.01.

Figure 4, Table 1 and Table 2 show the performance comparison results between the
existing BOA and our en-BOA when solving OneMax problems. While the population
sizes required by en-BOA are similar to those of BOA, the efficiency of BOA is improved
when combined with our entropy measurement-based ERS. On average, the en-BOA saves
18.5% of the number of fitness evaluations of BOA.
Figure 5, Table 3 and Table 4 compare the performances of BOA and en-BOA on

Order-5 separable deceptive problems with γ = 1.0. While our algorithm does not require
any larger population size, the number of fitness evaluations of en-BOA is considerably
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Figure 5. Population size and number of evaluations required in solving
the Order-5 separable deceptive problems with γ = 1.0

Table 3. Statistical comparison of the population size for the Order-5
separable deceptive problems with γ = 1.0

Size 30 60 90 120 150

BOA 999.1 2392.8 4404.6 6257.5 8489.6
σ 163.4 279 461.1 1020.2 1016.6

en-BOA 1131.1 2498.6 4402 6146.9 8832.5
σ 243.5 412.1 622.6 725.5 2007.3

Statistical t-test: (BOA and en-BOA)
p-value 0.01999 0.2258 0.9852 0.6263 0.3735

†Significance by a paired, two-tailed test with α = 0.01.

Table 4. Statistical comparison of the number of evaluations for the
Order-5 separable deceptive problems with γ = 1.0

Size 30 60 90 120 150

BOA 11005.4 32496.4 66453.1 105245 155950.4
σ 1519.4 3771.1 5118.9 13198.5 15729.4

en-BOA 7025.3 20525.5 41828.9 65356.5 103402.1
σ 1551.2 2932.5 4663.6 6286.7 19786.8

Statistical t-test: (BOA and en-BOA)
p-value 8.09E-12† 1.31E-15† 3.94E-19† 9.12E-15† 6.00E-13†

†Significance by a paired, two-tailed test with α = 0.01.

smaller than that of BOA. Our proposed algorithm reduces 36% of the number of fitness
evaluations when compared with the standard BOA.

At this juncture, a set of problems with higher noise-to-signal ratio and more compli-
cated structure is considered. We wish to demonstrate that en-BOA can also speed up
BOA in such difficult conditions. We first examine the two algorithms on Order-3 separa-
ble deceptive problems with γ = 1.35. The performance of BOA and en-BOA is compared
in Figure 6. On average, en-BOA enlarges about 20% of population sizes of original BOA
but saves about 19.4% of the number of fitness evaluations. Additionally, Table 5 and
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Figure 6. Population size and number of evaluations required to solve the
Order-3 separable deceptive problems with γ = 1.35

Table 5. Statistical comparison of the population size for the Order-3
separable deceptive problems with γ = 1.35

Size 30 60 90 120 150

BOA 562.7 1196.5 1956.7 2768.9 3781.6
σ 57.7 146.3 274.7 383 515.7

en-BOA 770.6 1557.6 2368.4 3461.9 4500.933
σ 140.2 339.2 716.02 813.5 1572.7

Statistical t-test: (BOA and en-BOA)
p-value 4.09E-10† 1.54E-6† 4.7E-3† 8.65E-5† 0.2E-2†

†Significance by a paired, two-tailed test with α = 0.01.

Table 6. Statistical comparison of the number of evaluations for the
Order-3 separable deceptive problems with γ = 1.35

Size 30 60 90 120 150

BOA 6544.9 17884 33708.1 52852.7 78737.8
σ 708.5 1767.3 3816.7 6342 9321.8

en-BOA 5176.8 14469.4 26185.8 43560.2 69080
σ 1130.8 3172 6997.7 8945.7 18267.3

Statistical t-test: (BOA and en-BOA)
p-value 1.0E-5† 3.24E-6† 3.03E-6† 2.02E-5† 3.19E-7†

†Significance by a paired, two-tailed test with α = 0.01.

Table 6 prove that two algorithms, BOA and en-BOA, are significantly different at both
the population size and the number of fitness evaluations.
We then test two algorithms on Order-3 nonseparable deceptive problems with 1-bit

overlapping and γ = 1.35. Here, the problem structure is even more complicated than
the previous case because the subproblems cannot be decomposed separately due to their
overlapping decision variables. Figure 7 shows that our method requires population sizes
that are 18% larger than the population sizes of the standard BOA. Nevertheless, our
en-BOA reduces about 24% of the number of fitness evaluations on average. BOA and
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Figure 7. Population size and number of evaluations for solving the Order-
3 nonseparable deceptive problems with 1-bit overlapping and γ = 1.35

Table 7. Statistical comparison of the population size for the Order-3
nonseparable deceptive problems with 1-bit overlapping and γ = 1.35

Size 31 61 91 121 151

BOA 1069.7 2373.6 3777 5242.2 6700.7
σ 190.5 301.2 487.1 592.84 712.3

en-BOA 1298 2669.3 4667.6 6797.2 8522.1
σ 253.87 579.7 1125.2 6741.9 2229.5

Statistical t-test: (BOA and en-BOA)
p-value 3.85E-6† 1.69E-3† 1.02E-6† 5.43E-8† 3.69E-7†

†Significance by a paired, two-tailed test with α = 0.01.

Table 8. Statistical comparison of the number of evaluations for the
Order-3 nonseparable deceptive problems with 1-bit overlapping and γ =
1.35

Size 31 61 91 121 151

BOA 12043.3 35247.8 67208.5 105012.8 150419.9
σ 2238.4 4192.5 8759.0 10520.6 15290.2

en-BOA 9002 24770.6 50572.8 85213.8 119846
σ 1489.4 4693.7 9332.8 18322.2 25682.3

Statistical t-test: (BOA and en-BOA)
p-value 8.39E-13† 1.68E-20† 1.44E-14† 8.94E-10† 6.98E-11†

†Significance by a paired, two-tailed test with α = 0.01.

en-BOA are also significantly different at both population sizing requirements and the
numbers of fitness evaluations (see Table 7 and Table 8).

Moreover, we also perform experiments to prove that estimating on the parents set is
better than estimating on the unselected set. In the proposed en-BOA algorithm, we
estimate the fitness of an individual if it is judged to belong to the parents set; in other
case, it is evaluated. On the contrary, we carry out the reverse experiments such that an
individual which is judged to belong to the unselected set is estimated; in other case, we
evaluate it. This method is called bad-enBOA. The results of these experiments are shown
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(b) Order-5 separable deceptive problem with γ =
1.0
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(c) Order-3 separable deceptive problem with γ =
1.35
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(d) Order-3 nonseparable deceptive problem with
1-bit overlapping and γ = 1.35

Figure 8. Number of evaluations required on the three different methods

Table 9. Statistical comparison for the three different methods on the
OneMax problems

Size 30 60 90 120 150

BOA 240.7 512.4 877 1166.4 1470.5

bad-enBOA 2709.2 5459.7 8097.5 10641.6 12880.7

en-BOA 196.5 398.2 690.9 988.7 1235.7
Statistical t-test: (BOA and bad-enBOA — BOA and en-BOA)

p-value 1 5.63E-19† 3.1E-27† 9.53E-28† 5.53E-21† 3.98E-27†

p-value 2 2.97E-19† 1.7E-27† 3.31E-28† 7.07E-22† 1.77E-27†
†Significance by a paired, two-tailed test with α = 0.01.

in Figure 8, Table 9, Table 10, Table 11 and Table 12. We compare the three methods,
BOA, en-BOA and bad-enBOA, in view of supporting that the estimation/approximation
based on the unselected set is not efficient. It is seen that the bad-enBOA is significantly
worse than the en-BOA in terms of the number of fitness evaluations on all the test cases.
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Table 10. Statistical comparison for the three different methods for the
Order-5 separable deceptive problems with γ = 1.0

Size 30 60 90 120 150

BOA 11005.4 32496.4 66453.1 105245 155950.4

bad-enBOA 10742.1 34838.3 65106.7 109033 149514.2

en-BOA 7025.3 20525.5 41828.9 65356.5 103402.1
Statistical t-test: (BOA and bad-enBOA — BOA and en-BOA)

p-value 1 0.53 0.02 0.48 0.23 0.07
p-value 2 8.36E-13† 4.11E-17† 4.26E-17† 1.39E-16 † 9.74E-10†

†Significance by a paired, two-tailed test with α = 0.01.

Table 11. Statistical comparison for the three different methods on the
Order-3 separable deceptive problems with γ = 1.35

Size 30 60 90 120 150

BOA 6544.9 17884 33708.1 52852.7 78737.8

bad-enBOA 10443.2 18081 34294 55429.9 76110

en-BOA 5176.8 14469.4 26185.8 43560.2 69080
Statistical t-test: (BOA and bad-enBOA — BOA and en-BOA)

p-value 1 1.32E-34† 0.69 0.50 0.14 0.34
p-value 2 1.1E-31† 2.44E-6† 2.07E-7† 3.76E-7† 7.294E-4†

†Significance by a paired, two-tailed test with α = 0.01.

Table 12. Statistical comparison for the three different methods on the
Order-3 nonseparable deceptive problems with 1-bit overlapping and γ =
1.35

Size 31 61 91 121 151

BOA 12043.3 35247.8 67208.5 105012.8 150419.9

bad-enBOA 12807.5 37169.6 68178.2 111929 145226.2

en-BOA 9002 24770.6 50572.8 85213.8 119846
Statistical t-test: (BOA and bad-enBOA — BOA and en-BOA)

p-value 1 0.34 0.07 0.3 0.02 0.06
p-value 2 3.96E-11† 7.14E-15† 2.6E-11† 2.61E-10† 5.00E-7†

†Significance by a paired, two-tailed test with α = 0.01.

In this paper, we have tested a large class of important benchmark problems from the
simple OneMax and the linear (i.e., separable) deceptive to the nonlinear (i.e., nonsep-
arable) deceptive problems. Additionally, the efficiency of our method has been verified
by the statistical comparison of performances. From the obtained results, we can claim
that our approach, en-BOA, achieves a substantial reduction in the number of fitness
evaluations on all the test problems. Moreover, en-BOA has not imposed any larger pop-
ulation size requirements on OneMax and general deceptive problems. Although en-BOA
has required slightly larger population sizes when the noise-to-signal ratio of deceptive
problems increases and their structure becomes more complicated, it has not affected
the performance of en-BOA. We conclude that the en-BOA considerably accelerates the
original BOA in discovering the optimal solution on both simple and difficult problems.
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6. Conclusion and Future Work. In real-world optimization, it is essential to improve
the efficiency of evolutionary algorithms by means of reducing the number of fitness
evaluations. To this end, computationally efficient models can be constructed for fitness
approximation to assist the optimizers. However, if the fitness values of all individuals are
approximated, the estimation errors will be accumulated over time, and the true optimum
cannot be reached. Thus, when approximate models are involved in optimization, it is
important to determine which individuals should be evaluated using the actual fitness
function to guarantee faster and correct convergence. This paper proposed an evaluation
relaxation strategy for BOA by using the entropy measurement. The variation in entropy
values caused by the appearance of a new individual in the population is used to identify
whether that solution should be evaluated by the actual function or not. The fitness values
of candidate solutions which need not to be evaluated are estimated by a surrogate model.
Conceptually, this method is done by examining whether a newly generated solution is
similar to the selected solutions of the previous generation.
Experimental results proved affirmatively that en-BOA significantly improves the per-

formance of the standard approach. From the obtained results, we can claim that en-BOA
achieves a substantial reduction in the number of fitness evaluations on all test problems.
In other words, our algorithm works efficiently on both simple and difficult problems.
Additionally, our en-BOA does not impose any larger population requirements on the
OneMax and the deceptive problems with moderate difficulties. It enlarges slightly the
population size on the deceptive problems with higher noise-to-signal ratios and more
complex structures. The chosen starting points for the test problems have been obtained
by experiments; generally, different problems have their own appropriate starting points.
In the future work, we will investigate the reason of the mentioned difference in the

starting points of our ERS and develop a firm theory to determine a suitable starting point
for a wider class of optimization problems. We will also investigate the effectiveness of our
method with other estimation models and on different types of evolutionary algorithms.
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