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Abstract. The problem of finite-time control is addressed in this paper for a class of
switched delay systems via dynamic output feedback. First, the concepts of finite-time
stability and finite-time boundedness are extended to switched delay systems, respectively.
Second, by resorting to the average dwell time approach and Lyapunov-Krasovskii func-
tional technique, some new delay-dependent criteria guaranteeing finite-time boundedness
and finite-time stability are developed, respectively. An explicit expression for the desired
dynamic output feedback controller is also given. Finally, two numerical examples are
provided to demonstrate the effectiveness of the proposed results.
Keywords: Switched systems, Time delay, Finite-time stability, Finite-time bounded-
ness, Dynamic output feedback controller

1. Introduction. Finite-time stability is a definition that, given a bound on the initial
condition, the system’s state does not exceed a certain threshold during a specified time
interval. This concept was first introduced to the control field in 1960s [1]. However, due
to the lack of operative test conditions for finite-time stability, the researchers’ interest
has moved toward the classical Lyapunov stability. Until 1997, with the presentation of
the robust finite-time stability problem via linear matrix inequality method, the concept
of finite-time stability was revisited [2]. Subsequently, the definition of finite-time sta-
bility was generalized to the concept of finite-time boundedness in [3]. Since then, the
problems of finite-time stability and finite-time boundedness have been extensively dis-
cussed. For instance, finite-time control problem was presented in [4] for linear systems
subject to time-varying parametric uncertainties and exogenous constant disturbances.
The finite-time stabilization problem was studied for continuous-time linear systems in
[5] and discrete-time linear systems in [6], respectively. Now, for various linear systems,
the problems of finite-time stability and finite-time boundedness have been further con-
sidered. In [7, 8], the finite-time stability analysis was studied for a class of linear singular
system and linear time-invariant impulsive systems, respectively. In addition, some re-
sults of finite-time stability were presented in [9, 10], which were different from that in
this paper and [2, 3, 4, 5, 6, 7, 8].

It should be pointed out that all aforementioned results about finite-time stability and
finite-time boundedness focus mainly on non-switched systems. As is well known, switched
systems are an important class of hybrid systems, and many real world processes and
systems can be modeled as switched systems [11, 12]. Although most switched systems
must operate satisfactorily over arbitrarily large intervals of time [13, 14, 15, 16, 17, 18],
some systems are required to operate satisfactorily only over fixed time intervals of time.
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For example, in order to accomplish a set of experiments, a space vehicle should be
guaranteed to remain in a specified orbit for a given length of time. In a chemical process,
the temperature, pressure or some other parameters should be kept within a specified
bound in a prescribed time interval. For these situations, the only meaningful concept of
stability is finite-time stability. And many of these practical problems finally boil down to
the finite-time control problem for switched systems, which has inspired some researchers
to study the problem of finite-time stability for switched systems. For example, in [19],
finite-time stability and stabilization problems were discussed for a class of continuous-
time switched linear systems.
It is well known that time delay is the inherent feature of many physical processes, which

may degrade the system performance, cause oscillation, and lead to instability. In view
of the strong engineering background, switched systems with time delay have attracted
special attention during the past decade. Some useful results have been reported in the
literature, see, e.g., [20, 21, 22, 23] and the references therein. Up to date, to the best of
the authors’ knowledge, the problems of finite-time stability and finite-time boundedness
for switched delay systems have not been fully investigated, which motivates us to carry
out the present study.
In this paper, attention is focused on solving the finite-time control problem for switched

delay system via dynamic output feedback. First, the definitions of finite-time stability
and finite-time boundedness are extended to switched delay systems, respectively. Sec-
ond, by resorting to the average dwell time approach and Lyapunov-Krasovskii functional
technique, some new delay-dependent criteria guaranteeing finite-time boundedness and
finite-time stability for switched delay systems are developed. By virtue of linear ma-
trix inequality approach, the desired dynamic output feedback controller is also given.
Finally, two numerical examples are proposed to demonstrate the effectiveness of the
obtained results.

2. Problem Formulation and Preliminaries. Consider the following switched delay
system

ẋ(t) = Aσ(t)x(t) + Adσ(t)x(t− τ) +Bσ(t)u(t) + Eσ(t)ω(t), (1a)

y(t) = Cσ(t)x(t) + Cdσ(t)x(t− τ) + Fσ(t)ω(t), (1b)

ω̇(t) = Gσ(t)ω(t), (1c)

x(s) = φ(s), s ∈ [−τ, 0],

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the controlled input, y(t) ∈ Rq is the output,
ω(t) ∈ Rp is the disturbance generated by the exogenous system (1c), τ is the time delay,
φ(s) is the initial value function. σ(t) : [0,∞) → N = {1, 2, . . . , N} is the switching
signal specifying which subsystem activates at a certain time instant. For each i ∈ N ,
Ai ∈ Rn×n, Adi ∈ Rn×n, Bi ∈ Rn×m, Ei ∈ Rn×p, Ci ∈ Rq×n, Cdi ∈ Rq×n, Fi ∈ Rq×p,
Gi ∈ Rp×p are constant matrices of appropriate dimensions.
In this paper, switching sequence is defined as

ζ = {xt0 ; (i0, t0), (i1, t1), · · · , (im, tm), · · · | im ∈ N , m = 0, 1, 2, · · · },
where t0 < t1 < · · · < tm < · · · . When t ∈ [tm, tm+1), the imth subsystem is activated
and the states of system (1a) do not jump when switch occurs. Here we assume that σ(t)
is not known a priori but its instantaneous value is available in real time.
For system (1a) with u(t) = 0, ω(t) = 0, we first present the following definition.

Definition 2.1. System (1a) with u(t) = 0, ω(t) = 0 is said to be finite-time stable (FTS)
with respect to (c1, c2, T, R1, σ), where c2 > c1 > 0, T > 0 is a given time-constant, R1 > 0
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is a positive definite matrix, σ ∈ N , if

max
−τ≤s≤0

φT (s)R1φ(s) ≤ c1 ⇒ xT (t)R1x(t) < c2, ∀ t ∈ [0, T ].

Remark 2.1. If τ = 0, Adi = 0, i ∈ N , the above definition of FTS is reduced to the one
in [19].

Remark 2.2. Unlike Lyapunov asymptotical stability defined on an infinite time interval,
finite-time stability emphasizes the behavior of the system over a fixed finite time interval.
In fact, Lyapunov asymptotic stability and finite-time stability are independent concepts:
finite-time stability does not mean Lyapunov asymptotical stability; conversely a Lyapunov
asymptotical stability system could not be finite-time stability if, during the transients, its
state exceeds the prescribed bounds [4, 5, 8]. In [24], the authors further demonstrated this
point using a numerical example (Example 1).

The general idea of finite-time boundedness presents the boundedness of the state of
systems over a finite time interval given both some initial conditions and an external
disturbance working on the systems [3]. For non-switched linear system, many papers
have studied the problem of finite-time boundedness, such as [4, 5, 6]. In the sequel, we
extend this definition to the case of switched delay systems.

Definition 2.2. System (1a) (u(t) = 0) interconnecting with (1c) is said to be finite-time
bounded (FTB) with respect to (c1, c0, c2, T , R1, R2, σ), where c2 > c1 > 0, T > 0 is a
given time-constant, R1 > 0, R2 > 0 are positive definite matrices, σ ∈ N , if

max
−τ≤s≤0

φT (s)R1φ(s) ≤ c1;

ωT (0)R2ω(0) ≤ c0

}
⇒ xT (t)R1x(t) < c2, ∀t ∈ [0, T ].

The switched dynamic output feedback controller is designed as:

˙̂x(t) = Acσ(t)x̂(t) + Lσ(t)y(t), (2a)

u(t) = Ccσ(t)x̂(t) +Dcσ(t)y(t), (2b)

where x̂(t) ∈ Rn is the state of the controller, Aci ∈ Rn×n, Li ∈ Rn×q, Cci ∈ Rm×n,
Dci ∈ Rm×q, i ∈ N are the parameter matrices to be determined. The feedback connection
between system (1) and controller (2) leads to the following closed-loop system:

ξ̇(t) = Āσ(t)ξ(t) + Ādσ(t)ξ(t− τ) + Ēσ(t)ω(t), (3a)

ω̇(t) = Gσ(t)ω(t), (3b)

where

Āσ(t) =

[
Aσ(t) +Bσ(t)Dcσ(t)Cσ(t) Bσ(t)Ccσ(t)

Lσ(t)Cσ(t) Acσ(t)

]
,

Ādσ(t) =

[
Adσ(t) +Bσ(t)Dcσ(t)Cdσ(t) 0

Lσ(t)Cdσ(t) 0

]
,

Ēσ(t) =

[
Eσ(t) +Bσ(t)Dcσ(t)Fσ(t)

Lσ(t)Fσ(t)

]
,

ξ(t) =

[
x(t)
x̂(t)

]
.

Given four positive scalars c1, c0, c2, T , three positive definite symmetric matrices R1,
R2, R3, switching signal σ(t) ∈ N , the purpose of this paper is to find a switched dynamic
output feedback controller (2) such that system (3) is FTB with respect to (c1, c0, c2, T ,
diag{R1, R3}, R2, σ), and system (3a) is FTS with respect to (c1, c2, T , diag{R1, R3}, σ)
when ω(t) = 0.
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3. Main Results.

3.1. Finite-time boundedness and stability. In the sequel, the finite-time bounded-
ness (u(t) = 0) and finite-time stability (u(t) = 0 and ω(t) = 0) will be presented for
system (1), respectively.

Theorem 3.1. Systems (1a) (u(t) = 0) and (1c) are FTB with respect to (c1, c0, c2, T ,
R1, R2, σ) if there exist positive scalars α, τ , and positive definite matrices P1,i ∈ Rn×n,
P2,i ∈ Rn×n and P3,i ∈ Rp×p, i ∈ N such that the following inequalities hold Ω1,i P1,iAdi P1,iEi

∗ −eατP2,i 0
∗ ∗ Ω3,i

 < 0, i ∈ N , (4a)

β ≤ µ <
c2

c1 + c0 +
c1
α
(eατ − 1)

e−αT , (4b)

τa > τ ∗a =
T lnµ

ln
(

c2
c1+c0+

c1
α
(eατ−1)

)
− αT − lnµ

, (4c)

where

Ω1,i = P1,iAi + AT
i P1,i + P2,i − αP1,i, Ω3,i = P3,iGi +GT

i P3,i − αP3,i,

β =
λ2

λ1

, (5)

λ2 = max

{
max
ι∈N

(λmax(P̃1,ι)),max
ι∈N

(λmax(P̃2,ι)),max
ι∈N

(λmax(P̃3,ι))

}
, ι ∈ N ,

λ1 = min

{
min
κ∈N

(λmin(P̃1,κ)),min
κ∈N

(λmin(P̃2,κ)),min
κ∈N

(λmin(P̃3,κ))

}
, κ ∈ N ,

and P̃1,i = R
−1/2
1 P1,iR

−1/2
1 , P̃2,i = R

−1/2
1 P2,iR

−1/2
1 , P̃3,i = R

−1/2
2 P3,iR

−1/2
2 .

Proof: Choose a Lyapunov-Krasovskii functional candidate as

V (t) = Vσ(t)(t) = V1,σ(t)(t) + V2,σ(t)(t) + V3,σ(t)(t), (6)

where

V1,σ(t)(t) = xT (t)P1,σ(t)x(t), V2,σ(t)(t) =

∫ t

t−τ

eα(t−s)xT (s)P2,σ(t)x(s)ds,

V3,σ(t)(t) = ωT (t)P3,σ(t)ω(t).

When t ∈ [tm, tm+1), calculating the derivative of V (t) along the trajectory of system (1a)
(u(t) = 0) and (1c), we have

V̇1,σ(t)(t) = ẋT (t)P1,σ(t)x(t) + xT (t)P1,σ(t)ẋ(t)

= xT (t)
(
P1,σ(t)Aσ(t) + AT

σ(t)P1,σ(t) − αP1,σ(t)

)
x(t)

+xT (t)P1,σ(t)Adσ(t)x(t− τ) + xT (t)P1,σ(t)Eσ(t)ω(t)

+xT (t− τ)AT
dσ(t)P1,σ(t)x(t) + ωT (t)ET

σ(t)P1,σ(t)x(t) + αV1,σ(t)(t), (7a)

V̇2,σ(t)(t) = xT (t)P2,σ(t)x(t)− eατxT (t− τ)P2,σ(t)x(t− τ) + αV2,σ(t)(t), (7b)

V̇3,σ(t)(t) = ωT (t)
(
GT

σ(t)P3,σ(t) + P3,σ(t)Gσ(t)

)
ω(t)− αV3,σ(t)(t) + αV3,σ(t)(t)

= ωT (t)
(
GT

σ(t)P3,σ(t) + P3,σ(t)Gσ(t) − αP3,σ(t)

)
ω(t) + αV3,σ(t)(t). (7c)
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In view of (4a) and (7), there holds

V̇ (t) = V̇σ(t)(t) < αVσ(t)(t). (8)

Note that when t ∈ [tm, tm+1), σ(t) = σ(tm). According to (8), we obtain

V̇ (t) = V̇σ(tm)(t) < αVσ(tm)(t). (9)

Integrating (9) from tm to t reads

V (t) = Vσ(tm)(t) < eα(t−tm)Vσ(tm)(tm). (10)

In addition, letting σ(tm) = ι, σ(t−m) = κ, ι, κ ∈ N , and ι 6= κ, one gets

Vι(tm) ≤ λ2

(
xT (tm)R1x(tm) +

∫ tm

tm−τ

eα(tm−s)xT (s)R1x(s)ds+ ωT (tm)R2ω(tm)

)
. (11)

In a similar way

Vκ(t
−
m) ≥ λ1

(
xT (tm)R1x(tm) +

∫ tm

tm−τ

eα(tm−s)xT (s)R1x(s)ds+ ωT (tm)R2ω(tm)

)
. (12)

Taking (11) and (12) into account, we have

Vσ(tm)(tm) ≤
λ2

λ1

Vσ(t−m)(t
−
m) = βVσ(t−m)(t

−
m) ≤ µVσ(t−m)(t

−
m). (13)

This together with (10) leads to

V (t) < eα(t−tm)µVσ(t−m)(t
−
m) = eα(t−tm)µVσ(tm−1)(tm). (14)

For any t ∈ [0, T ], the following inequality holds

V (t) < eα(t−tm)µVσ(tm−1)(tm) ≤ eα(t−tm)µeα(tm−tm−1)Vσ(tm−1)(tm−1)

< eα(t−tm−1)µ2Vσ(tm−2)(tm−1) < · · · < eαtµNσ(0,t)Vσ(0)(0) (15)

≤ eαtµNσ(0,T )Vσ(0)(0) ≤ eαTµ
T
τa Vσ(0)(0).

By (6), we derive

V (t) ≥ xT (t)P1,σ(t)x(t) = xT (t)R
1
2
1R

− 1
2

1 P1,σ(t)R
− 1

2
1 R

1
2
1 x(t)

≥ λmin

(
R

− 1
2

1 P1,σ(t)R
− 1

2
1

)
xT (t)R1x(t) (16)

= λmin(P̃1,σ(t))x
T (t)R1x(t),

and

Vσ(0)(0) = xT (0)P1,σ(0)x(0) +

∫ 0

−τ

e−αsxT (s)P2,σ(0)x(s)ds+ ωT (0)P3,σ(0)ω(0) (17)

≤ max
{
λmax(P̃1,σ(0)), λmax(P̃3,σ(0)), λmax(P̃2,σ(0))

}(
c1 + c0 +

c1
α
(eατ − 1)

)
.

Then, from (15), (16) and (17), we obtain

xT (t)R1x(t) ≤ eαTµ
T
τa

+1
(
c1 + c0 +

c1
α
(eατ − 1)

)
, (18)

which, combining (4c), further implies that xT (t)R1x(t) < c2. This completes the proof
of Theorem 3.1.
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Remark 3.1. Based on β ≤ µ, we can know that at the switching point tm, the Lyapunov-
Krasovskii functional satisfies

Vσ(tm)(tm)

Vσ(t−m)(tm)
=

Vσ(tm)(tm)

Vσ(tm−1)(tm)
≤ µ ⇔ Vσ(tm)(tm) ≤ µVσ(tm−1)(tm),

which is just the condition needed using average dwell time approach [16].

When ω(t) = 0, choose a Lyapunov-Krasovskii functional candidate as

V (t) = Vσ(t)(t) = V1,σ(t)(t) + V2,σ(t)(t). (19)

For system (1a) with u(t) = 0, ω(t) = 0, we derive the following result.

Theorem 3.2. System (1a) (u(t) = 0, ω(t) = 0) is FTS with respect to (c1, c2, T , R1, σ)
if there exist positive scalars α, τ , positive definite matrices P1,i ∈ Rn×n and P2,i ∈ Rn×n,
i ∈ N such that the following inequalities hold[

Ω1,i P1,iAdi

∗ −eατP2,i

]
< 0, i ∈ N , (20a)

β ≤ µ <
c2

c1 +
c1
α
(eατ − 1)

e−αT , (20b)

τa > τ ∗a =
T lnµ

ln
(

c2
c1+

c1
α
(eατ−1)

)
− αT − lnµ

, (20c)

where

β =
λ2

λ1

, λ2 = max

{
max
ι∈N

(λmax(P̃1,ι)),max
ι∈N

(λmax(P̃2,ι))

}
, ι ∈ N ,

λ1 = min

{
min
κ∈N

(λmin(P̃1,κ)),min
κ∈N

(λmin(P̃2,κ))

}
, κ ∈ N .

When τ = 0, u(t) = 0, ω(t) = 0, system (1a) becomes

ẋ(t) = Aσ(t)x(t), (21)

then we can obtain the following result from Theorem 3.2.

Corollary 3.1. System (21) is FTS with respect to (c1, c2, T, R1, σ) if there exist a positive
scalar α, and positive definite matrices P1,i ∈ Rn×n, i ∈ N such that

P1,iAi + AT
i P1,i − αP1,i < 0, i ∈ N , (22a)

maxι∈N (λmax(P̃1,ι))

minκ∈N (λmin(P̃1,κ))
≤ µ <

c2
c1
e−αT , ι ∈ N , κ ∈ N , (22b)

τa > τ ∗a =
T lnµ

ln c2
c1
− αT − lnµ

. (22c)

3.2. Dynamic output feedback controller design. Now, we are in a position to
present a solution to the problem of finite-time dynamic output feedback control for
system (3). By Theorem 3.1, we can derive the following result.

Theorem 3.3. System (3) is FTB with respect to (c1, c0, c2, T, diag{R1, R3}, R2, σ) if
there exist positive scalars α, τ , positive definite matrices X1,i ∈ Rn×n, Y1,i ∈ Rn×n,
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Q2,i ∈ R2n×2n, P3,i ∈ Rp×p, and matrices N1,i ∈ Rn×n, Ãi ∈ Rn×n, B̃i ∈ Rn×q, C̃i ∈ Rm×q,

D̃i ∈ Rm×q, i ∈ N such that (4c) and the following inequalities hold
Ψ1,i Ψ2,i Ψ3,i ΠT

1,i

∗ −eατQ2,i 0 0
∗ ∗ Ω3,i 0
∗ ∗ ∗ −Q−1

2,i

 < 0, i ∈ N , (23a)

β ≤ µ <
c2

c1 + c0 +
c1
α
(eατ − 1)

e−αT , (23b)

where

Ψ1,i =

[
Ψ1

1,i Ψ2
1,i

∗ Ψ3
1,i

]
, Ψ2,i =

[
Ψ1

2,i 0
Ψ2

2,i 0

]
,

Ψ3,i =

[
Ψ1

3,i

Ψ2
3,i

]
, Π1,i =

[
Y1,i I
NT

1,i 0

]
, β =

λ2

λ1

,

and

Ψ1
1,i = AiY1,i + Y1,iA

T
i +BiC̃i + C̃T

i B
T
i − αY1,i, Ψ2

1,i = Ai +BiD̃iCi + ÃT
i − αI,

Ψ3
1,i = X1,iAi + B̃iCi + AT

i X1,i + CT
i B̃

T
i − αX1,i, Ψ1

2,i = Adi +BiD̃iCdi,

Ψ2
2,i = X1,iAdi + B̃iCdi, Ψ1

3,i = Ei +BiD̃iFi, Ψ2
3,i = X1,iEi + B̃iFi,

Ãi = X1,iAiY1,i +X1,iBiDciCiY1,i +M1,iLiCiY1,i +X1,iBiCciN
T
1,i +M1,iAciN

T
1,i,

B̃i = X1,iBiDci +M1,iLi, C̃i = DciCiY1,i + CciN
T
1,i, D̃i = Dci,

λ2 = max

{
max
ι∈N

(λmax(Q̃1,ι)),max
ι∈N

(λmax(Q̃2,ι)),max
ι∈N

(λmax(P̃3,ι))

}
, ι ∈ N ,

λ1 = min

{
min
κ∈N

(λmin(Q̃1,κ)),min
κ∈N

(λmin(Q̃2,κ)),min
κ∈N

(λmin(P̃3,κ))

}
, κ ∈ N ,

Q̃1,i = diag
{
R

−1/2
1 , R

−1/2
3

}
Q1,idiag

{
R

−1/2
1 , R

−1/2
3

}
,

Q̃2,i = diag
{
R

−1/2
1 , R

−1/2
3

}
Q2,idiag

{
R

−1/2
1 , R

−1/2
3

}
.

Proof: Choose a Lyapunov-Krasovskii functional candidate as

V (t) = V σ(t)(t) = V 1,σ(t)(t) + V 2,σ(t)(t) + V3,σ(t)(t), (24)

where

V 1,σ(t)(t) = ξT (t)Q1,σ(t)ξ(t), V 2,σ(t)(t) =

∫ t

t−τ

eα(t−s)ξT (s)Q2,σ(t)ξ(s)ds.

Replacing Ai, Adi, Ei, P1,i, P2,i with Āi, Ādi, Ēi, Q1,i, Q2,i in (4a), respectively, yields Ω1,i Q1,iĀdi Q1,iĒi

∗ −eατQ2,i 0
∗ ∗ Ω3,i

 < 0, (25)

where

Ω1,i = Q1,iĀi + ĀT
i Q1,i +Q2,i − αQ1,i.

Define

Q1,i =

[
X1,i M1,i

MT
1,i W1,i

]
, Q−1

1,i =

[
Y1,i N1,i

NT
1,i V1,i

]
, Π2,i =

[
I X1,i

0 MT
1,i

]
,
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from which we can obtain

X1,iY1,i +M1,iN
T
1,i = I, X1,iN1,i +M1,iV1,i = 0, Q1,iΠ1,i = Π2,i.

Let Ti = diag{Π1,i, I, I}. Multiplying (25) by T T
i and Ti on the left and on the right,

respectively, leads to Ψ1,i +ΠT
1,iQ2,iΠ1,i Ψ2,i Ψ3,i

∗ −eατQ2,i 0
∗ ∗ Ω3,i

 < 0. (26)

Using Schur complement formula, (23a) can be obtained. Replacing P̃1,ι, P̃2,ι, P̃1,κ, P̃2,κ

with Q̃1,ι, Q̃2,ι, Q̃1,κ, Q̃2,κ in (4b), respectively, we have (23b). This completes the proof
of Theorem 3.3.
It is noted that (23a) is not a linear matrix inequality due to the existence of the terms

Q2,i and Q−1
2,i . In order to obtain the desired dynamic output feedback controller (2), we

propose the following method.
Performing a congruence transformation to the matrix in (23a) via diag{I, I, I, Q1,i}

leads to 
Ψ1,i Ψ2,i Ψ3,i ΠT

1,iQ1,i

∗ −eατQ2,i 0 0
∗ ∗ Ω3,i 0
∗ ∗ ∗ −Q1,iQ

−1
2,iQ1,i

 < 0, i ∈ N . (27)

Note that

(Q1,i −Q2,i)Q
−1
2,i (Q1,i −Q2,i) ≥ 0, (28)

which means that

−Q1,iQ
−1
2,iQ1,i ≤ Q2,i − 2Q1,i. (29)

Denote Q2,i =

[
X2,i M2,i

MT
2,i W2,i

]
. Based on (27) and (29), we can derive the following

theorem immediately.

Theorem 3.4. System (3) is FTB with respect to (c1, c0, c2, T, diag{R1, R3}, R2, σ) if
there exist positive scalars α, τ , positive definite matrices X1,i ∈ Rn×n, Y1,i ∈ Rn×n,
W1,i ∈ Rn×n, X2,i ∈ Rn×n, W2,i ∈ Rn×n, P3,i ∈ Rp×p, and matrices M1,i ∈ Rn×n, M2,i ∈
Rn×n, Ãi ∈ Rn×n, B̃i ∈ Rn×q, C̃i ∈ Rm×q and D̃i ∈ Rm×q, i ∈ N such that (4c), (23b)
and the following inequalities hold

Ψ1,i Ψ2,i Ψ3,i ΠT
2,i

∗ −Ψ4,i 0 0
∗ ∗ Ω3,i 0
∗ ∗ ∗ Ψ5,i

 < 0, i ∈ N , (30)

where

Ψ4,i =

[
X2,i M2,i

MT
2,i W2,i

]
, Ψ5,i =

[
X2,i − 2X1,i M2,i − 2M1,i

MT
2,i − 2MT

1,i W2,i − 2W1,i

]
.

Moreover, dynamic output feedback controller gains are given by (2) with

Dci = D̃i, Cci =
(
C̃i −DciCiY1,i

)
N−T

1,i , Li = M−1
1,i

(
B̃i −X1,iBiDci

)
, (31)

Aci = M−1
1,i

(
Ãi −X1,iAiY1,i −X1,iBiDciCiY1,i −M1,iLiCiY1,i −X1,iBiCciN

T
1,i

)
N−T

1,i .

Based on Theorem 3.2 and Theorem 3.4, we have the following result.
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Theorem 3.5. System (3) with ω(t) = 0 is FTS with respect to (c1, c2, T, diag{R1, R3}, σ)
if there exist positive scalars α, τ , positive definite matrices X1,i ∈ Rn×n, Y1,i ∈ Rn×n,
W1,i ∈ Rn×n, X2,i ∈ Rn×n, W2,i ∈ Rn×n, and matrices M1,i ∈ Rn×n, M2,i ∈ Rn×n,

Ãi ∈ Rn×n, B̃i ∈ Rn×q, C̃i ∈ Rm×q, D̃i ∈ Rm×q, i ∈ N such that (20c) and the following
inequalities hold  Ψ1,i Ψ2,i ΠT

2,i

∗ −Ψ4,i 0
∗ ∗ Ψ5,i

 < 0, i ∈ N , (32a)

β ≤ µ <
c2

c1 +
c1
α
(eατ − 1)

e−αT , (32b)

where

β =
λ2

λ1

, λ2 = max

{
max
ι∈N

(λmax(Q̃1,ι)),max
ι∈N

(λmax(Q̃2,ι))

}
, ι ∈ N ,

λ1 = min

{
min
κ∈N

(λmin(Q̃1,κ)),min
κ∈N

(λmin(Q̃2,κ))

}
, κ ∈ N .

Moreover, dynamic output feedback controller gains are given by (2) with (31).

4. Numerical Examples. In this section, two examples are presented to show the ef-
fectiveness of the main results in this paper.

Example 4.1. Consider system (1a) and (1c) with the following parameters

A1 =

[
0 −0.5
0.5 0

]
, Ad1 =

[
0.05 −0.05
0.15 0.05

]
, E1 =

[
−0.1
−0.1

]
,

A2 =

[
0 −1.2
1.2 0

]
, Ad2 =

[
0.04 −0.2
0.08 0.04

]
, E2 =

[
−0.1
0.1

]
,

G1 = G2 = −1, B1 = B2 = 0.

Let c1 = 0.1, c0 = 0.1, c2 = 20, R1 = R2 = I. Firstly, we give the following two tables to
demonstrate the relations between the parameters τmax and T for the fixed α = 0.4, and
the relations between τmax and α under T = 3 by solving Theorem 3.1, respectively.

Table 1. The τmax and time interval T when α = 0.4

T 1 1.5 2 2.5 3
τmax 4.5 3.4 2.4 1.4 0.4

From Table 1, we can know that τmax is related to the time interval T , and a larger τmax

allows a smaller T for the given α, c1, c0 and c2.

Table 2. The τmax and α when T = 3

α 0.4 0.42 0.45 0.452 0.455 0.465 0.47 0.48
τmax 0.43 0.3 0.12 0.11 0.09 0.03 0.004 –

Table 2 demonstrates that a larger α will lead to a smaller τmax, and the feasible maxi-
mum value of α is 0.48 for the given T , c1, c0 and c2.
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When c1 = 0.1, c0 = 0.1, c2 = 20, R1 = R2 = I, α = 0.4, τ = 0.1, the time interval T
satisfies T ≤ 3.23. In this case, choosing T = 3 and solving Theorem 3.1, we can obtain

β = 1.8735, µ = 2.2272,
c2

c1 +
c1
α
(eατ − 1)

e−αT = 28.6575, τ ∗a = 0.9572,

which shows that condition (4b) is satisfied. According to (4c), for any switching signal
σ(t) ∈ N with average dwell time τa > τ ∗a = 0.9572, system (1) is FTB with respect to
(0.1, 0.1, 20, 3, I, I, σ).

Choose τa = 0.958, and the initial value function φ(s) =
[
0.2 −0.2

]T
, ω(0) = 0.1.

Figure 1 and Figure 2 present the phase plot of state and the switching signal, respectively.
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Figure 1. Phase plot of
state x(t)
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Figure 2. Switching sig-
nal σ(t) with τa = 0.958

Example 4.2. Consider systems (1) with the following parameters

A1 =

−0.9 0.2 −0.2
0.2 −0.6 0.3
−0.3 0.1 −0.1

 , Ad1 =

0.2 0 0.1
0.1 0.3 0.1
0.3 0.1 0.2

 , B1 =

0.30.5
0.2

 , E1 =

0.020.01
0.04

 ,

C1 =
[
−1.2 0.5 0.9

]
, Cd1 =

[
0.3 0.1 0.2

]
, F1 = −0.1, G1 = −2, (34)

A2 =

−0.8 −0.1 −0.2
0.2 −0.7 0.3
0.2 −0.1 0.1

 , Ad2 =

0.2 0.1 0
0.1 0.2 0.1
0.1 0.1 0.3

 , B2 =

 0.4
−0.2
0.3

 , E2 =

 0.1
0.07
0.015

 ,

C2 =
[
−0.1 0.12 0.5

]
, Cd2 =

[
0.1 0.3 0.4

]
, F2 = −0.1, G2 = −1.

Letting

c1 = 0.1, c0 = 0.1, c2 = 20, diag{R1, R3} = I, R2 = I, α = 0.05, τ = 0.1, (35)

Theorem 3.4 has a feasible solution when T ≤ 4.12. Choosing T = 4 and solving Theorem
3.4, we can obtain

β = 2.4136, µ = 2.6337,
c2

c1 +
c1
α
(eατ − 1)

e−αT = 27.9651, τ ∗a = 1.2297,
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which shows that condition (23b) is satisfied. Moreover, the parameters of dynamic output
feedback controller (2) given by (31) as follows:

Ac1 =

 −0.3680 −0.0407 −0.7364
0.6777 −0.8536 −0.2681
0.6780 −0.4050 −0.9813

 , L1 =

 −0.9260
−0.7092
−2.3379

 ,

Cc1 =
[
−0.2364 0.1319 0.2859

]
, Dc1 = 0.2275,

Ac2 =

 −0.5501 −0.2425 −0.4145
0.1445 −0.6903 0.2161
0.4970 −0.3714 −0.8783

 , L2 =

 2.3065
−2.4720
−2.6711

 ,

Cc2 =
[
−0.1628 0.0997 0.164

]
, Dc2 = −2.1263.

According to (4c), for any switching signal σ(t) ∈ N with average dwell time τa > τ ∗a =
1.2297, system (1) is FTB with respect to (0.1, 0.1, 20, 4, diag{I, I}, I, σ).

Choosing τa = 1.23, the initial value function φ(s) =
[
0.2 −0.2 0.1

]T
, and ω(0) =

0.1, Figure 3 and Figure 4 present the phase plot of state and the switching signal, respec-
tively.
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Moreover, with the parameters (34), (35) and T = 4, solving Theorem 3.5, we can
obtain the parameters of dynamic output feedback controller (2) given by (31) as follows:

Ac1 =

 −1.8330 0.7322 0.4849
−1.2529 0.1612 1.3220
0.0364 −0.0515 −0.4668

 , L1 =

 2.7709
4.1594
−0.6778

 ,

Cc1 =
[
1.0164 −0.5774 −0.8323

]
, Dc1 = −3.0668,

Ac2 =

 −0.3929 −0.4049 −1.1240
0.0542 −0.6010 0.5647
0.5952 −0.4726 −1.3561

 , L2 =

 −1.5202
−0.5413
−5.2242

 ,

Cc2 =
[
−0.2865 0.2158 0.7241

]
, Dc2 = 0.8810.

5. Conclusions. In this paper, the problem of finite-time control via dynamic output
feedback has been studied for a class of switched delay system. The concepts of finite-
time stability and finite-time boundedness have been generalized to switched delay system,
respectively. Some sufficient criteria have been developed to solve the problem of finite-
time boundedness, finite-time stability and finite-time dynamic output feedback control.
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A feasible dynamic output feedback controller has also been given. Finally, two numerical
examples have been provided to show the effectiveness of the results.
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