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Abstract. In this study, a fuzzy time series-Markov chain approach for analyzing the
linguistic or a small sample time series data is proposed to further enhance the predictive
accuracy. By transferring fuzzy time series data to the fuzzy logic group, and using the
obtained fuzzy logic group to derive a Markov chain transition matrix, a set of adjusted
enrollment forecasting values can be obtained with the smallest forecasting error of various
fuzzy time series methods. Finally, an illustrated example for exchange rate forecasting is
used to verify the effectiveness of the proposed model and confirms the potential benefits
of the proposed approach with a very small MAPE.
Keywords: Fuzzy time series model, Markov chain, Fuzzy logic group, Exchange rate

1. Introduction. Forecasting methodology is most important and relevant in the field
of management, including that for financial forecasting, production demand and supply
forecasting, technology forecasting, and so on. In international economics forecasting, ex-
plicating the behavior of nominal exchange rates has been a central theme in economists’
work when executing the notoriously challenging task of modeling exchange rates, since
the celebrated work of Meese and Rogoff [1] who found that the fundamentals-based ex-
change rate models systematically fail to deliver better forecasts than a simple random
walk at horizons of up to one year. Subsequent studies by Engel and Hamilton [2], who
modeled exchange rates alternating between appreciation and depreciation regimes in a
Markovian fashion, while considering more recent data, led to a model that no longer
beats the random walk. From the above analysis, it is evident that, normally, we cannot
directly use the established model for forecasting because there may be some additional
causes that are not considered in the collected historical data. That is, if we applied
the collected data in a Group A to construct a forecasting model for extrapolation, then,
because of its similar structure, and when all conditions remain the same, we could use
Group A for forecasting. However, once the trend of future changes in Group B is deter-
mined, the derived model cannot be used for forecasting because we have not collected
sufficient factors to be incorporated in the forecasting model. For such an insufficient fac-
tors problem, fuzzy forecasting models such as the fuzzy regression model and fuzzy time
series model are considered a solution. The fuzzy time series model is applied as a valid
approach for forecasting the future value in a situation where neither a trend is viewed
nor a pattern in variations of time series is visualized and, moreover, the information is
incomplete and ambiguous [3].
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The fuzzy time series model was first proposed by Song and Chissom [4,5], who applied
the concept of fuzzy logic to develop the foundation of fuzzy time series using time invari-
ant and time variant models. Thereafter, the fuzzy time series model had drawn much
attention to the researchers. For model modifications, Chen [6] focused on the operator
used in the model and simplified the arithmetic calculations to improve the composition
operations and then introduced fuzzy logical groups to improve the forecast; Huarng [7]
made a study of the effective length of intervals to improve the forecasting; Tsaur et al.
[8] made an analysis of fuzzy relations in fuzzy time series on the basis of entropy and
used it to determine the minimum value of an invariant time index t to minimize errors in
the enrollments forecasting; Cheng et al. [9] introduced a novel multiple-attribute fuzzy
time series method based on fuzzy clustering in which fuzzy clustering was integrated in
the processes of fuzzy time series to partition datasets objectively and enable process-
ing of multiple attributes. For forecasting with applications, Yu [10] proposed a weighted
method for forecasting the TAIEX to tackle two issues, recurrence and weighting, in fuzzy
time-series forecasting; Huarng and Yu [11] applied a back propagation neural network to
handle nonlinear forecasting problems. Chen et al. [12] presented high-order fuzzy time
series based on a multi-period adaptation model for forecasting stock markets. Chen and
Hwang [13], Wang and Chen [14], and Lee et al. [15] proposed methods for temperature
prediction and TAIFEX forecasting. Since the developing trend of the exchange rate is
affected by variant or unknown factors, it is not realistic to establish a single forecasting
model that can take all the unknown factors into account. As we know, the Markov pro-
cess has better performance in exchange rates forecasting [16]. We inquire further into the
advantage of connecting the Markov process with the fuzzy time series model, following
which we can derive the fuzzy time series-Markov model to induce the characteristics of
the exchange rate in international economics. Thus, with the hybrid model, the more the
information pertaining to the system dynamics is induced, the better the forecasting will
be. We exploit the advantage of the fuzzy logic relationship to group the collected time
data so as to reduce the effect of fluctuated values, and we incorporate the advantage of
the Markov chain [17] stochastic analysis process to derive the outcomes with the largest
probability. Furthermore, the statistics of the exchange rate from Jan. 2006 to Aug. 2009
is used to verify the effectiveness of the proposed model. The experimental results show
that the proposed model has proved an effective tool in the prediction of the trend of the
exchange rate.
This paper is organized as follows. Section 2 introduces the concept of the fuzzy time

series model. Section 3 proposes a fuzzy time series-Markov chain model, for which we
take an illustration forecasting for the enrollment at the University of Alabama with the
smallest forecasting error when compared with the other models. Section 4 presents the
forecasting for the exchange rate using the proposed model, and Section 5 summarizes
the conclusion.

2. Basic Concept of Fuzzy Time Series. Song and Chissom first proposed the def-
initions of fuzzy time series in 1993 [4]. Let U be the universe of discourse with U =
{u1, u2, . . ., un} in which a fuzzy set Ai (i = 1, 2, . . ., n) is defined as follows.

A1 = fAi(u1)/u1 + fAi(u2)/u1 + · · ·+ fAi(un)/un (1)

where fAi is the membership function of the fuzzy set Ai, uk is an element of fuzzy set
Ai, and fAi(uk) is the membership degree of uk belonging to Ai, k = 1, 2, . . ., n.

Definition 2.1. Let the universe of discourse Y (t) (t = . . ., 0, 1, 2, . . ., n, . . .) be a subset
of R defined by the fuzzy set Ai. If F (t) consists of Ai (i = 1, 2, . . ., n), F (t) is defined as
a fuzzy time series on Y (t) (t = . . ., 0, 1, 2, . . ., n, . . .).
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Definition 2.2. Suppose that F (t) is caused by F (t − 1), then the relation of the first-
order model of F (t) can be expressed as F (t) = F (t− 1) ◦R(t, t− 1), where R(t, t− 1) is
the relation matrix to describe the fuzzy relationship between F (t − 1) and F (t), and ‘◦’
is the max-min operator.

Let the relationship between F (t) and F (t − 1) be denoted by F (t − 1) → F (t),
(t = . . ., 0, 1, 2, . . ., n, . . .). Then, the fuzzy logical relationship between F (t) and F (t− 1)
is defined as follows.

Definition 2.3. Suppose F (t) = Ai is caused by F (t − 1) = Aj, then the fuzzy logical
relationship is defined as Ai → Aj.

If there are fuzzy logical relationships obtained from state A2, then a transition is made
to another state Aj, j= 1, 2,. . . , n, as A2 → A3, A2 → A2, . . . , A2 → A1; hence, the fuzzy
logical relationships are grouped into a fuzzy logical relationship group [4] as

A2 → A1, A2, A3, (2)

Although, various models have been proposed to establish fuzzy relationships, Chen’s
fuzzy logical relationship group [6] approach is easy to work with and is being used in our
proposed model. Therefore, Song and Chissom [4] have proposed the following procedure
for solving the fuzzy time series model:

Step 1. Define the universe of discourse U for the historical data. When defining the
universe of discourse, the minimum data and the maximum data of given historical data
are obtained as Dmin and Dmax, respectively. On the basis of Dmin and Dmax, we can
define the universal discourse U as [Dmin −D1, Dmax +D2] where D1 and D2 are proper
positive numbers.

Step 2. Partition universal discourse U into several equal intervals. Let the universal
discourse U be partitioned into n equal intervals; the difference between two successive
intervals can be defined as ` as follows:

` = [(Dmax +D2)− (Dmin −D1)]/n (3)

Each interval is obtained as u1 = [Dmin−D1, Dmin−D1+`], u2 = [Dmin−D1+`,Dmin−
D1 + 2`], . . ., un = [Dmin −D1 + (n− 1)`,Dmin −D1 + n`].

Step 3. Define fuzzy sets on the universe of discourse U . There is no restriction on
determining how many linguistic variables can be fuzzy sets. Thus, the “enrollment”
can be described by the fuzzy sets of A1 = (not many), A2 = (not too many), A3 =
(many), A4 = (many many), A5 = (very many), A6 = (too many), A7 = (too many
many). For simplicity, each fuzzy set Ai (i = 1, 2, . . . , 7) is defined on 7 intervals, which
are u1 = [d1, d2], u2 = [d2, d3], u3 = [d3, d4], u4 = [d4, d5], . . ., u7 = [d7, d8]; thus, the fuzzy
sets A1, A2, . . ., A7 are defined as follows:

A1 = {1/u1, 0.5/u2, 0/u3, 0/u4, 0/u5, 0/u6, 0/u7},
A2 = {0.5/u1, 1/u2, 0.5/u3, 0/u4, 0/u5, 0/u6, 0/u7},
A3 = {0/u1, 0.5/u2, 1/u3, 0.5/u4, 0/u5, 0/u6, 0/u7},
A4 = {0/u1, 0/u2, 0.5/u3, 1/u4, 0.5/u5, 0/u6, 0/u7},
A5 = {0/u1, 0/u2, 0/u3, 0.5/u4, 1/u5, 0.5/u6, 0/u7},
A6 = {0/u1, 0/u2, 0/u3, 0/u4, 0.5/u5, 1/u6, 0.5/u7},
A7 = {0/u1, 0/u2, 0/u3, 0/u4, 0/u5, 0.5/u6, 1/u7}.
Step 4. Fuzzify the historical data. This step aims to find an equivalent fuzzy set for

each input data. The used method is to define a cut set for each Ai (i = 1, . . ., 7). If the
collected time series data belongs to an interval ui, then it is fuzzified to the fuzzy set Ai.

Step 5. Determine fuzzy logical relationship group. By the Definition 2.3, the fuzzy
logical relationship group can be easily obtained.
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Step 6. Calculate the forecasted outputs. If F (t− 1) = Aj, the forecasting of F (t) is
conducted on the basis of the following rules.
Rule 1: If the fuzzy logical relationship group of Aj is empty (i.e., Aj → Ø), then the

forecasting of F (t) is mj, which is the midpoint of interval uj:

F (t) = mj. (4)

Rule 2: If the fuzzy logical relationship group of Aj is one-to-one (i.e., Aj → Ak,
j, k = 1, 2, . . ., 7), then the forecasting of F (t) is mk, the midpoint of interval uk:

F (t) = mk. (5)

Rule 3: If the fuzzy logical relationship group of Aj is one-to-many (i.e., Aj → A1, A3,
A5, j = 1, 2, . . ., 7), then the forecasting of F (t) is equal to the arithmetic average of m1,
m3, m5, the midpoint of u1, u3, u5:

F (t) = (m1 +m2 +m3)/3. (6)

Fuzzy time series models have been applied and designed to forecast when the collected
data is linguistic or a smaller sample of data. However, it is still a developing method,
so that any innovation in improving the forecasting performance of the fuzzy time series
model is important. The more the information that relates to the system dynamics is
considered, the better the prediction will be. Therefore, the Markov chain using the
statistical method is incorporated with the fuzzy time series model to further enhance the
predicted accuracy.

3. Fuzzy Time Series-Markov Chain Model. The fuzzy time series-Markov chain
model is introduced by application and comparisons among previous research methods.

3.1. Fuzzy time series-Markov chain model. The forecasting procedure from Step 1
to Step 4 is the same as the conventional fuzzy time series model, and some descriptions
of my proposed method are defined from Step 5 to Step 7 below.
Step 5. Calculate the forecasted outputs. For a time series data, using the fuzzy logical

relationship group, we can induce some regular information and try to find out what is
the probability for the next state. Therefore, we can establish Markov state transition
matrices; n states are defined for each time step for the n fuzzy sets; thus the dimension
of the transition matrix is n× n. If state Ai makes a transition into state Aj and passes
another state Ak, i, j = 1, 2, . . ., n, then we can obtain the fuzzy logical relationship group.
The transition probability of state [17] is written as

Pij = (Mij)/Mi, i, j = 1, 2, . . ., n (7)

where Pij is the probability of transition from state Ai to Aj by one step, Mij is the
transition times from state Ai to Aj by one step, and Mi is the amount of data belonging
to the Ai state. Then, the transition probability matrix R of the state can be written as

R =


P11 P12 · · · P1n

P21 P22 · · · P2n
...

...
. . .

...
Pn1 Pn2 · · · Pnn

 (8)

For the matrix R, some definitions are described as follows [17]:

Definition 3.1. If Pij ≥ 0, then state Aj is accessible from state Ai.

Definition 3.2. If states Ai and Aj are accessible to each other, then Ai communicates
with Aj.
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The transition probability matrix R reflects the transition rules of the system. For
example, if the original data is located in the state A1, and makes a transition into state
Aj with probability P1j ≥ 0, j = 1, 2, . . ., n, then P11 + P12 + . . .+ P1n = 1.

If F (t− 1) = Ai, the process is defined to be in state Ai at time t− 1; then forecasting
of F (t) is conducted using the row vector [Pi1, Pi2, . . ., Pin]. The forecasting of F (t) is
equal to the weighted average of m1, m2, . . . , mn, the midpoint of u1, u2, . . . , un. The
expected forecasting values are obtained by the following Rules:

Rule 1: If the fuzzy logical relationship group of Ai is one-to-one (i.e., Ai → Ak, with
Pik = 1 and Pij = 0, j 6= k), then the forecasting of F (t) is mk, the midpoint of uk,
according to the equation F (t) = mk Pik = mk.

Rule 2: If the fuzzy logical relationship group of Aj is one-to-many (i.e., Aj → A1, A2,
. . . , An, j = 1, 2, . . ., n), when collected data Y (t − 1) at time t − 1 is in the state Aj,
then the forecasting of F (t) is equal as F (t) = m1 + Pj1 + m2Pj2 + . . . + mj−1Pj(j−1) +
Y (t− 1)Pjj +mj+1Pj(j+1) + . . .+mnPjn, where m1, m2, . . . , mj−1, mj+1, . . . , mn are the
midpoint of u1, u2, . . . , uj−1, uj+1, . . . , un, and mj is substituted for Y (t− 1) in order to
take more information from the state Aj at time t− 1.

Step 6. Adjust the tendency of the forecasting values. For any time series experiment,
a large sample size is always necessary. Therefore, under a smaller sample size when
modeling a fuzzy time series-Markov chain model, the derived Markov chain matrix is
usually biased, and some adjustments for the forecasting values are suggested to revise
the forecasting error. First, in a fuzzy logical relationship group where Ai communicates
with Ai and is one-to-many, if a larger state Aj is accessible from state Ai, i, j = 1, 2, . . ., n,
then the forecasting value for Aj is usually underestimated because the lower state values
are used for forecasting the value of Aj. On the other hand, an overestimated value should
be adjusted for the forecasting value Aj because a smaller state Aj is accessible from Ai,
i, j = 1, 2, . . ., n. Second, any transition that jumps more than two steps from one state
to another state will derive a change-point forecasting value, so that it is necessary to
make an adjustment to the forecasting value in order to obtain a smoother value. That
is, if the data happens in the state Ai, and then jumps forward to state Ai+k (k ≥ 2)
or jumps backward to state Ai−k (k ≥ 2), then it is necessary to adjust the trend of the
pre-obtained forecasting value in order to reduce the estimated error. The adjusting rule
for the forecasting value is described below.

Rule 1. If state Ai communicates with Ai, starting in state Ai at time t−1 as F (t−1) =
Ai, and makes an increasing transition into state Aj at time t, (i < j), then the adjusting
trend value Dt is defined as Dt1 = (`/2).

Rule 2. If state Ai communicates with Ai, starting in state Ai at time t−1 as F (t−1) =
Ai, and makes an increasing transition into state Aj at time t, (i < j), then the adjusting
trend value Dt is defined as Dt1 = −(`/2).

Rule 3. If the current state is in state Ai at time t − 1 as F (t − 1) = Ai, and makes
a jump-forward transition into state Ai+s at time t, (1 ≤ s ≤ n − i), then the adjusting
trend value Dt is defined as Dt2 = (`/2)s, (1 ≤ s ≤ n− i), where ` is the length that the
universal discourse U must be partitioned into as n equal intervals.

Rule 4. If the process is defined to be in state Ai at time t− 1 as F (t− 1) = Ai, then
makes a jump-backward transition into state Ai−v at time t, 1 ≤ v ≤ i, the adjusting
trend value Dt is defined as Dt2 = −(`/2)v, 1 ≤ v ≤ i.

Step 7. Obtain adjusted forecasting result. If the fuzzy logical relationship group of Ai

is one-to-many, and state Ai+1 is accessible from state Ai in which state Ai communicates
with Ai, then adjusted forecasting result F ′(t) can be obtained as F ′(t) = F (t) +Dt1 +
Dt2 = F (t)+(`/2)+(`/2). If the fuzzy logical relationship group of Ai is one-to-many, and
state Ai+1 is accessible from state Ai but state Ai does not communicate with Ai, then
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adjusted forecasting result F ′(t) can be obtained as F ′(t) = F (t) + Dt2 = F (t) + (`/2).
If the fuzzy logical relationship group of Ai is one-to-many, and state Ai−2 is accessible
from state Ai but state Ai does not communicate with Ai, then adjusted forecasting result
F ′(t) can be obtained as F ′(t) = F (t)−Dt2 = F (t)− (`/2)× 2 = F (t)− `.
When v is the jump step, the general form for forecasting result F ′(t) can be obtained

as

F ′(t) = F (t)±Dt1 ±Dt2 = F (t)± (`/2)± (`/2)v. (9)

Finally, the MAPE is used to measure the accuracy as a percentage as follows.

MAPE =
1

n

∑n

t=1

|Y (t)− F ′(t)|
Y (t)

× 100% (10)

3.2. Enrollment forecasting. The proposed model for forecasting the enrollment at
the University of Alabama [4] is described in this subsection by the following steps.
Step 1. Define universe of discourse U and partition it into several equal-length in-

tervals. The collected data is shown in the second column of Table 1; we have the
enrollments of the university from 1971 to 1992 with Dmin = 13055 and Dmax = 19337.
We choose D1 = 55 and D2 = 663. Thus, U = [13000, 20000]. U is divided into 7 intervals
with u1 = [13000, 14000], u2 = [14000, 15000], u3 = [15000, 16000], u4 = [16000, 17000],
u5 = [17000, 18000], u6 = [18000, 19000] and u7 = [19000, 20000].
Step 2. Define fuzzy sets on the universe U . The step has the same defined fuzzy sets

as in Section 2 proposed by S&C’s model.
Step 3. Fuzzify the historical data. The equivalent fuzzy sets to each year’s enrollment

are shown in Table 1 and each fuzzy set has 7 elements.
Step 4. Determine the fuzzy logical relationship group. The fuzzy logical relationship

group is obtained as shown in Table 2.

Table 1. The forecasted values

Year
Enrollment

data
Fuzzy

enrollment
Year

Enrollment
data

Fuzzy
enrollment

Year
Enrollment

data
Fuzzy

enrollment
1971 13055 A1 1979 16807 A4 1987 16859 A4

1972 13563 A1 1980 16919 A4 1988 18150 A6

1973 13867 A1 1981 16388 A4 1989 18970 A6

1974 14696 A2 1982 15433 A3 1990 19328 A7

1975 15460 A3 1983 15497 A3 1991 19337 A7

1976 15311 A3 1984 15145 A3 1992 18876 A6

1977 15603 A3 1985 15163 A3

1978 15861 A3 1986 15984 A3

Table 2. Fuzzy logical relationship group

A1 → A1, A1, A2 A3 → A3, A3, A3, A4 A3 → A3, A3, A3, A3, A4 A6 → A6, A7

A2 → A3 A4 → A4, A4, A3 A4 → A6 A7 → A7, A6

Thus, using the fuzzy logical relationship group in Table 2, the transition probability
matrix R may be obtained.
Step 5. Calculate the forecasted outputs. According to the proposed rules in Step 5,

the forecasting values are obtained as in the third column of Table 3. The forecasting value
of 1972 is F (1972) = (2/3) ∗ Y (1971)+ (1/3) ∗ (m2) = (2/3) ∗ (13055)+ (1/3) ∗ (14500) =
13537.
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Step 6. Adjust the tendency of the forecasting values. The relationships between the
states are analyzed in Figure 1. It is clear that state 3 and 4 communicate with each
other, thus an adjusted value should be considered, or vice versa. By contrast, state 6
and state 7 also communicate with each other, but in the end these states’ uncertainty
in relation to the future trend is larger and unknown; thus, we do not adjust the value
of state 7 to state 6. According to the proposed rules in Step 6, the adjusted values are
obtained as in the fourth column of Table 3.

Figure 1. Transition process for enrollment forecasting

Step 7. Obtain adjusted forecasting values. The adjusted forecasting values are
obtained in the last column of Table 3. The adjusted forecasting value for 1974 is
F ′(1974) = F (1974) + 500 = 14578.

Following the above steps, a comparison among actual enrollment, some revised fuzzy
time series methods, and the proposed model are shown in Figure 2. It is obvious that
these revised methods also have plots similar to the proposed model. Therefore, an
estimated error method, MAPE, is used for comparing the methods as shown in Table
4. It is obvious that the forecasting error of MAPE in regard to the proposed method
is 1.4042%, which is better than that of the other methods. Using the fuzzy time series-
Markov model, a better forecasting result can be derived.

Table 3. Enrollment forecasting

Year
Historical

data
Forecasting

value
Adjusted

value

Adjusted
forecasting

value
Year

Historical
data

Forecasting
value

Adjusted
value

Adjusted
forecasting

value

1971 13055 1981 16388 16960 0 16960

1972 13563 13537 0 13537 1982 15433 16694 −1000 15694

1973 13867 13875 0 13875 1983 15497 15670 0 15670

1974 14696 14078 500 14578 1984 15145 15720 0 15720

1975 15460 15500 0 15500 1985 15163 15446 0 15446

1976 15311 15691 0 15691 1986 15984 15460 0 15460

1977 15603 15575 0 15575 1987 16859 16099 1000 17099

1978 15861 15802 0 15802 1988 18150 16930 1000 17930

1979 16807 16003 1000 17003 1989 18970 18600 0 18600

1980 16919 16904 0 16904 1990 19328 19147 500 19647

1991 19337 18914 0 18914 1991 19337 18914 0 18914

1992 18876 18919 0 18919 1992 18876 18919 0 18919

Table 4. Comparison of forecasting errors for six types of methods

Method
S&C

Method [4]
Tsaur

et al. [8]
Cheng

et al. [18]
Singh
[19]

Li and
Cheng [20]

Proposed
model

MAPE 3.22% 1.86% 1.7236% 1.5587% 1.53% 1.4042%
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Figure 2. Comparisons among the fuzzy time series methods

4. An Illustrated Example for Exchange Rate Forecasting. In international eco-
nomics, the volatility of the New Taiwan Dollar (NTD) against the US Dollar (USD) may
significantly affect both exporters and importers in Taiwan, which has a typical island-
style economic system that is very open to international trade and investment. Because
the NTD/USD relationship plays a crucial role and may influence Taiwan’s economy, the
forecasting analysis for exchange rates is an important topic. Especially, during the global
financial crisis, there was a tremendous change in the exchange rate of the NTD against
the USD from Jan.-2008 to Aug.-2009. In forecasting analysis, the time series model is
a commonly used tool, but it has been more recently suggested that linear conventional
time series methodologies fail to consider limited time series data. This leads to ineffi-
cient estimation and therefore lower testing power. Because the dynamic system behavior
is often uncertain and complicated, this section illustrates an efficient estimation with
smaller forecasting error using the proposed fuzzy time series-Markov method below. Ta-
ble 5 lists the collected time series data of the exchange rate of NTD/USD (from 2006 to
Aug.-2009).
Step 1. Define universe of discourse U and partition into equal-length intervals. In

Table 5, we set Dmin = 30.35 and Dmax = 34.34 with D1 = 0.35 and D2 = 0.56; U =
[30, 34.9]. U is divided into 7 intervals with u1 = [30, 30.7], u2 = [30.7, 31.4], u3 =
[31.4, 32.1], u4 = [32.1, 32.8], u5 = [32.8, 33.5], u6 = [33.5, 34.2] and u7 = [34.2, 34.9].
Step 2. Define fuzzy sets on the universe discourse U . This step has the same defined

fuzzy sets as in Section 2 proposed by S&C’s model.
Step 3. Fuzzify the historical data. The fuzzy sets equivalent to each month’s exchange

rate are shown in Table 5 where each fuzzy set has 7 elements.
Step 4. Determine fuzzy logical relationship group. By Definition 2.3, the fuzzy

logical relationship group can be easily obtained as shown in Table 6. Clearly, some are
one-to-one groups and the others are one-to-many groups. Thus, using the fuzzy logical
relationship groups in Table 6, the transition probability matrix R can be obtained.
Step 5. Calculate the forecasted outputs. According to the proposed rules in Step 5,

the forecasting values are obtained as in the third and eighth columns of Table 7. For
example, the forecasting value of May-2006 can be obtained as F (May-2006) = (2/16) ∗
31.75 + (9/16) ∗ 32.311 + (5/16) ∗ 33.15 = 32.50306.
Step 6. Adjust the tendency of the forecasting values. The relation between the states

are plotted in Figure 3; it is clear that state 3 and state 4, state 2 and state 4, state 5
and state 6, and state 6 and state 7 communicate with each other, and an adjusted value
should be considered when there is a transition from one state to another state or any
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Table 5. The forecasted values

Month/
year

NTD/
USD

Fuzzy
Value

Month/
year

NTD/
USD

Fuzzy
Value

Month/
year

NTD/
USD

Fuzzy
Value

Month/
year

NTD/
USD

Fuzzy
Value

Jan.-2006 32.107 A4 Dec. 32.523 A4 Nov. 32.332 A4 Oct. 32.689 A4

Feb. 32.371 A4 Jan.-2007 32.768 A4 Dec. 32.417 A4 Nov. 33.116 A5

Mar. 32.489 A4 Feb. 32.969 A5 Jan.-2008 32.368 A4 Dec. 33.146 A5

Apr. 32.311 A4 Mar. 33.012 A5 Feb. 31.614 A3 Jan.-2009 33.33 A5

May 31.762 A3 Apr. 33.145 A5 Mar. 30.604 A1 Feb. 34.277 A7

Jun. 32.48 A4 May 33.26 A5 Apr. 30.35 A1 Mar. 34.34 A7

Jul. 32.632 A4 Jun. 32.932 A5 May 30.602 A1 Apr. 33.695 A6

Agu. 32.79 A4 Jul. 32.789 A4 Jun. 30.366 A1 May 32.907 A5

Sep. 32.907 A5 Agu. 32.952 A5 Jul. 30.407 A1 Jun. 32.792 A4

Oct. 33.206 A5 Sep. 32.984 A5 Agu. 31.191 A1 Jul. 32.92 A5

Nov. 32.824 A5 Oct. 32.552 A4 Sep. 31.957 A3 Agu. 32.883 A5

Table 6. Fuzzy logical relationship group

A4 → A4, A4, A4, A3A4 → A4 A5 → A5, A4 A3 → A4 A6 → A5

A3 → A4 A4 → A5 A4 → A4, A4, A4, A3A4 → A5 A5 → A4

A4 → A4, A4, A5 A5 → A5, A5, A5, A5, A4A3 → A1 A5 → A5, A5, A7A4 → A5

A5 → A5, A5, A4 A4 → A5 A1 → A3 A7 → A7, A7, A6

Figure 3. Transition process for exchange rate forecasting

transition among the communicating states. According to the proposed rules in Step 6,
the adjusted values are obtained in the fourth and ninth columns of Table 7.

Step 7. Adjust forecasting values. According to the proposed rules in Step 6, the
adjusted values are obtained as in the fifth and last column of Table 7.

To compare the proposed model with the conventional time series one, an ARIMA-
GARCH model using the software (E-Views) and the grey method for different periods
of exchange rates from 2006 to Aug.-2009, as well as the forecasting results are shown in
Figure 4 and Table 8. It is obvious that the proposed method is better than the other
two methods with the smallest forecasting error according to MAPE; thus, the proposed
model is the most accurate of the approaches used. Forecasting is done by obtaining
the relation between already-known data to analyze the future trend of the exchange
rate price, which can be regarded as exhibiting uncertain system behavior because of
the relation between the exchange rate price and economic development. Therefore, the
fuzzy time series-Markov chain method can be used to establish the forecasting model
with relative ease and accurate forecasting performance. However, as previous researches
indicate, there are still some criticisms of the fuzzy time series method that have not been
overcome, such as the optimum lengths of the interval ui, membership function of the
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Table 7. Exchange rate forecasting

Year
Forecast-
ing value

Adjusted
value

Adjusted
forecasting

value
Year

Forecast-
ing value

Adjusted
value

Adjusted
forecasting

value
Year

Forecast-
ing value

Adjusted
value

Adjusted
forecasting

value

Jan./

2006
4 32.96467 0 32.96467 7 30.59667 0 30.5967

2 32.38831 0 32.38831 5 33.05333 0 33.05333 8 30.63083 0 30.63083

3 32.53681 0 32.53681 6 33.13 0 33.13 9 31.28417 0.7 31.98417

4 32.60319 0 32.60319 7 32.91133 −0.35 32.56133 10 31.75 0.35 32.1

5 32.50306 −0.7 31.80306 8 32.77194 0.35 33.12194 11 32.71569 0.35 33.06569

6 31.75 0.7 32.45 9 32.92467 0 32.92467 12 33.03413 0 33.03413

7 32.59813 0 32.59813 10 32.946 −0.35 32.596
Jan/

2009
33.054 0 33.054

8 32.55863 0 32.55863 11 32.63863 0 32.63863 2 33.1767 0.7 33.8767

9 32.7725 0.35 33.1225 12 32.51488 0 32.51488 3 34.0635 0 34.0635

10 32.89467 0 32.89467
Jan./
2008

32.53681 0 32.53681 4 34.095 −0.7 33.395

11 33.094 0 33.094 2 32.53513 −0.7 31.83513 5 33.15 0 33.15

12 32.83933 −0.35 32.48933 3 31.75 −0.7 31.05 6 32.89467 −0.35 32.54467

Jan/

2007
32.62231 0 32.62231 4 30.795 0 30.795 7 32.77363 0.35 33.12363

2 32.63513 0.35 32.98513 5 30.58333 0 30.58333 8 32.90333 0 32.90333

3 32.936 0 32.936 6 30.79333 0 30.79333

Figure 4. The comparisons in exchange rate forecasting

Table 8. Comparison of forecasting errors for three types of methods

Method ARIMA (1, 0, 1)-GARCH (1, 1) Grey model GM (1, 1) Proposed model
MAPE 0.7983% 2.1038% 0.6092%

defined fuzzy set Ai. Besides, in our proposed method, if the collected data set is too
limited, we might not derive the transition probability matrix R and fail to model the
fuzzy time series-Markov chain method.
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5. Conclusions. In this study, a fuzzy time series-Markov approach for analyzing the
linguistic or smaller size time series data has been proposed. The results indicated con-
siderable forecasting value by transferring fuzzy time series data to the fuzzy logic group,
and using the obtained fuzzy logic group to derive a Markov chain transition matrix. Both
the enrollment forecasting and the analytical exchange rate forecasting confirm the po-
tential benefits of the new approach in terms of the proposed model. Most importantly,
the illustrated experiments were archived with a very small MAPE. If the fuzzy time
series-Markov chain model meets expectations, then this approach will be an important
tool in forecasting. However, this work only examines forecasting models to determine
which has the better performance in forecasting, including some revised fuzzy time series
methods, ARIMA-GARCH, and the grey forecasting model.
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