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ABSTRACT. A stochastic unscented Kalman filter is designed in an attempt to solve the
state estimation problem of the greenhouse climate control systems with missing measure-
ments. The missing measurements are described by a binary switching sequence satisfying
a conditional probability distribution. In order to accommodate the effects of randomly
varying arrival of measurement data, the stochastic unscented transformation coupled
with certain parts of the classic Kalman filter is applied to estimate the greenhouse states
and filter out the noises, where some or all measurements are lost in a random fash-
ton. The simulation results demonstrate the performance degradation of state estimation
caused by random measurement data loss.
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1. Introduction. The greenhouse climate control system is a very complex dynamic sys-
tem covered with thin and transparent materials. This system satisfies the conditions for
plant growth, but creates difficulties in regulating the greenhouse environment because of
highly coupled nonlinear dynamics and strong disturbances from the surroundings, such
as global radiation, wind speed and direction, and external air temperature and humidity.
In order to create a favorable environment to accelerate the crop development and to min-
imize the production costs in terms of raw materials and energy consumption, researchers
have used a wide variety of control techniques in different fields, from the conventional
or classic strategies (pole placement control and linear quadratic regulation [1,2]), intelli-
gent control algorithms (fuzzy logic, neural networks, genetic algorithms [3-6]), advanced
control techniques (predictive control, adaptive control [7,8]), to robust control strategies
9], no-linear and optimal control [10,11], and fault detection and isolation in greenhouse
[12]. Tt is well known that, the most advanced control structures, ensuring very good
performance of the system, are based on control structures with additional feedback from
system state variables, such as temperature and humidity in greenhouse. Therefore, ac-
ceptable control of the greenhouse climate systems requires the accurate estimation of the
states variables.

On the other hand, the efficiency of plant production in greenhouses relies on the mea-
surements provided by several electronic sensors located inside and outside the greenhouse.
Environmental conditions such as the direct exposure of sensors to sunlight and the de-
terioration of connections between sensors and the controllers could result in very noisy
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and incomplete measurements which may impair the greenhouse operation. It may also
increase the number of false alarms received from fault detection and isolation systems.

To ensure the accurate state estimation, it is necessary to develop a suitable filtering
technique to filter out the noises and estimate the states of greenhouses. However, to the
best of our knowledge, the important state estimation problem for greenhouse climate
control systems with noises has not been reported in the literature.

It is well known that the optimal filter for linear systems is the Kalman filter [13-19].
State estimation for nonlinear systems is a difficult problem, and the extended Kalman
filter (EKF) can cope with some nonlinear systems by using linearization of the state equa-
tion around the predicted state. Although the EKF is a widely used filtering strategy, and
has been used successfully in many applications [20-22], in practice, the derivation of the
Jacobian matrices is nontrivial and often leads to significant implementation difficulties.
What is more, linearization can produce highly unstable filters if the assumption of local
linearity is violated.

A recent improvement to the EKF is the unscented Kalman filter (UKF). The UKF
is a nonlinear filter, and was first proposed by Julier and Uhlmann [23]. This filter is
more accurate than the EKF and easier to implement for nonlinear systems without the
linearization steps required by the EKF. So the UKF has found a number of applications in
high-order nonlinear complex systems, including navigation systems for high-speed road,
public transformation systems, underwater vehicles, and target tracking, etc. [24-26].

The ability of the UKF to accurately estimate nonlinearities makes it attractive for
implementation on greenhouse climate control systems. This paper represents the first
attempt to apply the UKF to estimate the states and filter out the noises of greenhouse cli-
mate control systems with missing measurement, which are described by a binary switch-
ing sequence satisfying a conditional probability distribution. General simulation results
are given and a brief comparison is made between state estimation performance of the
UKF with and without measurement data loss.

In the next section, a more detailed description about the operation of the UKF is
given. In Section 3, the model of greenhouse climate control system configured for UKF
is presented and analyzed. Section 4 investigates the simulation results of the UKF and
makes a comparison between the performance of the UKF with and without measurement
data loss. Conclusions about the results are summarized in Section 5.

2. Unscented Kalman Filter. The UKF was developed with the underlying assump-
tion that approximating a Gaussian distribution is easier than approximating a nonlinear
transformation [27]. The fundamental component of UKF is the unscented transforma-
tion, which uses a set of samples, or sigma points to capture the true mean and covariance
of the state probability distribution. These sigma points undergo the nonlinear transfor-
mation. The posterior mean and covariance of the state are then calculated from the
transformed sigma points. This approach gives the UKF better convergence characteris-
tics and greater accuracy than the EKF for nonlinear systems.
Suppose the nonlinear system equations obey the following nonlinear relationships:

w(k+1) = f(x(k), u(k), k) + w(k)
y(k) = h(z(k)) +v(k) (1)
(k) = a(k)y(k)

where x(k) is the state vector, u(k) is the control input, y(k) is the raw measurement
vector, z(k) is the received measurement vector, w(k) is the process noise vector assumed
to be additive, white, and Gaussian, with zero mean and covariance defined as @, v(k) is
the measurement noise vector defined the same as w(k) but with the different covariance
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R, and (k) is a Bernoulli distributed white sequence with
Prob{a(k) =1} = E{a(k)} =a
Prob{a(k)=0} =1—-E{a(k)}=1-a
First of all, the filter is initialized with the following assumptions for the state estimate
x(0) and the error covariance matrix P(0)

#*(0) = B [2(0) )
P¥(0) = E [ (2(0) = #(0)) ((0) = #*(0)) "] (3)

Then, the following time update equations are used to propagate the state estimation and
covariance for every measurement k € {1,2,--- ,00}:
1. Calculation of the sigma points from the initial conditions (2) and (3)

k-1 =a"k-1)+z9 i=12---,2n
j(i):< nP*(k — )>.’ i=1,2,---.,n (4)

7

fWﬂ=—< M”%—U),i:L1~3n

2. Transformation of these sigma points using Equation (1)
2O(k) = £ @k = 1), ulk = 1),k = 1) (5)

3. Combine the #( (k) vectors to obtain the prediction of the state estimate
(k) = - > a(k) (6)

4. As the process noise is addictive and independent, the predicted error covariance is

given as
2n

~ (1 A~ ~(i N T
> (@) — #k) (GO k) — 3 k) " +Q 7)
i=1
Finally, implement the following measurement update eauations:
1. Updating the sigma points with the predicted mean and covariance

k) =2t (k) +29, i=1,2,---,2n
f@:=< 7ﬂ%k»‘, i=1,2,---,n (8)

F (i) :_< nP(k)), i=1,2,---,n

(2

1

2. Transformation of each of the predicted points through measure equation
79 (k) = a(k)h(EV (k), k) (9)

3. Combine the § (k) vectors to obtain the predicted measure

i) = 5> 3" (k) (10)

4. Since the measurement noise is also addictive and independent, the covariance of
the predicted measurement is as follows:

2n

Pk = 5= 3 (570 — 5(8) (

=1

O(k) - g(k))" + R (11)

N
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5. Estimate the covariance between z(k) and (k)

12n

Poy(k) = 5= 3 (#0(k) = 2(k)) (5 (k) — (k)" (12)

i=1

6. The measurement updates are performed as follows:

K (k) = Py (k)P (k) (13)
27 (k) = 2(k) + K (k) (a(k)y(k) — §(k)) (14)
P*(k) = P(k) — K(k)P, (k)K" (k) (15)

where y(k) is the measurement.

Remark 2.1. Stochastic variable a(k) is used to indicate the effects of randomly varying
arrival of measurement data. That is, if a(k) = 1, then no measurement data lost in the
system, and if a(k) < 1, part or all of the measurement data are lost.

Remark 2.2. The choice of the covariance matrices (Q and R has affect on the quality of
the state estimation. However, according to the existing technical literature, the analytical
guidelines which ensure proper settings of matrices do not exist. In this paper, the trial
and error procedure is used. Therefore, a future subject of this study is to develop an
optimization procedure, such as the genetic algorithm, to set the covariance matrices ()
and R to ensure the optimal settings of UKF parameters.

Remark 2.3. Note that no explicit calculation of Jacobians is necessary to implement this
algorithm, which reduces the complexity and errors associated with finding the Jacobians
of a complex system and also allows the filter to be applied to a wide scope of system
formulations.

3. Greenhouse Climate Control Dynamics. The dynamic changes in the greenhouse
are determined by differences in energy and mass contents between inside and outside air.
In a greenhouse, the state climate can be represented by two variables, namely, inside air
temperature, and absolute humidity. A simplified greenhouse climate model adequate for
control purposes describes the dynamic behavior of the state variable with the following
energy balance and water vapor balance equations [28].

3.1. Energy balance. The greenhouse air energy balance is affected by energy supply
and energy losses. The former is due to an artificial heating system (E},) and heat load im-
posed by solar radiation (E;) and the latter is due to transmission through the greenhouse
cover (E,.), forced ventilation (E,), and fog system (E). This balance can be written as
follows:

dT; 1
*~=_(E,—E.—E,— FE E, 16
T (B (4B (16
in which,
VrC,
Eh - Qheatem Es - S’i; Ev - ‘R; 0 (E - Tout)
T

E.=UA (Tm - Tout) > Ef = )\Qfog

where Tj, /Ty is the inside/outside air temperature, Cj is the thermal capacity, Qpeater 1S
the heat provided by the greenhouse heater, S; is the intercepted solar radiant energy, Vz
is the ventilation rate, U A is the heat transfer coefficient of enclosure, A is the latent heat
of vaporization, ()., is the water capacity of the fog system, and V7 is the temperature
active mixing air volume.
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3.2. Water vapor balance. The water vapor balance is calculated by the following for-
mula, modified according to [29], in which the soil evaporation rate and the condensation
rate at the inner face of the greenhouse cover are neglected:

dwin
dt

where w;, /Wy is the inside/outside humidity, F(S;, w;,) is the evapotranspiration rate
of the plants, and Vj is the humidity active mixing air volume.

In summer operation, Qpeqrer is set to zero. It is also worth noticing that, the evap-
otranspiration rate E(S;, wy,) is related to the intercepted solar radiant energy through
the following simplified relation:

- VL (Qfog + E(517 wzn) - VR (wln - wOUt)) (17)
H

E(Sz‘, wm) = Oé% - ﬁTwm (18)

where « is an overall coefficient to account for shading and leaf area index and fr is
an overall coefficient to account for thermodynamic constants and other factors affecting
evapotranspiration (i.e., stomata, air motion).

3.3. Dynamic model of the greenhouse climate control systems. In paper [11],
considering that the conditions of operating the ventilation-cooling are rather dominated
by solar radiation alone (i.e., 87 = 0), the term Srwy, can be neglected. Supposing o/ =
a(AVy)~t, normalizing the control variables through these equations Vgy = Vi/VE™,
Qfog% = Qrog/Qoys N = ANQYse's V! = Vi /QFsy, and defining the inside temperature
and humidity as the dynamic state variables, x; and w9, respectively, the ventilation rate
and the water capacity of the fog system as the control (actuator) variables, u; and us,
respectively, the intercepted solar radiant energy, the outside temperature, and the outside
absolute humidity as the disturbances, z;(t), i = 1,2, 3, and y = 27 + 23, Equations (16)
and (17) can be put in the following state-space form:

. 1 u
Ir = E (21 — )\/Ug) — —1 (33'1 — 22) — [é—? ($1 —22)

10 U b 19
xQ_WUQ—i_O/Zl__:(aTQ_Zg) ( )
y=x

where parameter ¢, represents the time needed for one air change the sampling period.

The UKF algorithm is designed for the discrete time system. So we should discretize the
above continuous-time model to apply the algorithm. In this paper, the nonlinear 3-order
Runge-Kutta algorithm is applied to discretize the model (19) with a proper simulation
step (1s).

Remark 3.1. It should be pointed out that if some international standards are used to
protect the systems against the external environment, such as IP 55, IP 65, etc., and a
good maintenance is performed, then the influence of system noise can be neglected. In
this case, the UKF algorithm can be removed.

4. Simulation Results. In the simulation, the greenhouse model parameters described
in (19) are as follows [11]:

Co = —324.67min W °C™', UA=298W °C~', t,=3.41min

N =465W, o =0.0033gm > min ' W' 1/V' =133 gm > min!

The UKF was designed for the state estimation problem, and has been applied in
nonlinear control applications requiring full-state feedback [30]. In this paper, we use a
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FIGURE 1. Temperature response in greenhouse

nonlinear control technique proposed in [11] to control the above model, and put emphasis
on the estimation performance of the state from the noisy measurement.

Assume a(k) = 0.8, and the Gaussian white noise w(k) and v(k) are added to both the
process and measurement equations to simulate the real situation

Ewk)]=[0 0], Ep®]=[0 0]"
Q =diag ([ 107° 10°°]) R=diag ([ 0.5 05 ])

This paper tries to describe a kind of filtering technique for the practical application at
greenhouse climate control system to estimate the temperature and humidity. Simulation
results are illustrated from Figure 1 to Figure 2, which show the results of the temperature
and humidity estimation by UKF with and without measurement loss, respectively.

By comparison from Figure 1 to Figure 2, it can be seen that the UKF algorithm
without considering missing measurement gives a more accurate and smoother estimation
than the one with measurement loss.

5. Conclusion. This paper presents a derivative-free nonlinear filtering technique to the
state estimation problem for greenhouse climate control systems. It has been shown
that the UKF algorithm without considering missing measurement achieves a better level
of accuracy than the one with measurement loss. This simulation result will be very
useful for further study of state estimation of greenhouse climate control systems with
communication constraints.
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FIGURE 2. Humidity response in greenhouse
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