International Journal of Innovative
Computing, Information and Control ICIC International ©)2012 ISSN 1349-4198

Volume 8, Number 7(A), July 2012 pp. 45474564

IMPLEMENTING A DYNAMIC ONTOLOGY MAPPING APPROACH
IN MULTIPLATFORM COMMUNICATION MODULE
FOR DISTRIBUTED MULTI-AGENT SYSTEM

SALLY M. ELGHAMRAWY*, ALI . ELDESOUKY AND AHMED I. SALEH

Computers and Systems Department
Faculty of Engineering
Mansoura University
No. 60, El Gomhoria Street, Mansoura, Egypt
*Corresponding author: Sally@mans.edu.eg

Received April 2011; revised October 2011

ABSTRACT. Communication is the most important feature for meaningful interaction
among agents in distributed multi-agent systems. Communication enables agent’s inter-
action to achieve their goals. Agent communication languages provide a standard in the
protocol and language used in the communication, but cannot provide a standard in on-
tology, because ontology depends on the subject and concept of the communication. This
lack of standardization is known as interoperability problem. In order to obtain semantic
interoperability, agents need to agree on the basis of different ontologies. In this paper,
agent communication layers are proposed to outline the communication among agents,
and Multiplatform Communication System (MPCS) architecture is proposed to provide a
highly flexible and scalable system. In addition a Dynamic Ontology Mapping System for
Agent Communication (DOMAC) is proposed based on different mapping approaches.
Keywords: Agent communication language (ACL), Ontology mapping, Interoperabil-
ity, KQML, Multi-agent system (MAS), Distributed intelligent system

1. Introduction. The proposed Distributed Multi-Agent System (DMAS) framework [1]
provides the basis for an open environment where agents interact with each other to reach
their individual or shared goals in evolving environment. To interact in such environment,
agents need to overcome many challenges. One of the most important challenges that the
agents must overcome is how they must be able to communicate with one another. So the
development in agent communication module must be considered in designing the DMAIS
in order to give agents the ability to have successful cooperation, negotiation, and sched-
uling among one another. In other words, the communication is the kernel of any MAS;
without communication there would not be any interaction among agents. Agent frame-
work is a set of programming tools for constructing agents, and its infrastructure provides
regulations that agents must follow to communicate and understand one another, thereby
enabling knowledge sharing. Agent infrastructures mostly deal with the communication
among agents based on a communication language using common ontological system.
Communication is the most important feature for meaningful interaction among agents
in multi-agent systems, as it enables agents to interact and share information to perform
tasks to achieve their goals. In order to achieve this objective, Agent Communication
Languages (ACL) has been proposed based on the speech-act theory. Speech act theory
is derived from the linguistic analysis of human communication. It is based on the idea
that with language the speaker not only makes statements, but also performs actions [2].
ACL provides a standard in the protocol and language used in the communication, but

4547

4548 S. M. ELGHAMRAWY, A. I. ELDESOUKY AND A. I. SALEH

cannot provide a standard in ontology, because ontology depends on the subject and con-
cept of the communication, and it is almost impossible for two agents to share the same
semantic vocabulary; they usually have a heterogeneous private vocabulary defined in
their own private ontology. The development of generally accepted standards will take a
long time [3]. This lack of standardization is known as interoperability problem. In order
to obtain semantic interoperability in DMAIS, agents need to agree on the basis of differ-
ent ontologies. In this paper our main concern is to develop the communication module
that helps in the improvement of DMAIS performance. In brief, the organization of the
paper is as follows. In Section 2, the related work of communication in MAS is reviewed,
and then the definition of ontology is introduced, and also an outline of the researches
use ontology is presented. The concept of ontology mapping is discussed, showing the
different approaches proposed to solve the ontology mapping problem and some compre-
hensive surveys of some famous ontology mapping systems were introduced too; finally an
example of ontology mapping among agents in MAS is illustrated. In Section 3, communi-
cation layers are proposed to outline the communication process among agents. In Section
4, Multiplatform Communication System (MPCS) architecture is proposed to provide a
highly flexible and scalable system that allows agents written in different languages to
send and receive messages using the KQML standard, as well as it allows agents to main-
tain several Dialogues at a time. In Section 5, a Dynamic Ontology Mapping System for
Agent Communication (DOMAC) is proposed based on different mapping approaches, in
order to provide help in the conversation among different agents. Section 6 shows the ex-
perimental evaluation and the results obtained after implementing the proposed systems.
Finally, Section 7 summarizes major contribution of the paper and proposes the topics
for future research.

2. Related Work for Communication in Multi-Agent Systems. The communica-
tion in MAS has been subject of interests for many researches [4-6], because communica-
tion is one of the most important issues in MAS design. The communication module in
any MAS is responsible of how the agent communicates with other agents using an agent
communication language (ACL). There are a few common ACLs such as the Knowledge
Query and Manipulation Language (KQML) [7] and the Foundation for Intelligent Phys-
ical Agent’s communication language (FIPA’s ACL) [8]. The exchanging of data among
agents is vitally important to the efficiency of MAS. Communication is required to ensure
cooperation among agents. Each agent’s actions depend critically on knowledge that is
accessible only from another agent. Researchers investigating agent communication lan-
guages mention three key elements to achieve multi-agent interaction [8]: (1) A common
Agent Communication Language (ACL) and protocol. (2) A common format for the con-
tent of communication: content representation language. (3) A common ontology. There
are several definitions of ontology have been introduced [9,10,11]. Some of them have
been used and some of them are contradictory. A definition accepted in the multi-agent
systems area, says that an ontology is a formal representation of concepts, characteris-
tics and relations in each specific domain, allowing the common agreement of the people
and software agents, and enabling a machine to use the knowledge of some application,
multiple machines to share knowledge and still enabling the knowledge reuse. Ontolo-
gies play a key role in communication in distributed Multi-agent System, because they
can provide and define a shared vocabulary about a definition of the world and terms
used in agent communication. Ontology mapping is a primary problem that has to be
solved in order to allow agents with different backgrounds to adjust themselves before
starting any form of cooperation or communication. Using a common ontology is imprac-
tical, because it would result in assuming a standard communication vocabulary and it

IMPLEMENTING A DYNAMIC ONTOLOGY MAPPING APPROACH 4549

does not take into account the conceptual requirements of agents that could appear in
future [12]. In order to reach interoperability, two problems must be dealt with, namely:
structural heterogeneity and semantic heterogeneity [13]. Several projects have used on-
tologies in agent-based systems. [14] presents an ontology-driven multi-agent architecture
that supports sharing and reusing among different types of knowledge acquisition agents.
Other projects use ontologies to describe agent behavior. [15] has developed an architec-
ture using a semantic knowledge model to define the behavior of agents. [16] proposes
a generic multi-agent task-oriented architecture based on a formal model described us-
ing the Unified Problem solving Method description Language (UPML) [17]. [18] also
describes a UPML-based framework to build information agents by reusing a library of
domain-independent problem solving components. [19] developed software to generate
JADE agent code from ontology-based descriptions for the K4Care system [20]. There
are different approaches have been proposed to solve the ontology mapping problem And
some Comprehensive surveys of some famous ontology mapping systems were introduced
too, such as GLUE [21], QOM [22] and PROMPT [23]. The most common systems that
participated in OAEI campaign are: Falcon-AO [24] is a similarity-based generic ontology
mapping system. It consists of three elementary matchers: V-Doc, I-Sub, GMO, and
one ontology partitioner, PBM. V-Doc constructs a virtual document for each URlIref,
and then measures their similarity in a vector space model. RiIMOM [25] is a general
ontology mapping system based on Bayesian decision theory. It utilizes normalization
and NLP techniques and integrates multiple strategies for ontology mapping. LILY [26]
is a generic ontology mapping system based on the extraction of semantic sub-graph.
It exploits both linguistic and structural information in semantic sub-graphs to gener-
ate initial alignments. Then a subsequent similarity propagation strategy is applied to
produce more alignments if necessary. ASMOV [27] is an automated ontology mapping
tool that iteratively calculates the similarity among concepts in ontologies by analyzing
four features such as textual description and structure information. It then combines the
measures of these four features using a weighted sum. The weights are adjusted based on
some static rules. PRIOR+ [28] introduces a new generic ontology mapping approach;
the approach measures both the linguistic and the structural similarities of the ontologies.
More specifically, three kinds of similarity are calculated: edit distance based similarity,
profile similarity and structural similarity.

3. The Proposed Agent Communication Layers. The process of communication
among agents in DMALIS is divided into five main layers, each layer provides information

Ontology

Content language Dialogues

Agent Communication Language Speech Act

Network Infrastructure

FIGURE 1. The proposed communication layers

4550 S. M. ELGHAMRAWY, A. I. ELDESOUKY AND A. I. SALEH

needed to the layer above it, and receives information from the layer below it, the proposed
five layers are shown in Figure 1. The communication layers are constituted based on the
Message Transport Protocol (TCP/IP protocol) extend it by the network infrastructure
layer, agent communication language, content language and the ontology layer. Each
layer is illustrated below:

3.1. Message transport protocol layer. Message Transport layer is the lowest layer
in the proposed agent communication layers. Since data transmission from source ma-
chines to destination machines through network is realized in this layer, so this layer can
be recognized as the transport service provider. This layer is the physical world consist-
ing of agent host machines. There are many protocols that can be used as a standard
for the network transport service provider, namely TCP/IP, UDP, HTTP, FTP, IIOP,
RMI and SMTP. Hence, the communication among agents, which located on distributed
machines, must be constituted by some kind of network protocol. In the proposed agent
communication layers, the Transmission Control Protocol/Internet Protocol (TCP/IP) is
used.

3.2. Network infrastructure layer. The Network Infrastructure Layer above the Mes-
sage Transport Layer plays a vital role in connecting the agent layers (the logical layer)
with the network layers (the physical layer), starting by the Message Transport Layer.
Such connection is guaranteed and realized by two well-defined interfaces, one between
the agent layers and this infrastructure, and the other between this infrastructure and the
network layer (Message Transport Layer). Most of agents are running on different ma-
chines and need to communicate and exchange different kinds of data over the networks.
If the DMALIS is directly built on the distributed network, this make the communication
among agents has a great overhead, cost and time consuming. So this layer is proposed to
solve the problem that might occur by building this interface that makes the agents not
aware of the physical-network issues. Once this layer has been defined, agents can send
and receive messages to/from any other agent without concern about network issues. So
when the messages are sent from agents to any message transport layer of a specific agent,
they should be delivered to their destination without further interaction with agents. Fi-
nally, this layer provides transparent support for network communication among agents.
This transparency makes the agents deal with the problem of when and with whom to
interact only, and leaves the problem of how to interact to the network layer (message
transport layer). In this way, the agent layers (the logical layer) and the network layer
(the physical layer) can be independently implemented.

3.3. Agent communication language layer. To establish a communication between
any two agents, they communicate by languages. At present there are two mainstreams in
communication languages. One is FIPA-ACL [8] proposed by European FIPA institute,
the other is KQML [7] proposed by KSE (Knowledge Share Effort) research group of
American DARPA, and based on the linguistic theory of the speech act. To express
communication among agents in the Agent Communication Language layer, the KQML
(Knowledge Query and Manipulation Language) is used. The KQML is a high-level
communication language and protocol for exchanging information and sharing knowledge,
which provides the basic format of expressing and processing messages and supports
sharing information among agents [2], it was conceived both as a message format and a
message handling protocol to support run-time knowledge sharing among agents.

e Knowledge Query and Manipulation Language (KQML). In this layer, KQML language
is chosen to be the internal format of the agent’s messages, and then this message will be
translated to any other language according to the destination agent. Any KQML message

IMPLEMENTING A DYNAMIC ONTOLOGY MAPPING APPROACH 4551

structure consists of three layers: content, message and communication layers.

o The Speech Act Theory. The Artificial Intelligence researchers exploited the speech act
theory to model communication among software agents. Austin suggests that the role of
languages in communication is to impart actions [29,30]. Speakers do not simply utter
sentences that are true or false, but rather perform speech actions such as requests and
suggestions. Consequently, all utterances are speech acts, i.e., they are actions of some
sort.

3.4. The content layer. Above the agent communication layer, there is the content
language layer that contains the actual information of a message. Different content lan-
guages within a single agent or Multi-Agent System can be used like Semantic Language
(SL), SQL, PROLOG or any other representation means. In this layer, KIF (Knowledge
Interchange Format) is used. KIF is a general purpose content language developed in
Knowledge Sharing Effort. The Interlingua Group is developing a common language for
expressing the content of a knowledge-base. This group has published a specification
document describing the KIF [31].

e Dialogues. After defining the content language layer that contains the actual message,
these messages among agents are grouped into Dialogues. A dialogue must be established
first, when any agent wants to communicate with another agent. The benefit of using
these dialogues, in the proposed communication layers, is that when an agent wants to
communicate with two or more agents in the same time, the agent can maintains several
Dialogues at a time with the same or with different receiving agents.

3.5. The ontology layer. The ontology layer is used to define a common vocabulary for
agents to communicate with one another, it is used to represent the content in the messages
exchanged among agents to reduce the conceptual and terminological confusion that often
appear among different people and organizations. Ontology determines the semantics of
the concepts used in the content language. The actual meaning of the message content
is captured in the ontology layer. This layer gives detailed definitions of the syntax and
the semantics of the message. There are many ontology languages proposed as a formal
language to encode the ontology, such as, Resource Description Framework (RDF) [32],
RDF Schema (RDFS) [33], Ontology Inference Layer (OIL) [34], DAML+OIL [35], or Web
Ontology Language (OWL) [36]. The development of the most used ontology languages
are shown in Figure 2.

@

Define Vocabulanies
""""" 1 Combine Vocabularies
L}

FIGURE 2. The development of the ontology languages

r
'
¥

Extend Vocabularies

e The Web Ontology Language (OWL). The Web Ontology Language (OWL) [36] is a
language used in this layer to describe ontologies in a form of classes and relations among
them together with further restrictions and intended use of them. It is designed primarily
for the WWW documents and applications by W3C [37]; it is characterized by formal
semantics and RDF/XML-based serializations for the Semantic Web, but it can be used
for any other domain as well. OWL is built on RDF/RDFS and uses the XML Schema
constructs [38]. It is not simply a language for a message format, like XML language, but
it is a language intended for knowledge and ontology representation.

4552 S. M. ELGHAMRAWY, A. I. ELDESOUKY AND A. I. SALEH

4. The Proposed Multiplatform Communication System Architecture (MPC
S). In the proposed DMAIS framework [1], there are eight main modules that make the
agents have the ability to interact and coordinate with one another. The most critical
module and the kernel of DMAIS is the communication module; it is responsible for all
the interactions among agents, as well as enables communication between other modules
in DMALIS, by means of message passing. It plays an essential role for agents to exchange
information and to coordinate their actions. In this sense, a communication module in
DMALIS is proposed to control the communication process in DMAIS. First a Multiplat-
form Communication System (MPCS) is designed as a modular architecture, as shown
in Figure 3, which permits flexibility, scalability and interoperability, in which it allows
the system to be more extensible.

Message

Dialogue Translator

Master

Dialogue sub-
Master

Dialogues

ey S

mmmm e pm———

Message

Message sub-
Distributor

Distributor

/ Transport
Protocol
Task Manager
Distributer v v

Gentral Unit of
Control

Policy -
Manager

Handling Phase

Imitiation Phase Processing Phase

FiGure 3. The proposed multiplatform communication system architecture

MPCS has been designed with a decentralized architecture, this done by distributing the
functions of the system among different interchangeable modules based on using separate
communication layers for each agent, as showed in Figure 3, which leads to ensure the
efficiency of the system by avoiding the bottlenecks that might occurs in using centralized
architecture. The agents involved in the communication may be local to a single Platform
or on different Platforms. Two modes of communication are involved for message delivery

in MPCS which includes local and global communication. There are several advantages
of MPCS platform:

1. Allows agents written in different languages to send and receive messages using the
KQML standard.

2. Provides a highly flexible and scalable system which supports large number of agents
to be loaded. In this way, agents developed in any other platforms can communicate,
providing that the necessary modules have been implemented.

3. MPCS has the property of distributed architecture, as its functions are distributed
among different interchangeable modules. This distributed feature, thanks to the
network transparency, is naturally and easily obtained.

4. Furthermore, MPCS has reliable and fault tolerant features, and it can be easily be
developed.

5. The core modules of MPCS distributed on multiple machines. This ensures that the
failure of one machine will not cause the whole system to come down and does not
affect the agent system working on its current machines. These advantages have been
achieved through the use of interchangeable modules as shown in Figure 3, which
ensure efficiency and avoids bottlenecks by distributing the function of the system
among different modules. MPCS has three main phases, that groups the modules

IMPLEMENTING A DYNAMIC ONTOLOGY MAPPING APPROACH 4553

and sub-modules that has direct interactions with one another to achieve a specific
task. The three modules are illustrated in the next sub sections.

4.1. Initiation phase. This phase contains the modules that are responsible for the
interaction and registrations of agents and it contains the central unit of control that
distributes the tasks to the modules that can accomplish it. The Task distributer (central
unit of control) is the core of the system. This module ultimate goal is to distribute
the main tasks of the platform to the appropriate modules. It also creates a list of all
the agents that are using the system. The Agent Registration module responsible for the
registration of all the agents connected to the system at a given time. Any agent that wants
to communicate with other agent needs to register in the system through this module.
Agents interact directly through Agent Interface. So, the communication platform is
separated from the agents, in order to simplify the management of the platform. The
Interface has been designed to provide a dynamic interface to the programmer to utilize
the features of agent registration Module. In this phase, a library of Interaction Protocols
has been provided allowing MPCS Agents to communicate based on KQML specifications.

4.2. Handling phase. It contains the modules that are responsible for handling the
messages among agents. The messages among agents are grouped into Dialogues. If
an agent wants to communicate with another agent, it needs first to create a Dialogue
with it, to which all subsequent messages between both are sent/received. An agent can
maintain several Dialogues at a time with the same or with different receiving agents. The
main goal of the MPCS is to provide a high-level management to the dialogues among
agents registered in the system to ensure the delivery of messages among them. FEach
agent has a Dialogue Master Module to manage all these Dialogues. Once this module
registered in the system, it is automatically created. This module, with cooperation of
others, responsible for the maintenance of the agent Dialogues, creating new Dialogues
or sending/receiving messages within a Dialogue. The Dialogue Master can potentially
receive a large number of Dialogue requests. To avoid bottlenecks this module distributes
its work among Dialogue Sub-Masters Modules. A Dialogue Sub-Master Module exists for
each pair of sending and receiving agents, responsible for creating dialogues and assigning
messages to them. The Policy Manager Module: its goal is to check whether a message
is allowed in a given Dialogue. It can permit any message sequence within a Dialogue
or limit it to a specific course or several actions of courses. For example, it might be
restrict the communication among specific agents to a simple question/answer dialogue,
while other agents might be allowed free communication. This can be achieved by using
the library of the interaction protocols [39], the protocols may range from simple query
and request protocols, to more complex ones. For this reason, the Policy Manager is a
completely independent module that can adapt to user requirements.

4.3. Processing phase. It contains the modules that are responsible for sending the
message to a specific agent by checking its address if it is in different platform other than
the sending agent’s platform. And if the message received written in different language,
this phase is responsible for translating this message. A Message Distributor module,
similar to the Dialogue master, is responsible for distributing the messages, avoiding
a possible bottleneck by delegating the request to send a message to a Message Sub-
Distributor. This Message Sub-Distributor is responsible for processing all the messages
that belong to the same destination platform. The system will contain as many messages
Sub-Distributors as platforms with which any communication is maintained. The Message
Translator Module serializes the message from the internal format of the system to the
format of the destination platform. Its main goal is to detect the communication language

4554 S. M. ELGHAMRAWY, A. I. ELDESOUKY AND A. I. SALEH

Message Sub-
Distributor

mes:

Manager

Translation to OWL
ontology
ACL

Message

P
Message Sub- K e
'. : Distributor Message Translator output }—' Repsl:ltg

FI1GURE 4. The data flow diagram for the message translator module

used by the sender agent, if the language used is different from the receiver agent, or vice
versa, then a translation among those different languages must be done with cooperation
with the ontology manager module. The data flow diagram for the translation approach
is shown in Figure 4.

The Transport Protocol Manager Module is defined in order to send/receive messages
to/from other platforms. This module is used depending on the destination platform.
There is an ability to insert new transport protocols, by separation of the code in an
independent module, in order to allow different platforms to be able to communicate
with each other’s. External agents can either use the implemented default Transport
Protocol, or another protocol. The default protocol modifies the necessary communication
parameters in order to produce a new protocol. The Ontology Manager Module: stores
this information about the Ontology and provides the facilities that system administrators
need to set up and evolve the Ontology. Additionally, it provides means for defining
mappings among autonomous ontologies. This module uses the DOMAC system proposed
in the next section to perform the mappings among different ontologies. The ontology
manager has two main roles. First, it distributes copies of ontologies to requesting agents.
Second, it informs committing agents of changes in ontology. The ontology manger module
manages the whole dialogues trying to help when it is needed, it provides some services:
(1) The Ability to translate expressions between two different ontologies. (2) Learn with
the ontology services already provided so that it could use this information in a future
negotiation. (3) The Capability for defining, modifying and deleting expressions and
ontology definitions. The ontology manager module includes a basic domain ontologies
represented in OWL.

IMPLEMENTING A DYNAMIC ONTOLOGY MAPPING APPROACH 4555

4.4. How the message is handled in MPCS. A description of how message is trans-
mitted is represented in Figure 5; this example is used for better understanding of the
function of the proposed platform.

SA1 Send 8 Sender

-1 Sen

message(msg) r Agent
Agent Interface (Al)

AI-2 Send
message(msg)
Dialogue Master (DM)

DM-3 Send message(msg)
Dialogue Sub-Master (DSM)

DSM-4 Send message(msg)
D-5 Verify message(msg)
Policy Manager
Dialogues (D) — (PM)

PM-6 Retumn(state))

_— Else Check Semantic sense

—
close(dilogID) Elate
D-7 Send message(msg,

Receiving Agent The interaction
in same platform Task Distributer (TD) between MD,
MSD, AR \l_l'
shown in figure 6

Message di;‘tributer (MD) “ Agent Registration (AR)
- - . -

=~ MSD-26 Translate(msg) L
Message Translator (MT) Message Sub-Distributer(MSD) -
-
e MT-27 Translated(msg) MSD-28 Send message(ﬂn;sg,&drs_,port)
. 4
v Transport Protocol Manager (TPM)

received(msg)

~ -
S~a - e ——— Receiving Agentin different
_________ TP'T? Message platform

FicUrE 5. Sending local or global message in MPCS

The sending agent must register first and also that the corresponding dialogue must
be previously created. First, the sending agent shows to Agent interface (AI) that
it wants to send a message to another agent through a dialogue (D). Then, the Agent
interface delegates the message transmission to the dialogue Master (DM), which in turns
assigns the message to the dialogue Sub-manager (DSM). Both agents may maintain
several dialogues at the same time, so the sending agent must inform the dialogue Sub-
manager (DSM) of the dialogue to which the message is to be delegated. Then, the
dialogue verifies the message state with the help of the Policy Manager (PM). If the
state of the message makes semantic sense then the dialogue communicates with the task
distributer (T'D) to locate the receiving agent. When the task distributer (T'D) receives
the outgoing message, it checks the agent’s location. If the sending and the receiving
agents are in the same platform then it will send the message without the help of message
distributor (MD), otherwise if the receiving agent is in an external platform, then the task
distributer (TD) delegates the outgoing message transmission to the Message Distributor
(MD), which will search the Message Sub-Distributor (MSD) corresponding to the
destination platform. If the Message Sub-Distributor (MSD) does not exist, it is created
at this point, with the necessary parameters to establish the communication obtained

4556 S. M. ELGHAMRAWY, A. I. ELDESOUKY AND A. I. SALEH

[MessageTranslatnr][Message Sub-Distributer] [Message Distributer] Agent Registration

> Search MSD '
<

Exat

&

™

A

SendTo(MSD)
Not Exit

GetAgentPlatform (agent) -
_ Platform (agent)
<

NN, AU NN JSTUN e

lgetTransponProtocolPlatf01111 (pltfrm)
12 LP (pltfim)

l‘-

: setMessage TranslatorPlatform (pltfrm)

\ o MT (pltfrm)
Ml

A 4

\zetAddressPlatform (pltfrm)
| _ adr (pltfrm)
|

A\ 4

|
I GetPortPlatform (agent)

.Y

]
< Create (MSD) ' Port (agent)

' _Readv (MSD)

§ :. SendMessage (msg
SendTo(MSD)
n‘—_l

FIGURE 6. The interaction messages among MD, MSD, AR and MT modules

from the agent registration module (AR). Once the Message Sub-Distributor (MSD)
has been located, it is assigned with the message to be sent, and in turn assigns the
message to the appropriate Message translator (MT). The interaction among these four
modules, namely, Message Distributor (MD), Message Sub-Distributor (MSD), Agent
Registration (AR), and Message Translator (MT), is shown in Figure 6.

The message is translated into the format acceptable to the destination platform, as
showed in Figure 5. Then it will be sent by the Message Sub-Distributor (MSD), then
to the Transport Protocol Manager (TPM) used for communication with the given plat-
form. Finally, the Transport Protocol Manager sends the outgoing message to the agent
in the other platform. A preliminary experiment is then conducted in Section 6, indi-
cating that MPCS has the scalability advantage, as it behaves efficiently under full-load
conditions comparing to recent systems.

5. The Proposed Dynamic Ontology Mapping System for Agent Communi-
cation (DOMAC). The Ontology mapping process takes two ontologies as input and
creates a semantic correspondence among the entities in the two input ontologies. The
ontology manager, described in the previous section, will monitor and help the commu-
nication process at the moment when it is happening, without having to do a mapping
of all the ontologies involved. There must be an ontology mapping algorithm used in
the ontology manager proposed in the MPCS. As a result, a Dynamic Ontology Mapping
System for Agent Communication (DOMAC) is proposed to show agents how to establish
a mapping between two ontologies. The Dynamic Ontology Mapping System for Agent
Communication (DOMAC) is shown in Figure 7; its main goal is to map different ontolo-
gies. The input of DOMAC is two ontologies, O1 and 02, stored in ontologies repository,
expressed in the form of formal taxonomies or ontologies, the language used for describ-
ing the ontologies is the OWL. The output is a mapping, also called the mapping result,

IMPLEMENTING A DYNAMIC ONTOLOGY MAPPING APPROACH 4557

- — A e e e e e e - i g e
Input | +~ >\ I Output
Pllllpu !/ DOMAC Processing Phase \ P;l Put g

aSCRy I Estunator Module \ fass |

([Joint Attention : !
Ontologies || l :

! ! Mapping |
| : Parsing Module Similarity Computation Module™ Mapping Module Y 1 0
L 1 XML Converter Edit .‘:'JI:'.\'I{m.':nI" Based Mapping l i
| | l N ——— | Similarity Generator - Ii
i - Cosine Similaricy - T i
1 : Ontology Parser Mapping 1 i
1 ¥ I

FIGURE 7. Dynamic ontology mapping system for agent communication (DOMAC)

among the input taxonomies or ontologies. Mapping can be represented in different ways
depending on its use. For example, mappings can be represented as queries, bridging
axioms or an instance in a mapping ontology.

5.1. The input phase. The input to the DOMAC is the heterogeneous ontologies stored
in the Ontologies Repository, and these different ontologies are going to be mapped by the
DOMAC system. The ontologies stored in this repository expressed in OWL language,
OWL is built on RDF/RDFS and uses the XML Schema constructs. The repository
built by three main ways. (1) Downloading the ontologies from the ontology libraries.
The Protégé ontology library [40] is used; it is a free, open source ontology editor and
knowledge base framework. The Protégé-OWL editor is an extension of Protégé that
supports the owl. It enables users to load and save OWL and RDF ontologies. (2) The
translated ACL messages to OWL ontologies by the message translator module in the
MPCS, as showed in Figure 3. (3) The messages sent by external agents in form of OWL
ontologies to the MPCS.

5.2. The DOMAC processing phase. There are four main modules in the processing
phase of DOMAC, the first module is the Parsing Module, and its main goal is to deal with
the OWL ontologies stored in the ontologies repository. First, the XML converter converts
the OWL message into ontologically annotated XML document (i.e., the content of the
OWL message have been encoded to XML document), this is because parsing the OWL
messages is a big overhead in agent development and XML encoding is easier to develop
parsers as anyone can use off-the-shelf XML parsers. The XML-encoding enhances the
canonical syntactic encoding. Then the XML ontologies will be parsed and pre-processed
by removing stop words, stemming, and tokenizing. Then the parsing module sends the
parsed document to the similarity computation Module, which measures three kinds of
similarity: edit distance similarity, cosine similarity and structural similarity.

e The edit distance based similarity [41] is calculated between the names of elements
based on their Levenshtein distance. The similarity is defined as:
EdZtDZSt(eu, €2j) (1)
max(l(eﬂ), l(€2j))

where the EditDist(ey;,eq;) is the Levenshtein distance between elements ej; and

e2j, [(€1;) and [(ey;) are the string length of the name of e;; and ey, respectively.

NameSim(ey;, €2;) =

e The structural similarity [41] between two elements calculated from their structural
features (e.g., the number of direct property of a class). The structural similarity of

4558 S. M. ELGHAMRAWY, A. I. ELDESOUKY AND A. I. SALEH

the classes in two ontologies is defined as follows:

StTUCtSim(eli, er) _ 2271(1 — dlnffk (eli; 62]')) (2)

where e; and ey, are two class elements in ontology O1 and O2 respectively, n is the
total number of structure features, and the dif fi(ey;, e2;) denotes the difference for
feature k, and its defined as:

| | sf(e) — sf(ey) |
dl €1i, €25) — 3
I f(ei, e5) max(sf(e1), sf(ez;)) ’
where sf(e1;) and sf(ey;) denote the value of structure features of ej; and eq; re-
spectively.

e Cosine similarity is a non-Euclidean distance measure between two vectors [42]; it
is a common approach to compare documents in the field of text mining. Given two
feature vectors ¢; and ¢;, the similarity score between concepts ¢ and j is represented
using the dot product as follows:

o Ci " Cj
CosSim(i, j)] (4)
The resulting score is in the range of [0, 1] with 1 as the highest relatedness between
concepts ¢ and j. Then for each similarity computed in the similarity computation module,
harmony estimator estimated a measurement of harmony in the FEstimator Module; it
is used to provide a measurable number that can tell which similarity is more reliable
and trustful so that we can give it a higher weight during aggregation. To establish
the joint attention, Agent 1 makes an announcement containing a unique representation
of a concept and instance of the concept. After Agent 2 receive the announcement, it
investigates whether it has a concept of which an instance matches to a certain degree the
communicated instance, by measuring the proportion of words that two instances have
in common. The instance with the highest proportion of corresponding words, together
with the communicated instance, the joint attention provided that the correspondence is
high enough. Then the estimator module sends the result to the Mapping Module, which
its main goal is to establish mapping among the primitive concepts that make up the
concept. The process of generating the mapping from O1 to O2 is known as Dynamic
Ontology mapping.

5.3. The output phase. After applying the proposed dynamic ontology mapping, the
following is the form of the mapping results from Agent 1 to Agent 2, the result of this
process is called mapping:

A1. Node.Instructor.has.firstname <> A2. Node.lecturer.has.name.

6. Experimental Evaluation. Several experiments were performed in two stages to
validate the effectiveness of the proposed Multiplatform Communication System (MPCS)
and the Dynamic Ontology Mapping System for Agent Communication (DOMAC).

6.1. Stagel: Validation of the multiplatform communication system architec-
ture (MPCS). To investigate the effect of MPCS, a multi-agent system has been im-
plemented to provide a testing platform. The whole system is implemented on a 5 Pc’s
with Intel Pentium 4 processor at 300GHz, with 2GB of Ram, connected with network
Ethernet 512Mbps. A network of cooperative agents is designed, the number of agents
ranges from 100 to 1000, depending on the specific test. The experiments are focused on
evaluating the scalability of the system with an increasing number of agents. Generally,

IMPLEMENTING A DYNAMIC ONTOLOGY MAPPING APPROACH 4559

scalability refers to how well the capacity of a system to do useful work increases as the
size of the system increases. There are two experiments which are done to test the scal-
ability in local and global communication. For each experiment, several parameters have
to be specified: Number of Agents: It is easily seen that the number of agents is one of the
most important parameters in a multi-agent system experiment. Number of Hosts: The
number of hosts is limited by the available resources only. Agent platform: Whether it is
a local agent (in same platform) or Global Agent (in different platform). Computational
time in milliseconds.
e Experiment 1: Test scalability of local communication in MPCS

In the local communication, when the sending and receiving agents are in the same
platform, the MPCS are compared with two systems: JADE [15] and MOZART [5] system,
as shown in Figure 8, and the computational time for the message delivery is measured
when increasing the number of agents.

2500

2000

1500

s VPCS

Time in MSec

amjles | ADE
1000

Mozart

500

0'7‘| T T T T T T T T T 1

0 100 200 300 400 500 600 700 800 900 1000 No.ofAgents

FI1GURE 8. The local communication message delivery time

From the figure, it is observed that the computational time for delivering a message
increases with the number of agents increases, as expected, but linearly. As can be
observed also, our MPCS behaves better for both measures than JADE and Mozart
systems especially when managing many threads. JADE does not scale well for simulation
sizes involving a large number of agents. The major reason for this is the inefficiency of
the JADE agent directory service. Because this services used frequently by the other
platform services, its inefficiency affects other services too.

e Experiment 2: Test scalability of global communication in MPCS

Second experiment: in the Global communication, when the sending and receiving
agents are in the different platform, as shown in Figure 9, and also the computational
time for the message delivery is measured when increasing the number of agents.

In Global communication may cause substantial delays. When a message is delivered,
the JADE message transport service needs to know the receiver agent’s status (whether
it is active or dead) and address (if it is on the same node or not) by gaining access to
the directory service every time. Since the default directory service which employs LDAP
has a slow response behavior, it is overwhelmed by a large number of concurrent requests
[43]. This experiment shows that our MPCS architecture has the scalability advantage,
as it behaves efficiently under full-load conditions comparing with recent systems.

4560 S. M. ELGHAMRAWY, A. I. ELDESOUKY AND A. I. SALEH

3000
2500
o
o
W
= 2000
£ g \PCS
v
1500
E e) ADE
1000 -+ Mozart
500 -
0 = L] T L] L] L] T L] L] L] 1
0 50 100 150 200 250 300 400 500 600 No.ofAgents

FIGURE 9. The global communication message delivery time

6.2. Stage2: Validation of the dynamic ontology mapping system for agent
communication (DOMAC). A number of experiments were performed to validate the
effectiveness of the proposed Dynamic Ontology Mapping System for Agent Communi-
cation (DOMAC). In each experiment, we used the Precision and recall to evaluate the
experiment results which can be defined as follows:

Precision: P=|BNA|/|A|
Recall: R=|BNA|/|B|

In the formulas above, A presents the number of correct mappings recognized by algo-
rithm, B presents the number of reference mappings. There is always a tradeoff between
precision and recall. Therefore, F-measure is leveraged to combine both metrics. It is
a weighed harmonic mean of precision and recall. In other words, it is the weighed re-
ciprocal of the arithmetic mean of the reciprocals of precision and recall. It is computed

as:
2.(Percision x Recall)

Percision + Recall
e Experiment 1: Test performance of DOMAC modules

In Experiment 1, we evaluated the performance of the joint attention module. First,
Ontologyl and Ontology2 were randomly generated. Taking into account, for each ontol-
ogy there are 1000 instances. Given these ontologies, the agents established a mapping
between them. Finally, the experiments were carried out for different sizes of the set of
words. The precision and recall were determined for the joint attention. To evaluate the
joint attention module in our DOMAC, we compare our results with the results obtained
by JA [44] and KMS [45], as shown in Figure 10.

The experiment results showed that our DOMAC performance is better than the system
developed in JA and KMS there are two reasons for this. First, using XML document
helps better address the pragmatic aspects through the use of links. Links point to
additional information. Links can assist with ontological problems (defining and sharing
ontologies). Links can point to agent capability and identity information, protocols,
even semantics. Second, the similarity computation module (the input to joint attention
module) consists of three kinds of similarity: edit distance similarity, cosine similarity and
structural similarity. And those three similarity kind listed [46] to be the most effective
and reliable than most of similarity methods.

e Experiment 2: Evaluate ontology mapping approach in DOMAC

In Experiment 2, to evaluate our ontology Mapping approach in DOMAC we use the

benchmark tests from OAEI (Ontology Alignment Evaluation Initiative), OAEI 2008 [47],

F-Measure =

IMPLEMENTING A DYNAMIC ONTOLOGY MAPPING APPROACH 4561

Precision
1.00
0.80
0.60 B DOMAC
0.40 HJA
mKMS
0.20
0.00 +
50 100 250 500 1000
No. of Words
Recall
1.00
B DOMAC
0.50 mIA
mKMS
0.00 - i
50 100 250 500 1000
No. of Words

F1GURE 10. The precision and recall of DOMAC, JA and KMS

[l PRECISION B RECALL E F-MEASURE

0.95
0.9
0.85
0.8

0.75

Falcon RIMOM LILY ASMOV PRIOR+ DOMAC

FIGURE 11. The comparison among DOMAC and top ranked systems

ontology matching campaign 2008. We choose it for many reasons. (a) The annual OAEI
campaign has become an authoritative contest in the area of ontology mapping, and thus
attracts many participants including both well-known ontology mapping systems and new
entrants. (b) The campaign provides uniform test cases for all participants so that the
analysis and comparison among different approaches are practical. (¢) The ground truth
of benchmark tests is open. Thus, we can use it to evaluate comprehensively different
components of our approach. We concerned in this experiment with the ontology Mapping
approach, so we compare ours with recent most common systems that participated in
OAEI campaign. Figure 11 shows the comparison among the Precision, Recall and F-
Measure of the DOMAC and top ranked systems on benchmark tests in OAEI campaign.

7. Conclusion and Future Work. In order to make possible interaction among agents
in MAS, it is necessary to have a communication platform, a communication language
and an ontology mapping system. In this sense, an outline of the communication among
agents has been described by mean of the proposed communication layers, a Multiplatform
communication system Architecture (MPCS) is proposed to provide a highly flexible and
scalable system that allows agents written in different languages to send and receive

4562 S. M. ELGHAMRAWY, A. I. ELDESOUKY AND A. I. SALEH

messages using the KQML standard. A Dynamic Ontology Mapping System for Agent
Communication (DOMAC) is also proposed based on different mapping approaches. A
survey of recent work in communication in MAS is reviewed; also an outline of the uses
of ontology researches is presented. In addition, some comprehensive surveys of some
famous ontology mapping systems were introduced too. A preliminary experiment is
then conducted, indicating that DOMAC can be evidently helpful to discovering semantic
mappings for Dynamic agent based ontology. And other experiments are used to show that
MPCS has the scalability advantage, as it behaves efficiently under full-load conditions
comparing to recent systems. As future work, we plan to propose new interaction protocols
in our architecture. In addition, we intend to present an agent negotiation model for
ontology mapping.

The preliminary results obtained became a motivation to use our MPCS in the com-
munication of Multi-Robot Systems. The communication between robots is essential for
their cooperation in executing specific tasks. The agents used in MPCS can be simulated
and put in group of robots that will be able to communicate with each other’s even if
their languages are different by using our DOMAC system that map different ontologies.

REFERENCES

[1] A. El-Desouky and S. El-Ghamrawy, A framework for distributed decision support multi-agent intel-
ligent system, Proc. of the 2008 International Conference on Artificial Intelligence, Las Vegas, NV,
USA, 2008.

[2] H. Farooq, Multi-agent systems: Overview of a new paradigm for distributed systems, Proc. of the
7th IEEE International Symposium on High Assurance Systems FEngineering, Albuquerque, NM,
USA, 2002.

[3] L. Wang and H. Zhao, Ontology for communication in distributed multi-agent system, Proc.of the
9th International Symposium on Distributed Computing and Applications to Business, Engineering
and Science, pp.588-592, Hong Kong, China, 2010.

[4] K. Sycara, K. S. Decker, A. Pannu, M. Williamson and D. Zeng, Distributed intelligent agents, IEEE
Ezpert, vol.11, no.6, pp.36-46, 1996.

[5] J. A. Suarez-Romero, A. Alonso-Betanzos, B. Guijarro-Berdinas and C. Duran-Sanles, A tool for
agent communication in Mozart/Oz, Proc. of the 2005 IEEE/WIC/ACM International Conference
on Intelligent Agent Technology, pp.706-710, France, 2005.

[6] H. Mellah, S. Hassas, I. Halilali, Z. Mesneb and H. Drias, Towards a self organizing protocol for
a multi agents system (MASSOP), Proc. of the 6th International Conference on Networking, Mar-
tinique, pp.60, 2007.

[7] T. Fininand, R. Fritzson, D. McKay and R. McEntir, KQML as an agent communication Language,
Proc. of the 3rd International Conference on Information and Knowledge Management, Gaithers-
burg, MD, USA, 1994.

[8] Y. Labrou, T. Finin and Y. Peng, Agent communication languages: The current landscape, IEEE
Intelligent Systems, vol.14, no.2, pp.45-52, 1999.

[9] G. Weiss, Multiagent systems: A Modern Approach to Distributed Artificial Intelligence, The MIT
Press, Cambridge, Massachusetts, London, England, 1999.

[10] N. F. Noy and D. L. McGuinness, Ontology development 101: A guide to creating your first on-
tology, Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and Stanford Medical
Informatics Technical Report SMI-2001-0880, 2001.

[11] G. Li, Y. Liu and B. Chen, Ontology and rule combined reasoning framework design, ICIC Ezxpress
Letters, vol.4, no.5(B), pp.1753-1759, 2010.

[12] C. Trojahn, P. Quaresma and R. Vieira, Conjunctive queries for ontology based agent communica-
tion in MAS, Proc. of the 7th Int. Conf. on Autonomous Agents and Multiagent Systems, Estoril,
Portugal, pp.829-836, 2008.

[13] H. Wache, T. Vogele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann and S. Hiibner,
Ontology-based integration of information — A survey of existing approaches, IJCAI 2001 Workshop
on Ontologies and Information Sharing, 2001.

[14] G. Tian and C. Cao, An ontology-driven multi-agent architecture for knowledge acquisition from
text in NKI, Proc. of CIMCA/TAWTIC, pp.704-709, 2005.

IMPLEMENTING A DYNAMIC ONTOLOGY MAPPING APPROACH 4563

[15] M. Laclavik, Z. Balogh, M. Babik and L. Hluchy, AgentOWL: Semantic knowledge model and agent
architecture, Computers and Artificial Intelligence, vol.25, no.5, 2006.

[16] C. Sandru, V. Negru and D. Pop, A multi-agent problem solving architecture based on UPML,
Artificial Intelligence and Applications, pp.597-602, 2005.

[17] D. Fensel et al., The unified problem-solving method development language, Knowledge and Infor-
mation Systems Journal, vol.5, no.1, pp.83-131, 2003.

[18] M. Gémez et al., Domain-independent ontologies for cooperative information agents, Proc. of the
5th Cooperative Information Agents Workshop, pp.118-129, 2001.

[19] A. Hajnal, G. Pedone and L. Varga, Ontology-driven agent code generation for home care in protégé,
Proc. of the 10th International Protégé Conference, pp.91-93, 2007.

[20] K4{CARE: Knowledge-Based Homecare EServices for An Ageing Europe, http://www.kdcare.net/.

[21] A. Doan, J. Madhaven, R. Dhamankar, P. Domingos and A. Halevy, Learning to match ontologies
on the semantic web, VLDB Journal, vol.12, no.4, pp.303-319, 2002.

[22] M. Ehrig and S. Staab, QOM — Quick ontology mapping, Proc. of International Semantic Web
Conference, pp.683-697, 2004.

[23] N. Noy and M. Musen, The PROMPT suite: Interactive tools for ontology merging and mapping,
International Journal of Human-Computer Studies, vol.59, no.6, pp.983-1024, 2003.

[24] Y. Qu, W. Hu and G. Cheng, Constructing virtual documents for ontology matching, Proc. of the
15th International Conference on World Wide Web, 2006.

[25] J. Tang, J. Li, B. Liang, X. Huang, Y. Li and K. Wang, Using bayesian decision for ontology mapping,
Web Semantics: Science, Services and Agents on the World Wide Web, vol.4, no.4, pp.243-262, 2006.

[26] P. Wang and B. Xu, LILY: The results for the ontology alignment contest OAEI 2007, Proc. of ISWC
2007 Ontology Matching Workshop, Busan, Korea, 2007.

[27] Y. R. Jean-Mary and M. R. Kabuka, ASMOV results for OAEI 2007, Proc. of ISWC 2007 Ontology
Matching Workshop, Busan, Korea, 2007.

[28] M. Mao, Y. Peng and M. Spring, Integrating the TAC neural network in ontology mapping, Proc. of
the 17th International World Wide Web Conference, 2008.

[29] Y. Labrou and T. Finin, Semantics for an Agent Communication Language, Ph.D. Thesis, University
of Maryland, 1996.

[30] J. R. Searle, F. Kiefer and M. Bierwisch, Speech Act Theory and Pragmatics, Springer, 1980.

[31] M. Genesereth and R. Fikes, Knowledge interchange format, version3.0, reference manual, Technical
Report, Computer Science Department, Stanford University, 1992.

[32] O. Lassila and R. R. Swick, Resource Description Framework (RDF) Model and Syntazx Specification
(W8C recommendation), http://www.w3.org/TR/REC-rdf-syntax/, 1999.

[33] Rdf Schema, http://www.w3.org/TR /1998 /WD-rdf-schema-19980409/.

[34] D. Fensel, F. van Harmelen, I. Horrocks, D. L. McGuinness and P. F. Patel-Schneider, OIL: An
ontology infrastructure for the semantic web, Intelligent Systems, IEEE, vol.16, no.2, pp.38-45,
2001.

[35] Joint US/EU ad hoc Agent Markup Language Committee, DAML+OIL (March 2001), http://www.
daml.org/2001/03/daml+oil-index. Retrieved 2006-03-10, 2001.

[36] D. L. McGuinness and F. van Harmelen, OWL Web Ontology Language Overview, W3C Recommen-
dation, www.w3.org/TR/2003 /PR-owl-features-20031215/#ref-rdf-schema, 2004.

[37] The Official Web Site of The World Wide Web Consortium, www.W3C.org.

[38] H.S. Thompson, D. Beech, M. Maloney and N. Mendelsohn, XML Schema (W3C Recommendation),
http://www.w3.org/TR/xmlschema-1/, 2001.

[39] FIPA Interaction Protocol Library, http://www.fipa.org/repository/ips.html, 2001.

[40] W. Grosso, H. Eriksson, R. Fergerson, J. Gennari, S. Tu and M. Musen, Knowledge modelling at
the millennium (The design and evolution of Protégé2000), Proc. of the 12th Knowledge Acquisition,
Modelling, and Management, Ban, Canada, 1999.

[41] M. Mao, Y. Peng and M. Spring, A profile propagation and information retrieval based ontology
mapping approach, Proc. of SKG 2007, Xi’an, China, 2007.

[42] J. Pan et al., Utilizing statistical semantic similarity techniques for ontology mapping — With ap-
plications to AEC standard models, Tsinghua Science and Technology, vol.13, no.S1, pp.217-222,
2008.

[43] X. Wang et al., Measurement and analysis of LDAP performance, IEEE/ACM Transactions on
Networking, vol.16, no.1, 2008.

[44] W. Floris and R. Nico, Domain independent learning of ontology mappings, Proc. of AAMAS’0/,
New York, USA, 2004.

4564 S. M. ELGHAMRAWY, A. I. ELDESOUKY AND A. I. SALEH

[45] R. Fu and Z. Xin, Research on electronic commerce KMS based on agent and ontology, Proc. of the
1st International Workshop on Knowledge Discovery and Data Mining, pp.190-195, 2008.

[46] M. Mao, Y. Peng and M. Spring, A harmony based adaptive ontology mapping approach, Proc. of
the 2008 International Conference on Semantic Web and Web Services, 2008.

[47] http://oaei.ontologymatching.orq/2008/.

