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Abstract. The simple repetitive control system proposed by Yamada et al. is a type of
servomechanism for periodic reference input. Thus, the simple repetitive control system
follows a periodic reference input with small steady-state error, even if there is periodic
disturbance or uncertainty in the plant. In addition, simple repetitive control systems
ensure that transfer functions from the periodic reference input to the output and from
the disturbance to the output have finite numbers of poles. Yamada et al. clarified the
parameterization of all stabilizing simple repetitive controllers. However, when using
the method of Yamada et al., it is complex to specify the low-pass filter in the internal
model for the periodic reference input that specifies the input-output characteristic. To
specify the input-output characteristic more easily, Murakami et al. examined the param-
eterization of all stabilizing simple repetitive controllers with the specified input-output
characteristic such that the input-output characteristic can be specified beforehand. How-
ever, they omitted complete proof on account of space limitations. This paper gives a
complete proof of the parameterization of all stabilizing simple repetitive controllers with
the specified input-output characteristic of Murakami et al. and demonstrates the effec-
tiveness of the parameterization of all stabilizing simple repetitive controllers with the
specified input-output characteristic. Control characteristics of a simple repetitive con-
trol system are presented, as well as a design procedure for a simple repetitive controller
with the specified input-output characteristic.
Keywords: Repetitive control, Finite number of poles, Parameterization, Low-pass fil-
ter

1. Introduction. A repetitive control system is a type of servomechanism for a periodic
reference input. In other words, the repetitive control system follows a periodic reference
input without steady-state error, even if a periodic disturbance or uncertainty exists in
the plant [1-13]. It is difficult to design stabilizing controllers for the strictly proper plant,
because the repetitive control system that follows any periodic reference input without
steady-state error is a neutral type of time-delay control system [11]. To design a repetitive
control system that follows any periodic reference input without steady-state error, the
plant needs to be biproper [3-11]. In practice, the plant is strictly proper. Many design
methods for repetitive control systems for strictly proper plants have been given [3-11].
These systems are divided into two types. One type uses a low-pass filter [3-10] and the
other type uses an attenuator [11]. The latter type of system is difficult to design because
it uses a state-variable time delay in the repetitive controller [11]. The former has a simple
structure and is easily designed. Therefore, the former type of repetitive control system
is called the modified repetitive control system [3-10].
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Using modified repetitive controllers [3-10], even if the plant does not include time
delays, transfer functions from the periodic reference input to the output and from the
disturbance to the output have infinite numbers of poles. This makes it difficult to
specify the input-output characteristic and the disturbance attenuation characteristic.
From a practical point of view, it is desirable that these characteristics should be easy
to specify. Therefore, these transfer functions should have finite numbers of poles. To
overcome this problem, Yamada et al. proposed simple repetitive control systems such
that the controller works as a modified repetitive controller, and transfer functions from
the periodic reference input to the output and from the disturbance to the output have
finite numbers of poles [14]. In addition, Yamada et al. clarified the parameterization of
all stabilizing simple repetitive controllers.
According to Yamada et al., the parameterization of all stabilizing simple repetitive

controllers includes two free parameters. One specifies the disturbance attenuation char-
acteristic. The other specifies the low-pass filter in the internal model for the periodic
reference input that specifies the input-output characteristic. However, when employing
the method of Yamada et al., it is complex to specify the low-pass filter in the internal
model for the periodic reference input. When we design a simple repetitive controller, if
the low-pass filter in the internal model for the periodic reference input is set beforehand,
we can specify the input-output characteristic more easily than in the method employed
in [14]. This is achieved by parameterizing all stabilizing simple repetitive controllers with
the specified input-output characteristic, which is the parameterization when the low-pass
filter is set beforehand. However, no paper has considered the problem of obtaining the
parameterization of all stabilizing simple repetitive controllers with the specified input-
output characteristic. In addition, the parameterization is useful to design stabilizing
controllers [15-18]. From this viewpoint, Murakami et al. examined the parameterization
of all stabilizing simple repetitive controllers with the specified input-output characteristic
such that the input-output characteristic can be specified beforehand [19]. If the param-
eterization of all stabilizing simple repetitive controllers with the specified input-output
characteristic is used, it is possible to easily design a simple repetitive control system
that has a desirable input-output characteristic. However, Murakami et al. omitted
the complete proof of the parameterization of all stabilizing simple repetitive controllers
with the specified input-output characteristic on account of space limitations. In addi-
tion, control characteristics were not examined using the obtained parameterization of
all stabilizing simple repetitive controllers with the specified input-output characteristic
in [19]. Furthermore, a design method for stabilizing a simple repetitive control system
with the specified input-output characteristic was not described. Therefore, we do not
know whether the parameterization of all stabilizing simple repetitive controllers with the
specified input-output characteristic in [19] is effective.
In this paper, we give a complete proof of the parameterization of all stabilizing simple

repetitive controllers with the specified input-output characteristic, which was omitted
in [19] and demonstrate the effectiveness of the parameterization of all stabilizing sim-
ple repetitive controllers with the specified input-output characteristic. First, we give a
complete proof of the theorem for the parameterization of all stabilizing simple repetitive
controllers with the specified input-output characteristic, which was omitted in [19]. Next,
we clarify control characteristics using the parameterization in [19]. In addition, a design
procedure using the parameterization is presented. A numerical example is presented to
illustrate the effectiveness of the proposed design method. Finally, to demonstrate the
effectiveness of the parameterization for real plants, we present an application for the
reduction of rotational unevenness in motors.
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Notation
R the set of real numbers.
R+ R ∪ {∞}.
R(s) the set of real rational functions of s.
RH∞ the set of stable proper real rational functions.
H∞ the set of stable causal functions.

2. Simple Repetitive Controller with the Specified Input-Output Character-
istic and Problem Formulation. Consider the unity feedback control system given
by {

y(s) = G(s)u(s) + d(s)
u(s) = C(s)(r(s)− y(s))

, (1)

where G(s) ∈ R(s) is the strictly proper plant, C(s) is the controller, u(s) ∈ R(s) is the
control input, y(s) ∈ R(s) is the output, d(s) ∈ R(s) is the disturbance and r(s) ∈ R(s)
is the periodic reference input with period T > 0 satisfying

r(t+ T ) = r(t) (∀t ≥ 0). (2)

According to [3-10], the modified repetitive controller C(s) is written in the form

C(s) = C1(s) + C2(s)Cr(s), (3)

where C1(s) ∈ R(s) and C2(s) 6= 0 ∈ R(s). Cr(s) is an internal model for the periodic
reference input r(s) with period T and is written as

Cr(s) =
e−sT

1− q(s)e−sT
, (4)

where q(s) ∈ R(s) is a proper low-pass filter satisfying q(0) = 1.
Using the modified repetitive controller C(s) in (3), transfer functions from the periodic

reference input r(s) to the output y(s) and from the disturbance d(s) to the output y(s)
in (1) are written as

y(s)

r(s)
=

C(s)G(s)

1 + C(s)G(s)

=

{
C1(s)− (C1(s)q(s)− C2(s))e

−sT
}
G(s)

1 + C1(s)G(s)− {(1 + C1(s)G(s))q(s)− C2(s)G(s)} e−sT
(5)

and

y(s)

d(s)
=

1

1 + C(s)G(s)

=
1− q(s)e−sT

1 + C1(s)G(s)− {(1 + C1(s)G(s))q(s)− C2(s)G(s)} e−sT
, (6)

respectively. Generally, transfer functions from the periodic reference input r(s) to the
output y(s) in (5) and from the disturbance d(s) to the output y(s) in (6) have infinite
numbers of poles. When transfer functions from the periodic reference input r(s) to the
output y(s) and from the disturbance d(s) to the output y(s) have infinite numbers of
poles, it is difficult to specify the input-output characteristic and the disturbance attenu-
ation characteristic. From a practical point of view, it is desirable that the input-output
characteristic and the disturbance attenuation characteristic are easily specified. To spec-
ify the input-output characteristic and the disturbance attenuation characteristic easily,
it is desirable for transfer functions from the periodic reference input r(s) to the output
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y(s) and from the disturbance d(s) to the output y(s) to have finite numbers of poles. To
achieve this, Yamada et al. proposed simple repetitive control systems such that the con-
troller works as a modified repetitive controller, and transfer functions from the periodic
reference input to the output and from the disturbance to the output have finite numbers
of poles [14]. In addition, Yamada et al. clarified the parameterization of all stabilizing
simple repetitive controllers.
On the other hand, according to [3-10], if the low-pass filter q(s) satisfies

1− q(jωi) ' 0 (∀i = 0, . . . , Nmax) , (7)

where ωi is the frequency component of the periodic reference input r(s) written by

ωi =
2π

T
i (i = 0, . . . , Nmax) (8)

and ωNmax is the maximum frequency component of the periodic reference input r(s), then
the output y(s) in (1) follows the periodic reference input r(s) with small steady-state
error. Using the result in [14], for q(s) to satisfy (7) in a wide frequency range, we must
design q(s) to be stable and of minimum phase. If we obtain the parameterization of all
stabilizing simple repetitive controllers such that q(s) in (4) is set beforehand, we can
design the simple repetitive controller satisfying (7) more easily than in the method in
[14].
From the above practical requirement, Murakami et al. proposed the concept of the

simple repetitive controller with the specified input-output characteristic as follows [19].

Definition 2.1. (Simple repetitive controller with the specified input-output character-
istic) [19] We call the controller C(s) a “simple repetitive controller with the specified
input-output characteristic” if the following expressions hold true.

1. The low-pass filter q(s) ∈ RH∞ in (4) is set beforehand. That is, the input-output
characteristic is set beforehand.

2. The controller C(s) works as a modified repetitive controller. That is, the controller
C(s) is written as (3), where C1(s) ∈ R(s), C2(s) 6= 0 ∈ R(s) and Cr(s) is written
as (4).

3. The controller C(s) ensures transfer functions from the periodic reference input r(s)
to the output y(s) in (1) and from the disturbance d(s) to the output y(s) in (1) have
finite numbers of poles.

In addition, Murakami et al. examined the parameterization of all stabilizing simple
repetitive controllers with the specified input-output characteristic such that the input-
output characteristic can be specified beforehand [19]. However, they omitted a complete
proof on account of space limitations. The problem considered in this paper is to give
the complete proof of the parameterization of all stabilizing simple repetitive controllers
with the specified input-output characteristic in [19] and to propose a design method for
a control system using the parameterization in [19].

3. Parameterization of All Stabilizing Simple Repetitive Controllers with the
Specified Input-Output Characteristic. According to [19], the parameterization of
all stabilizing simple repetitive controllers with the specified input-output characteristic
is summarized in the following theorem.

Theorem 3.1. There exists a stabilizing simple repetitive controller with the specified
input-output characteristic if and only if the low-pass filter q(s) ∈ RH∞ in (4) takes the
form:

q(s) = N(s)q̄(s). (9)
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Here, N(s) ∈ RH∞ and D(s) ∈ RH∞ are coprime factors of G(s) on RH∞ satisfying

G(s) =
N(s)

D(s)
(10)

and q̄(s) 6= 0 ∈ RH∞ is any function. When the low-pass filter q(s) ∈ RH∞ in (4)
satisfies (9), the parameterization of all stabilizing simple repetitive controllers with the
specified input-output characteristic is given by

C(s) =
X(s) +D(s)Q(s) +D(s) (Y (s)−N(s)Q(s)) q̄(s)e−sT

Y (s)−N(s)Q(s)−N(s) (Y (s)−N(s)Q(s)) q̄(s)e−sT
. (11)

Here, X(s) ∈ RH∞ and Y (s) ∈ RH∞ are functions satisfying

X(s)N(s) + Y (s)D(s) = 1 (12)

and Q(s) ∈ RH∞ is any function [19].

Proof of this theorem requires the following lemma.

Lemma 3.1. The unity feedback control system in (1) is internally stable if and only if
C(s) is written as

C(s) =
X(s) +D(s)Q(s)

Y (s)−N(s)Q(s)
, (13)

where N(s) ∈ RH∞ and D(s) ∈ RH∞ are coprime factors of G(s) on RH∞ satisfying
(10), X(s) ∈ RH∞ and Y (s) ∈ RH∞ are functions satisfying (12) and Q(s) ∈ RH∞ is
any function [18].

Using Lemma 3.1, we present the proof of Theorem 3.1.
Proof: First, the necessity is shown. That is, we show that if the controller C(s) in (3)

stabilizes the control system in (1) and ensures that the transfer function from the periodic
reference input r(s) to the output y(s) of the control system in (1) has a finite number of
poles, then the low-pass filter q(s) must take the form (9). From the assumption that the
controller C(s) in (3) ensures that the transfer function from the periodic reference input
r(s) to the output y(s) of the control system in (1) has a finite number of poles, we know
that

G(s)C(s)

1 +G(s)C(s)
=

{
C1(s)− (C1(s)q(s)− C2(s))e

−sT
}
G(s)

1 +G(s)C1(s)− {(1 +G(s)C1(s))q(s)− C2(s)G(s)} e−sT
(14)

has a finite number of poles. This implies that

C2(s) =
(1 +G(s)C1(s))q(s)

G(s)
(15)

is satisfied; that is, C(s) is necessarily

C(s) =
G(s)C1(s) + q(s)e−sT

G(s)
(
1− q(s)e−sT

) . (16)

From the assumption that C(s) in (3) stabilizes the control system in (1), we know that
G(s)C(s)/(1+G(s)C(s)), C(s)/(1+G(s)C(s)), G(s)/(1+G(s)C(s)) and 1/(1+G(s)C(s))
are stable. From simple manipulation and (16), we have

G(s)C(s)

1 +G(s)C(s)
=

G(s)C1(s) + q(s)e−sT

1 +G(s)C1(s)
, (17)

C(s)

1 +G(s)C(s)
=

G(s)C1(s) + q(s)e−sT

(1 +G(s)C1(s))G(s)
, (18)
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G(s)

1 +G(s)C(s)
=

(1− q(s)e−sT )G(s)

1 +G(s)C1(s)
(19)

and

1

1 +G(s)C(s)
=

1− q(s)e−sT

1 +G(s)C1(s)
. (20)

From the assumption that all transfer functions in (17), (18), (19) and (20) are stable, we
know that G(s)C1(s)/(1 +G(s)C1(s)), C1(s)/(1 +G(s)C1(s)), G(s)/(1 +G(s)C1(s)) and
1/(1+G(s)C1(s)) are stable. This means that C1(s) is an internally stabilizing controller
for G(s). From Lemma 3.1, C1(s) must take the form:

C1(s) =
X(s) +D(s)Q(s)

Y (s)−N(s)Q(s)
, (21)

where Q(s) ∈ RH∞. From the assumption that the transfer function in (18) is stable, we
know that

q(s)

G(s) (1 +G(s)C1(s))
=

(Y (s)−N(s)Q(s))D2(s)q(s)

N(s)
(22)

is stable. This implies that q(s) must take the form:

q(s) = N(s)q̄(s), (23)

where q̄(s) 6= 0 ∈ RH∞ is any function. In this way, it is shown that if there exists a
stabilizing simple repetitive controller with the specified input-output characteristic, then
the low-pass filter q(s) must take the form (9).
Next, we show that if (9) holds true, then C(s) is written as (11). Substituting (15),

(21) and (23) into (3), we have (11). Thus, the necessity has been shown.
Next, the sufficiency is shown. That is, it is shown that if q(s) and C(s) take the form

(9) and (11), respectively, then the controller C(s) stabilizes the control system in (1),
ensures that the transfer functions from r(s) and d(s) to y(s) of the control system in
(1) have finite numbers of poles and works as a stabilizing modified repetitive controller.
After simple manipulation, we have

G(s)C(s)

1 +G(s)C(s)

=
{
X(s) +D(s)Q(s) +D(s) (Y (s)−N(s)Q(s)) q̄(s)e−sT

}
N(s), (24)

C(s)

1 +G(s)C(s)

=
{
X(s) +D(s)Q(s) +D(s) (Y (s)−N(s)Q(s)) q̄(s)e−sT

}
D(s), (25)

G(s)

1 +G(s)C(s)

=
{
Y (s)−N(s)Q(s)−N(s) (Y (s)−N(s)Q(s)) q̄(s)e−sT

)
N(s) (26)

and
1

1 +G(s)C(s)

=
{
Y (s)−N(s)Q(s)−N(s) (Y (s)−N(s)Q(s)) q̄(s)e−sT

}
D(s). (27)

Since X(s) ∈ RH∞, Y (s) ∈ RH∞, N(s) ∈ RH∞, D(s) ∈ RH∞, Q(s) ∈ RH∞ and
q̄(s) ∈ RH∞, the transfer functions in (24), (25), (26) and (27) are stable. In addition,
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for the same reason, transfer functions from r(s) and d(s) to y(s) of the control system
in (1) have finite numbers of poles.

Next, we show that the controller in (11) works as a modified repetitive controller. The
controller in (11) is rewritten in the form in (3), where

C1(s) =
X(s) +D(s)Q(s)

Y (s)−N(s)Q(s)
(28)

and

C2(s) =
q̄(s)

(Y (s)−N(s)Q(s))
. (29)

From the assumption of q̄(s) 6= 0, C2(s) 6= 0 holds true. These expressions imply that the
controller C(s) in (11) works as a modified repetitive controller. Thus, the sufficiency has
been shown.

We have thus proved Theorem 3.1.

Remark 3.1. Note that from Theorem 3.1, when the plant G(s) is of non-minimum
phase, the low-pass filter q(s) cannot be set to be of minimum phase.

4. Control Characteristics. In this section, we describe control characteristics of the
control system in (1) using the stabilizing simple repetitive controller in (11).

First, we mention the input-output characteristic. The transfer function S(s) from the
periodic reference input r(s) to the error e(s) = r(s)− y(s) is written as

S(s) =
1

1 +G(s)C(s)
= D(s) (Y (s)−N(s)Q(s))

(
1− q(s)e−sT

)
. (30)

From (30), since q(s) is set beforehand to satisfy (7), the output y(s) follows the periodic
reference input r(s) with small steady-state error. That is, we find that by using the
parameterization of all stabilizing simple repetitive controllers with the specified input-
output characteristic in [19], the input-output characteristic can be specified beforehand.

Next, we mention the disturbance attenuation characteristic. The transfer function
from the disturbance d(s) to the output y(s) is written as (30). From (30), for the
frequency component ωi (i = 0, . . . , Nmax) in (8) of the disturbance d(s) that is the same as
that of the periodic reference input r(s), since S(s) satisfies S(jωi) ' 0 (∀i = 0, . . . , Nmax),
the disturbance d(s) is attenuated effectively. For the frequency component ωd of the
disturbance d(s) that is different from that of the periodic reference input r(s) (that is,
ωd 6= ωi), even if

1− q(jωd) ' 0, (31)

the disturbance d(s) cannot be attenuated because

e−jωdT 6= 1 (32)

and

1− q(jωd)e
−jωdT 6= 0. (33)

To attenuate the frequency component ωd of the disturbance d(s) that is different from
that of the periodic reference input r(s), we need to set Q(s) satisfying

Y (jωd)−N(jωd)Q(jωd) ' 0. (34)

From the above discussion, the role of q(s) is to specify the input-output characteristic
for the periodic reference input r(s) and it can be specified beforehand. The role of Q(s)
is to specify the disturbance attenuation characteristic for the frequency component of
the disturbance d(s) that is different from that of the periodic reference input r(s).



4890 T. SAKANUSHI, K. YAMADA, I. MURAKAMI ET AL.

5. Design Procedure. In this section, a design procedure for stabilizing the simple
repetitive controller with the specified input-output characteristic is presented.
A design procedure for stabilizing simple repetitive controllers satisfying Theorem 3.1

is summarized as follows.

Procedure

Step 1) Obtain coprime factors N(s) ∈ RH∞ and D(s) ∈ RH∞ of G(s) satisfying (10).
Step 2) X(s) ∈ RH∞ and Y (s) ∈ RH∞ are set satisfying (12).
Step 3) q̄(s) ∈ RH∞ in (9) is set so that for the frequency component ωi (i = 0, . . . , Nmax)

of the periodic reference input r(s),

1− q(jωi) = 1−N(jωi)q̄(jωi) ' 0. (35)

To satisfy 1−N(jωi)q̄(jωi) ' 0, q̄(s) ∈ RH∞ is set according to

q̄(s) =
1

No(s)
q̄r(s), (36)

where No(s) ∈ RH∞ is an outer function of N(s) satisfying

N(s) = Ni(s)No(s), (37)

Ni(s) ∈ RH∞ is an inner function satisfying Ni(0) = 1 and |Ni(jω)| = 1 (∀ω ∈
R+), q̄r(s) is a low-pass filter satisfying q̄r(0) = 1, as

q̄r(s) =
1

(1 + sτr)
αr

(38)

is valid, αr is an arbitrary positive integer that ensures q̄r(s)/No(s) is proper and
τr ∈ R is any positive real number satisfying

1−Ni(jωi)
1

(1 + jωiτr)
αr

' 0 (∀i = 0, . . . , Nmax). (39)

Step 4) Q(s) ∈ RH∞ is set so that for the frequency component ωd of the disturbance
d(s), Y (jωd)−N(jωd)Q(jωd) ' 0 is satisfied. To design Q(s) to hold Y (jωd)−
N(jωd)Q(jωd) ' 0, Q(s) is set according to

Q(s) =
Y (s)

No(s)
q̄d(s), (40)

where q̄d(s) is a low-pass filter satisfying q̄d(0) = 1, as

q̄d(s) =
1

(1 + sτd)
αd

(41)

is valid, αd is an arbitrary positive integer that ensures q̄d(s)/No(s) is proper and
τd ∈ R is any positive real number satisfying

1−Ni(jωd)
1

(1 + jωdτd)
αd

' 0. (42)

6. Numerical Example. In this section, a numerical example is presented to illustrate
the effectiveness of the proposed method.
We consider the problem of obtaining the parameterization of all stabilizing simple

repetitive controllers with the specified input-output characteristic for the plant G(s)
written as

G(s) =
s− 50

(s+ 1)(s− 1)
(43)

that follows the periodic reference input r(t) with period T = 2[s].
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A pair of coprime factors N(s) ∈ RH∞ and D(s) ∈ RH∞ of G(s) in (43) satisfying
(10) is given by

N(s) =
s− 50

(s+ 30)(s+ 40)
(44)

and

D(s) =
(s+ 1)(s− 1)

(s+ 30)(s+ 40)
. (45)

q(s) is set according to

q(s) = Ni(s)q̄r(s)

=
−s+ 50

s+ 50
· 1

0.001s+ 1
, (46)

where

Ni(s) =
−s+ 50

s+ 50
(47)

and

q̄r(s) =
1

0.001s+ 1
. (48)

X(s) ∈ RH∞ and Y (s) ∈ RH∞ satisfying (12) are derived as

X(s) = − 3943s+ 29024

(s+ 30)(s+ 40)
(49)

and

Y (s) =
s2 + 140s+ 11244

(s+ 30)(s+ 40)
. (50)

From Theorem 3.1, the parameterization of all stabilizing simple repetitive controllers
with the specified input-output characteristic for G(s) in (43) is given by (11), where
Q(s) ∈ RH∞ in (11) is any function. So that the disturbance

d(t) = sin

(
πt

2

)
(51)

can be attenuated effectively, Q(s) is set by (40), where

q̄d(s) =
1

0.001s+ 1
(52)

and

No(s) =
−s− 50

(s+ 30)(s+ 40)
. (53)

Using the above mentioned parameters, we have a stabilizing simple repetitive controller
with the specified input-output characteristic.

Using the designed stabilizing simple repetitive controller with the specified input-
output characteristic, the response of the error e(t) = r(t) − y(t) in (1) for the periodic
reference input r(t) = sin(πt) is shown in Figure 1. Here, the dotted line shows the
response of the periodic reference input r(t) = sin(πt) and the solid line shows that of the
error e(t) = r(t)−y(t). Figure 1 shows that the output y(t) follows the periodic reference
input r(t) with a small steady-state error.

Next, using the designed simple repetitive controller with the specified input-output
characteristic C(s), the disturbance attenuation characteristic is shown. The response of
the output y(t) for the disturbance d(t) = sin(2πt) of which the frequency component
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Figure 1. Response of the error e(t) = r(t)−y(t) for the periodic reference
input r(t) = sin(πt)
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Figure 2. Response of the output y(t) for the disturbance d(t) = sin(2πt)

is equivalent to that of the periodic reference input r(t) is shown in Figure 2. Here, the
dotted line shows the response of the disturbance d(t) = sin(2πt) and the solid line shows
that of the output y(t). Figure 2 shows that the disturbance d(t) = sin(2πt) is attenuated
effectively. Finally, the response of the output y(t) for the disturbance d(t) in (51) of
which the frequency component is different from that of the periodic reference input r(t)
is shown in Figure 3. Here, the dotted line shows the response of the disturbance d(t) in
(51) and the solid line shows that of the output y(t). Figure 3 shows that the disturbance
d(t) in (51) is attenuated effectively.
A stabilizing simple repetitive controller with the specified input-output characteristic

can be easily designed in the way shown here.

7. Application of Reducing Rotational Unevenness in Motors. In this section, to
demonstrate the effectiveness of the parameterization of all stabilizing simple repetitive
controllers with the specified input-output characteristic for real plants, we present an
application of reducing rotational unevenness in motors.



REPETITIVE CONTROLLERS WITH SPECIFIED INPUT-OUTPUT CHARACTERISTIC 4893

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t[sec]

d(
t)

, y
(t

)
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Figure 4. Illustrated motor control experiment

7.1. Motor control experiment and problem description. A motor control experi-
ment is illustrated in Figure 4. The motor control experiment consists of a direct-current
motor with an optical encoder of 1000[counts/revolution] and a wheel that has a diameter
of 50.7[mm], a width of 10.3[mm] and mass of 72.5[g] attached to the motor. We denote
with Tv[rad/s] the estimated value of the angular velocity of the wheel calculated from
the measurement of the angle of the wheel. Vm denotes a control input for the direct-
current motor, and the available voltage of Vm is −24[V] ≤ Vm ≤ 24[V]. When we set
Vm = 2.1[V], the response of Tv, which is the angular velocity of the wheel, is shown
in Figure 5 and Figure 6. Figure 5 and Figure 6 show disturbances including rotational
unevenness in the motor. Since the rotational unevenness in the motor depends on the
angle of the motor, the disturbance is considered a periodic disturbance.

The problem considered in this experiment is to design a control system to attenuate
periodic disturbances including the rotational unevenness in the motor by parameterizing
all stabilizing simple repetitive controllers with the specified input-output characteristic
in [19], which is an effective compensator for attenuating periodic disturbances effectively.
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Figure 5. Response of Tv when Vm = 2.1[V]
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Figure 6. Magnified plot of Figure 5 between 99[rad/s] and 104[rad/s]

7.2. Experimental result. In this subsection, we present experimental results of con-
trolling the angular velocity in the motor control experiment in Figure 4 using the param-
eterization of all stabilizing simple repetitive controllers with the specified input-output
characteristic.
From Figure 5, we find that the transfer function from Vm to Tv, which is the angular

velocity of the wheel, is

Tv =
48

1 + 1.31s
Vm. (54)

Tv and Vm are considered as the output y(s) and the control input u(s) in the control
system. G(s) is then written as

G(s) =
48

1 + 1.31s
∈ RH∞. (55)

The reference input r(s) is set as r(t) = vr = 100[rad/s]. The period T of the disturbance
d(t) is

T =
2π

vr
=

2π

100
. (56)
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To attenuate the periodic disturbance d(t) with period T , we design a simple repetitive
controller with the specified input-output characteristic C(s) in (11). Coprime factors
N(s) ∈ RH∞ and D(s) ∈ RH∞ of the plant G(s) in (55) on RH∞ are given by

N(s) =
114.2857

s+ 1
(57)

and

D(s) =
s+ 2.381

s+ 1
. (58)

A pair of X(s) ∈ RH∞ and Y (s) ∈ RH∞ satisfying N(s)X(s) +D(s)Y (s) = 1 is written
as

X(s) =
0.0167

s+ 1
(59)

and

Y (s) =
s− 0.381

s+ 1
. (60)

q(s) is set according to

q(s) = Ni(s)q̄r(s) =
1

0.2s+ 1
, (61)

where

Ni(s) = 1 (62)

and

q̄r(s) =
1

0.2s+ 1
. (63)

Using the abovementioned parameters, the parameterization of all stabilizing simple repet-
itive controllers with the specified input-output characteristic for G(s) in (55) is given by
(11), where Q(s) ∈ RH∞ in (11) is any function.

Q(s) is set by (40), where

q̄d(s) =
1

0.03s+ 1
(64)

and

No(s) = N(s). (65)

Substitution of Q(s) into (11) gives a stabilizing simple repetitive controller with the
specified input-output characteristic C(s).

Using the designed simple repetitive controller with the specified input-output charac-
teristic C(s), the response of the output y(t), which is the angular velocity of the wheel
Tv, for the reference input r(t) = 100[rad/s], is shown in Figure 7 and Figure 8. Figure
7 and Figure 8 show that the output y(t), which is the angular velocity of the wheel Tv,
follows the reference input r(t) = 100[rad/s] with small steady-state error. In addition,
the disturbance d(t) that includes the rotational unevenness in the motor is attenuated
effectively.

To demonstrate the effectiveness of the simple repetitive controller with the specified
input-output characteristic, a comparison was made with the response when using the
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Figure 7. Response of the output y(t), which is the angular velocity of
the wheel Tv, for the reference input r(t) = 100[rad/s] using the simple
repetitive controller with the specified input-output characteristic
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Figure 8. Magnified plot of Figure 7 between 99[rad/s] and 101[rad/s]

parameterization of all stabilizing modified repetitive controllers with the specified input-
output characteristic in [20] written as

C(s) =
X(s) +D(s)Q̂(s)

Y (s)−N(s)Q̂(s)
, (66)

where

Q̂(s) =
Qn(s) +

(
Y (s)Q̄(s)−Qn(s)

)
q(s)e−sT

Qd(s) +
(
N(s)Q̄(s)−Qd(s)

)
q(s)e−sT

∈ H∞. (67)

Here, Qn(s) ∈ RH∞, Q̄(s) 6= 0 ∈ RH∞ and Qd(s) 6= 0 ∈ RH∞ are any functions.
N(s) ∈ RH∞, D(s) ∈ RH∞, X(s) ∈ RH∞ and Y (s) ∈ RH∞ are given by (57), (58),
(59) and (60), respectively. q(s) is a low-pass filter that satisfies q(0) = 1 and specifies
the input-output characteristic for the periodic reference input r(s) and the disturbance
attenuation characteristic for the frequency component of the disturbance d(s) that is
the same as that of the periodic reference input r(s). To compare the simple repetitive
controller and the modified repetitive controller fairly, q(s) in (67) is set as that of the
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simple repetitive controller; that is, q(s) is set by (61). Using the above mentioned
parameters, the parameterization of all stabilizing modified repetitive controllers with
the specified input-output characteristic C(s) is written as (66) with (67).

For Q̂(s) to satisfy Q̂(s) ∈ H∞, Qd ∈ RH∞ and Q̄(s) ∈ RH∞ are set according to

Qd(s) =
2s+ 100

s+ 0.1
(68)

and

Q̄(s) =
5(s2 + s+ 1)

3
(
10s2 + s+ 2

) , (69)

respectively. Qn(s) in (67) is set according to

Qn(s) =
Y (s)Qd(s)

N(s)
q̄d(s), (70)

where q̄d(s) is given by (64). Substitution of Qn(s), Qd(s) and Q̄(s) into (67) gives a
stabilizing modified repetitive controller C(s).

Using the obtained modified repetitive controller C(s), the response of the output y(t),
which is the angular velocity of the wheel Tv, for the reference input r(t) = 100[rad/s] is
shown in Figure 9 and Figure 10. Figure 9 and Figure 10 show that the output y(t), which
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Figure 9. Response of the output y(t), which is the angular velocity of
the wheel Tv, for the reference input r(t) = 100[rad/s] using the modified
repetitive controller with the specified input-output characteristic

is the angular velocity of the wheel Tv, follows the reference input r(t) = 100[rad/s] with
small steady-state error. In addition, the disturbance d(t) that includes the rotational
unevenness of the motor is attenuated effectively.

The comparison of Figure 8 with Figure 10 shows that the convergence of the simple
repetitive control system is faster than that of the modified repetitive control system. In
addition, the simple repetitive control system attenuates the disturbance that includes the
rotational unevenness in the motor more effectively than the modified repetitive control
system. The simple repetitive control system has merits such as the transfer functions
from the periodic reference input to the output having finite numbers of poles and the
system being easy to design. This result illustrates that the simple repetitive control
system is more effective for the reduction of rotational unevenness in motors than the
modified repetitive control system.
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Figure 10. Magnified plot of Figure 9 between 99[rad/s] and 101[rad/s]

In this way, the effectiveness of the control system employing the parameterization of
all stabilizing simple repetitive controllers with the specified input-output characteristic
in (11) for real plants has been shown.

8. Conclusions. In this paper, we gave a complete proof of the parameterization of
all stabilizing simple repetitive controllers with the specified input-output characteristic
such that the low-pass filter in the internal model for the periodic reference input is
set beforehand, the controller works as a stabilizing modified repetitive controller, and
transfer functions from the periodic reference input to the output and from the disturbance
to the output have finite numbers of poles. In addition, we demonstrated the effectiveness
of the parameterization of all stabilizing simple repetitive controllers with the specified
input-output characteristic. Control characteristics of a simple repetitive control system
were presented, as well as a design procedure for a simple repetitive controller with the
specified input-output characteristic. Finally, a numerical example and an application
for the reduction of rotational unevenness in motors were presented to illustrate the
effectiveness of the proposed method.
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