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ABSTRACT. There is growing interest in three-dimensional (3D) modeling of urban ar-
eas in various fields, and in response many efficient light detection and ranging (LI-
DAR) systems have been developed and integrated with new types of digital aerial cam-
eras. Intensive research has also been undertaken on the classification of natural and
human-made structures from LIDAR data and high-resolution imagery, with the aim of
constructing detailed 3D urban models. Here, a new, simplified hybrid classification al-
gorithm is presented for efficient urban feature extraction. It can handle topographic and
image data without sacrificing accuracy compared with artificial neural network (ANN)
and support vector machine (SVM) methods. Numerical and graphical analyses are con-
ducted to assess the importance of LIDAR height information, and this is then used to
resolve classification confusion between high and low objects by applying two-height-level
knowledge-based rules. A mazimum likelihood classification method is used to sort in-
put features into low/high categories, and these results are then merged. The proposed
hybrid classification method revealed the utility of considering LIDAR height and demon-
strated higher efficiency and equivalent or improved accuracy compared with traditional
ANN/SVM methods.

Keywords: Artificial neural network (ANN), Hybrid classification method, Maximum
likelihood classification (MLC), Support vector machine (SVM), Two-level height rule-
based scheme

1. Introduction. There is growing interest in obtaining three-dimensional (3D) infor-
mation on urban areas for various applications, such as urban planning, cyber city con-
struction, and urban public works. This demand has spurred research into digital surface
models (DSMs) that can automatically classify and extract natural and human-made
structures to construct detailed 3D models [1-3]. At the same time, many manufacturers
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are now producing highly efficient light detection and ranging (LIDAR) systems that in-
tegrate new types of digital aerial cameras, such as the digital mapping camera (DMC) or
ADS40 camera, and provide both red-green-blue (RGB) and near-infrared (NIR) images
[1]. While large number of data can be acquired efficiently, the ultimate goal is to provide
highly efficient urban classification in combination with LIDAR height data to fulfill 3D
modeling demands.

Classifying LIDAR data and aerial imagery in an urban area is a complex, multi-source
problem. Many studies have applied artificial neural network (ANN) or support vector
machine (SVM) approaches to multi-source data classification and have reported signif-
icantly improved classification accuracy [4-8]. These methods may be useful when data
types differ in their statistical distribution in one stacked dataset. The ANN and SVM
techniques have been used to overcome the limitations of traditional parametric algo-
rithms for multi-source data classification, resulting in higher accuracies. However, these
techniques also have some drawbacks. For example, an ANN has a high computational
cost, and it does not have a straightforward approach for identifying the optimal num-
ber of network layers, training rate, and training momentum. Using an SVM, the kernel
function and penalty parameters can be identified by a grid search involving various pa-
rameters, which are tested to find the combination that yields the highest accuracy based
on cross-validation [9,10]. In both methods, deriving these optimal parameters and ad-
justing the classifier for individual cases are time-consuming. These solutions merely meet
the accuracy requirement for urban classification.

Expert systems or knowledge-based classification methods may also be used to im-
prove classification accuracy and better resolve heterogeneous multi-source data [11-13].
Knowledge-based classification is derived from expert rules based on features that can be
classified from the data themselves. For urban feature extraction, many studies have used
LIDAR-derived normalized DSMs (nDSMs) as additional channels in combination with
multispectral images, in an integrated classification or Dempster-Shafer fusion method.
This approach enables the extraction of urban features such as buildings, roads, bare soil,
and grass-covered areas. Classification methods have also been used as pre-processing
steps in urban building extraction and construction [2,14]. For example, in a previous
study, maximum likelihood classification (MLC) was used to quantitatively and qualita-
tively evaluate how adding LIDAR nDSMs and intensity to color or multispectral aerial
imagery data may effect urban classification; the results demonstrated that nDSMs signif-
icantly improved classification accuracy [15]. The results of [15] and other studies suggest
that the integration of nDSMs and aerial images may have great potential for urban
classification.

In the present study, we propose a hybrid algorithm for urban classification that per-
forms efficient classification with the same accuracy as that of the ANN and SVM ap-
proaches. First, we applied hybrid classification approaches to topographic and image
datasets using a two-level-height rule-based scheme. Then we performed MLC to manip-
ulate the image data at each level. We evaluated the feasibility of the proposed hybrid
algorithm in terms of computational efficiency and overall accuracy. The details of the
methodology are introduced in the following section. The experimental results are pre-
sented and compared with the ANN and SVM approaches in Section 3. The conclusions
are presented in Section 4.

2. Hybrid Classification Method. Most previous classifiers are based on single-classi-
fication methods, even when handling different types of data. We developed a multi-source
classifier based on different algorithms to manipulate different data types, such as topo-
graphic (LIDAR height) and digital aerial image data. Here, we present the basic process,
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which uses a hybrid algorithm for hierarchical classification. First, it was necessary to
identify which features would contribute to the classification by applying numerical (for
separability) and graphical (for feature-space plots) feature selection to LIDAR data and
aerial imagery. Next, we applied rules to specific features to separate them and to form
several levels beneath the top level. According to this design, the selected feature was not
used as a texture in the classification system but rather was used to divide other features
in another dimension into several vertical stratification levels. Because the categories in
each level were reduced by this approach, the image characteristics of the objects in each
level had similar statistical distributions. Therefore, the ground features in each level were
much easier to discriminate using traditional statistical parametric classification. Hence,
we expected more accurate classification results using this hybrid approach compared
to the conventional single-step process. Interestingly, the hierarchical hybrid classifier
inherits the advantages of both knowledge-based and traditional statistical parametric
classification algorithms.

2.1. Feature selection. We considered feature selection a problem of selecting the best
subset of features from a hyperspectral dataset to be used in a specific classification.
This process was also applied to the selection of key features from multi-source datasets.
The Jeffries-Matusita (JM) distance is widely used as a selection criterion [16]. The JM
distance between a pair of distributions of spectral classes ¢ and d is defined as

Jeg = 2(1— €P), (1)

where

! Yty LIS+ 224)/2]
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is the Bhattacharyya distance, M. and M, are the mean vectors for classes ¢ and d,
respectively, and ) . and ), are the summations of classes ¢ and d, respectively.

The JM separability measure is calculated for four different band combinations, as
shown in Table 1. Most of the JM distances increased when adding the LIDAR nDSM to
the RGB band combination, compared to the distances obtained by adding the LIDAR
intensity. There was only one exception out of the 12 pair separation values, indicated by
the gray background in Table 1. This finding indicated that the LIDAR nDSM was the
key factor in different combinations.

TABLE 1. Jeffries-Matusita distances between categories for different fea-
ture combinations

Jeffries-Matusita Distance
Bands TR BR BT BG TG RG
R, G, B 1.0692 | 1.1799 | 1.2547 | 1.6402 | 1.7013 | 1.7255
R, G, B, 1 |1.5681 |1.6225 | 1.7325| 1.8876 | 1.7530 | 1.9999
R, G,B,D |1.9795|1.9497 | 1.7841 | 1.9891 | 1.9825 | 1.6720
R, G, B, I, D |1.9944 | 1.9634 | 1.8218 | 1.9992 | 1.9907 | 1.9999
Notes:
Band information: R: red, G: green, B: blue, I: LIDAR intensity,
D: LIDAR nDSM
Class information: T: trees, B: buildings, R: roads, G: grass




5458 S.-W. SHYUE, M.-J. HUANG, L.-H. LEE AND C.-C. KAO

2.2. Feature space inspection for urban objects. Aerial imagery with multispectral
bands is widely used to investigate natural resources and classify land use and cover.
The red edge between the red and near-infrared (NIR) bands can effectively discriminate
between vegetation and other land cover. In this study, only RGB imagery acquired
simultaneously with the LIDAR data was used. The LIDAR intensity data were used
as an alternative band, because the characteristics of the LIDAR laser beam were very
similar to those of the NIR. Geographically registered RGB and LIDAR intensity data
could be incorporated into the classification procedure using stacked vectors [16]. Training
samples of traditional urban feature types, such as buildings, trees, roads, and grass, could
then be picked from the stacked vectors.

After constructing the stacked vectors, the next step was to investigate the image
characteristics of different categories. Many visual tools are available for this purpose,
such as spectral plots, histograms, and feature space plots. Feature space plots can provide
great insight into the real information content of aerial imagery and LIDAR intensity
images through training samples, as well as the degree of correlation between bands
[17]. After inspecting different combinations of feature space plots, we found that most
plots correlated well. The plot of the red band and LIDAR intensity showed exceptional
dispersion throughout the image band space (Figure 1). The upper box in Figure 1
indicates that even though the LIDAR intensity data (similar to the NIR effect) helped
separate vegetation from non-vegetation, there was some confusion between trees and
grass. Similarly, non-vegetation objects such as buildings and roads may also be confused,
as shown in the middle box of Figure 1. Applying a non-parametric classification algorithm
on its own may resolve the confusion but would incur computational costs and require
case-by-case parameter searches.

However, the addition of LIDAR height information, identified by applying feature
selection (as described in the previous section), can help resolve confusion regarding urban
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FIGURE 1. Feature space plots for four categories. The upper box indicates
that some confusion exists between trees and grass. Similarly, as shown in
the middle box, non-vegetation objects such as buildings and roads may
also be confused.
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ground features. In urban areas, objects at low height levels are mainly roads and grass.
Conversely, the two main categories of high-height-level objects are buildings and trees.
Therefore, we divided Figure 1 into two subplots according to object height, as shown in
Figure 2. The subplot on the left side of the figure is the feature space plot of tall objects
(buildings and trees) while the right subplot shows the other objects (roads and grass). It
is easy to distinguish between the two categories. Thus, the parametric classification could
handle individual classifications at each height level. Nevertheless, for more complex cases,
non-parametric classification algorithms can be applied to further increase classification
accuracy.
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FIGURE 2. Feature space plots for objects at high (left) and low (right)
height levels. It is easy to distinguish between the two categories using
parametric classification.
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FicUure 3. Histograms of buildings and trees. The statistical distributions
of buildings and trees were bimodal, i.e., below and above 10 m. In the data
fusion case, height information could not be handled by the same parametric
method as was used for the images.

Buildings and trees in an urban area will naturally have diverse heights. Figure 3
shows that the trees and buildings sampled in the study area fell into two major height
groups divided by the 10-m mark. Therefore, the statistical distribution of buildings and
trees may be bimodal. Moreover, in each group, the distribution is not normal. For this
reason, it was not appropriate to use parametric algorithms to handle height information.
Instead, the height information required further processing using knowledge-based rules.
The major benefit of using knowledge-based rules to separate objects according to height
is that only one simple threshold is required. After separation, the feature space plots
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in Figure 2 indicated that a traditional parametric method such as MLC could classify
buildings and trees accurately according to the other image bands.

2.3. Two-level selection and definition. Height information is critical for resolving
confusion between short and tall objects in urban feature classification. However, it must
be applied properly to derive accurate results. Generally, height information is used as
an additional feature that can increase the accuracy of urban classification. The effect
of adding LIDAR nDSMs to color or multispectral aerial imagery data has been studied,
and MLC has been used to demonstrate that nDSMs significantly improve classification
accuracy [15]. Some studies have used height texture to increase feature dimensions
and thus improve classification accuracy [18]. For object-based classification (OBC),
height information may be used as the horizontal segmentation factor to reduce internal
inconsistencies in high-resolution remote-sensing data.

A knowledge-based approach offers another way to resolve height data. In our previ-
ous study, we proposed a three-height-level, rule-based classification scheme to clarify the
importance and functionality of height in a classification system [15]. For this scheme, LI-
DAR height was not only used for features or texture in the classification system, but also
to divide the vertical dimension into three stratification levels and then extract ground-
feature segments from each level. This had two major advantages. First, the ground
objects in each level were separated before classification, so the number of categories at
each level was reduced. Second, the ambiguity between low and high objects was easier
to resolve than by conventional statistical parametric classifiers. This hybrid approach is
different than the OBC method, which only uses LIDAR height data to represent objects
horizontally, without considering the vertical dimension.

2.3.1. Two-level-height rules. 1t is not easy to model mid-height segments when integrat-
ing three-height-level knowledge-based rules with MLC. We implemented a two-height-
level, rule-based classification scheme to model objects at low and high height levels. Two
height levels were easily established for the LIDAR nDSM by selecting one height thresh-
old (ThresholdH). The threshold was defined according to the lowest building height (2.5
m) in each study area from in situ knowledge. The rules defining the two levels were as
follows:

If nDSM < Thresholdy then low_height = true (3)
If nDSM >= Thresholdy then high_height = true (4)

The segments derived from the above rules were the kernels of the two-height-level
scheme. This unique scheme is not found in traditional pixel-based classifications, which
motivated us to use segments derived from the knowledge-based rules in ML.C as a mask
layer to filter out ambiguity within each level. The classification results for each level
were merged for the final classification output.

2.3.2. Narrow lane considerations. In old parts of Asian cities, there are many small,
narrow lanes between buildings. Such features require special treatment for successful
urban classification. For example, classification results may show some small lanes as
blocked by buildings because the buildings are too close together in the generated DSM.
This problem also influences the correctness of random samples that are very close to the
edges of buildings. Adjusting the weighting function of the DSM interpolation method
to improve the quality of the DSMs can solve this problem. For example, the weighting
function for inverse distance weighting (IDW) is a simple method for multivariate inter-
polation. It consists of a procedure for assigning values to interpolated points using those
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from reference points. The height of an interpolated point can be interpolated using IDW
as follows:

N
S Wiz
Timy = S (5)
> Wi
=1

where Z;,; is the height of the interpolated point, Z; is a reference value, N is the total
number of reference points used in the interpolation, and W; is the weighting function
used for the interpolation. A simple weighting function for the IDW can be defined as
follows [19]:

w(d) = (o

where w(d) is the weighting factor applied to a reference point, d is the distance from
the reference point to the interpolated point, and p is a power parameter that is assigned
different values for different applications. Normally, the value of p is 2. Changing it to 4
resolves this problem.

2.4. Hybrid classification implementation. A major advantage of the proposed hy-
brid classification method is its simplicity. The method can be used with common com-
mercial remote-sensing software tools, such as ERDAS Imagine, Exelis ENVI, or PCI
Geomatics, without any programming. Figure 4 shows the workflow of the proposed
method. Initially, we used the lowest building height in the study area to define the
height threshold. Then we applied the threshold value and the two-level-height rules to
the LIDAR nDSM layer to derive two mask layers: low and high. Second, MLC was
performed twice: once for roads and grass in the low level, and again for buildings and
trees in the high level. This step classified stacked vectors including RGB aerial imagery
and LIDAR intensity data using training samples selected from the low and high levels,
respectively. Third, we masked out pixels that did not belong to individual levels using
the mask layers, as shown in Figure 4. Finally, the MLC classification results for the two
layers were combined into four major urban categories. ENVI was used to implement this
procedure. The ENVI MLC classifier was embedded with mask functionality, as described
in the third step. The classification output was stored in ENVI native image format, and
the classification accuracy was assessed in terms of the overall accuracy and Kappa index.

3. Experiments and Discussion.

3.1. Study area and datasets. The study site, Kaohsiung City, is a harbor city in
southwestern Taiwan with a long history of development. This area contains a mix of
apartment buildings, small lanes, industrial facilities, and a world-class harbor. Two
study areas with two different types of urban features were selected. Study Area 1 was
an urban area with a variety of small to very large buildings, a big parking lot, and a
grassy field. Study Area 2 was on an island across the harbor from Study Area 1. Area 2
was not level and sloped down toward the harbor. A large park with dense tree cover is
located on the seaward side of the island, which also includes a mixture of variously sized
buildings.

The LIDAR data were acquired in February 2005 using an Optech ALTM 3070c, op-
erating at a sampling rate of 46 Hz. The flying height was approximately 1200 m above
ground level (AGL), with a scanning angle of 13 degrees, swath width of approximately
554 m, and scan interval of approximately 0.7 point/m. An nDSM was derived by sub-
tracting the DEM (Digital Elevation Model) derived by a LIDAR data-filtering procedure
[20] from the DSM. The nDSM was subsequently resampled to the same grid size as the
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TABLE 2. Specifications of the digital camera used in this study

Camera focus 55.073 mm
Principal point shift (X): —0.202 mm =+ 0.0036 mm
Principal point shift (Y): 0.188 mm =+ 0.0036 mm
Exposure rate 2.5-2.7 s
CCD array size 4077 (cross flight) x 4092 (along flight) pixels
Pixel size 9 pm
Image size 36.693 x 36.828 mm

spatial resolution of the aerial imagery. A true-color images were collected simultane-
ously with the LIDAR data by an Optech ALTM4k02 digital camera with direct exterior
orientation parameters and rectified to 0.2 m x 0.2 m grid resolution. Table 2 lists the
specifications of the camera used in this study. To allow for comparison, the study areas
were the same as those of our previous knowledge-based classification system study [15].

For all experiments, training samples from four ground categories (i.e., trees, grass,
buildings, and roads) were selected from the aerial images and LIDAR intensity data us-
ing ENVT software. The training sample size needed to be large enough to represent the
characteristics of ground objects. For an N-dimensional feature space, 100 N points for
each ground type were sampled as the training data to ensure the trained MLC classifi-
cation capability [21].

Next, we overlapped randomly sampled points over the aerial imagery and the LIDAR
height data to assign the feature type of each test point. If the feature types from the
images were not certain, we confirmed them through field investigations. The test data
were also used for accuracy evaluations of the SVM, ANN, and the hybrid classifications.
For accuracy assessment, at least 50 samples were randomly sampled as test data for each
category, following previous studies [22,23]. However, simple random sampling tended to
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under-sample some small but important areas. To ensure that the sampled data were sta-
tistically valid, we iteratively applied a random sampling method in which each category
accumulated more than 50 samples. Table 3 lists the number of training and test samples
for the hybrid classification experiments of the two study areas.

TABLE 3. The training data and tests used for study Areas 1 and 2

Categories Training Samples Test Samples

Buildings 637 485
Trees 556 73
Area 1 pods 733 476
Grass 542 117
Buildings 602 189
Trees 536 226
Area 2 pods 561 55
Grass 602 189

Finally, we needed to determine the height threshold for the two layer-height rule. We
used the LIDAR nDSM data and a 3-m threshold to generate a binary image to identify
the potential lowest buildings in the experimental areas. The field survey indicated that
the lowest building heights were 2.3 m and 1.8 m for Areas 1 and 2, respectively.

3.2. Hybrid classification experiments. The hybrid classification method based on
knowledge-based rules and traditional statistical MLC was used to investigate the per-
formance and accuracy of urban classification while integrating LIDAR height data with
aerial images. Aerial imagery, LIDAR intensity data, and LIDAR nDSM were selected to
perform the MLC as a standard case (MLC1) for comparison, because the LIDAR height
was used as an additional layer here. Next, the hybrid method (knowledge-based rules
+ MLC) was applied (case HMLC2). In this case, we applied the two-level-height rules
proposed in this study. Third, the three-level-height rules were applied for the HMLC3
case to test whether the three-level-height rules proposed in our previous work [15] were
superior to the two-level scheme for the hybrid classification method.

Table 4 lists the performance results for the Area 1 experiments, as Area 1 was larger
than Area 2. The computational time for each MLL.C was only 5 seconds for Area 1, making
this a very efficient tool for hybrid classification. The computational time for setting up
the two-level height rule by segmentation using ENVI was only 3 seconds. The total
computational time for each classification using the proposed hybrid approach was under
30 seconds. Table 5 lists the accuracy assessment results for all experiments. The overall
accuracy of the standard MLC1 experiments was about 79% for Area 1 and 85% for Area
2. The lower accuracy for Area 1 was due to the low accuracy for trees and roads in the
standard MLC1 compared to that of other categories. The user accuracy, an accuracy
assessment index corresponding to commission error, for trees was even worse (only about
44% correct). This finding agreed with the visual inspection mentioned above. However,
the overall accuracy improved approximately 12% for Area 1 and 5% for Area 2 when the
two-level-height hybrid method (case HMLC2) was used.

Figures 5 and 6 show the resulting MLC images for Areas 1 and 2, respectively. Figures
5(a) and 6(a) illustrate the classification results for standard cases using all available
features in the stacked vectors. Some shadows in the narrow lanes between buildings
were misclassified as trees (Figure 5(a)) or buildings (Figure 6(a)). In addition, as shown
in Figure 5(a), some parking lot signs on the ground were misclassified as buildings.
This confusion was due to the similar image characteristics of these ground objects, as
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indicated in the lower box (tree vs. roads) and middle box (building vs. roads) in the
feature space plots (Figure 1). These were misclassifications, and some small lanes can be
clearly seen in results derived from the hybrid method (Figures 5(b), 5(c), 6(b), and 6(c)).
The misclassifications and confusion were resolved using LIDAR height information before
applying the MLC. The classification results derived from the three-level-height hybrid
method were not better than those obtained using the two-level height, but the former
method required more effort when modeling training samples for the mid-height level.

Buildings Trees Roads Grass

FIGURE 5. Results of (a) MLC, (b) HMLC2, and (¢) HMLC3 for Area 1

In Area 1, there were major improvements in user accuracy for buildings, which in-
creased from 74% to 96%, while producer accuracy, an accuracy index corresponding to
error of omission, remained about the same. At 96% accuracy, almost all of the clas-
sified building pixels were correct in the two-level-height scheme. A similar result was
found in the tree category. Even though producer accuracy decreased from 75% to 66%,
user accuracy increased from 44% to 59%, resulting in better overall accuracy for trees.
Nevertheless, the classification performance was still not accurate enough because trees
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Buildings Trees  Roads Grass

FIGURE 6. Results of (a) MLC, (b) HMLC2, and (¢) HMLC3 for Area 2

were rare. Visual checks of the classification results indicated that too many building
pixels were misclassified as trees, as shown in Figure 5(b). In Area 2, user accuracy for
trees increased from 65% to 93%, while other categories showed little significant improve-
ment or equivalent results. In contrast, the three-level-height scheme did not significantly
improve the results compared to the two-level-height scheme, as indicated not only by
visual checks of the classified images but also by the accuracy assessment. Therefore, our
results indicate that the two-level-height scheme was superior for the proposed hybrid
classification method in this study.

3.3. The ANN and SVM experiments. ANN and SVM experiments were performed
for the two study areas to investigate the performance of our hybrid classification method.
The feature vectors used for this experiment were RGB aerial imagery, LIDAR intensity,
and nDSM. Because each of these non-parametric classifiers required numerous parame-
ters, the classifier with the set of parameters resulting in the highest accuracy is reported
here. To identify parameters for the SVM effectively, we adopted the 1ibSVM and im-
ageSVM [9,10] tools to obtain optimal penalty parameters and the gamma value of the
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TABLE 4. Process time of the MLC, ANN, and SVM experiments for Area 1

MLC Experiment

Training/Classification | 5 seconds
SVM Experiment

Grid search for optimal penalty

parameters and the gamma value 52 seconds
Training/Classification 96 * 2 ~ 3 seconds
Total 244 ~ 340 seconds

Note:
Grid search using 1ibSVM and imageSVM.
Training/classification using ENVI. After obtaining the range of penalty parameters
and the gamma value of the radial basis kernel function, it takes 2 or 3 calculations
to get optimal results. Total process time: 4 ~ 5.6 minutes.

ANN Experiment (all layer values expressed in seconds)

Training iteration | Hidden Layer (1) | Hidden Layer (2)* Hidden Layer (3)*
1000 121 177 230
2000 246 360 468
3000 369 540 701
4000 492 720 935
5000 619 905 1177
10000 1258 1840 2391
Total training 3105 4542 0902
Classification 60 78 100
Total 3165 4520 6002

Note:

Process time for different training iterations (moment = 0.3, training rate = 0.2).
The process time for each moment and training rate was 14977 seconds (4.16 hours).
Optimal parameter search:

Moment: 0 ~ 0.9 with interval 0.1 (10 times).

Training rate: 0 ~ 0.5 with interval 0.2 (6 times).

Total process time estimate: 4.16 x 60 = 248.9 hours

radial basis kernel function. The ANN was run using a back-propagation neural net-
work classifier to compare the accuracy to that of the SVM and the hybrid classification
method. Table 6 lists the parameters with the highest accuracy for each classifier in each
area. The ANN and SVM outputs were stored in ENVI native image format. The same
accuracy evaluation was then performed with the same test datasets used for the MLC
and hybrid classification experiments, as shown in Table 2.

The process time for ANN and SVM are also shown in Table 4. All of the experiments
were run using MLC, ANN, and SVM classification tools of ENVI software on the same
computer. However, the ENVI software does not provide grid search tools for SVM.
The optimal penalty parameters and the gamma value of the radial basis kernel function
obtained by 1libSVM and imageSVM tools were inputted into ENVI SVM to calculate
the process time for the SVM. Our experiments showed that the process time for the
MLC, SVM, and ANN methods were 5 seconds, 4 ~ 5.6 minutes, and about 249 hours,
respectively, for Area 1. The ratios between these values were approximately the same as
those for Area 2 among the three methods. Applying the two-layer scheme to the MLC,
SVM, and ANN methods would double the process time. In this study, Areas 1 and 2
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TABLE 5. Accuracy assessments of the MLC, hybrid classification, ANN,
and SVM experiments

Producer Accuracy (%)| User Accuracy (%)

OA| KI | Bd| Tr | Rd | Gs | Bd | Tr | Rd | Gs

MLC1 |79.93|0.7002{93.20|73.97|65.97|83.62|73.86|43.90{99.05|93.08
HMLC2[91.91|0.8780(92.58|65.75|94.75]93.22|95.53|59.26|94.15|91.16
HMLC3(89.27|0.8426(90.31|76.71|87.3996.61|96.48|39.44|98.11{89.53
Area 1| ANNT [85.80]0.7928(83.92(76.71|84.66|97.74|96.90|44.80(92.22|75.55
HANN2{85.55|0.7920(81.44|78.08|85.71199.44|98.01|38.51{98.08|72.13
SVM1 [86.62|0.8026(84.33|73.97|91.18|85.88]96.69(39.13(91.18|87.36
HSVM2{90.42]0.8577|89.90|64.38]92.02|98.31{95.61|49.47(97.33|82.86
MLC1 [84.19/0.7735(83.53|89.42(80.09|87.27|94.14|65.25|96.28 | 77.42
HMLC2(89.58|0.8478(93.93|80.42]90.71{89.09|90.03|93.25|91.52|72.06
HMLC3(89.09|0.8419(92.77|86.77|85.40{89.09|92.51|85.42|94.61|67.12
Area 2| ANNT |90.20]0.8584|89.31{90.48/90.71|92.73|94.21|89.06(90.71|72.86
HANN2[86.76/0.8118(79.48|93.65|90.27|94.55|96.83|73.75|92.31|73.24
SVM1 |86.27]0.8040(82.37|84.66|91.59(94.55|94.37|85.11|84.84(63.41
HSVM2|88.84|0.8403|85.84|92.06|89.82(92.73|97.06|79.82(91.86|71.83

Experiment

Notes: OA: Overall accuracy (%)
MLC1, ANN1, SVM1 KI: Kappa index
Features: RGB + LIDAR intensity Bd: Buildings

+ LIDAR nDSM Tr: Trees
HMLC2, HANN2, HSVM2: Rd: Roads

Two-height-level hybrid classification method |Gs: Grass
MLC3: Three-height-level hybrid classification
method

TABLE 6. Parameters resulting in the highest accuracy in the ANN and
SVM experiments

ANN parameters SVM parameters
Case Hidden -Train-ing Training Training Case Gamma Penalty
layer iterations momentum rate
Area 1 ANNI1 2 10000 0.3 0.2 SVM1 0.2 100
HANN2 1 10000 0.3 0.2 |HSVM2 0.25 100
Aren 2 ANNI1 3 10000 0.4 0.2 SVM1 0.2 100
HANN2 1 10000 0.5 0.2 |HSVM2 0.25 100

were only a very small portion of Kao-Hsiung City. The assessment results shown in Table
4 demonstrate the practical superiority of the proposed hybrid method over the ANN and
SVM approaches. The accuracy assessment results for the ANN and SVM experiments
are shown in Table 5. The overall accuracy and Kappa index values of the hybrid method
were 5-6% higher than those of the ANN and SVM in Area 1. They were equivalent to
(0.7% lower than) those of the ANN but 4% higher than those of the SVM in Area 2.
Figures 7 and 8 show the resulting classified images from the ANN (Figures 7(a) and
8(a)) and SVM (Figures 7(b) and 8(b)) experiments for Areas 1 and 2, respectively.
As expected, the ANN and SVM images (cases ANN1 and SVM1) have superior visual
interpretability compared to the MLC image (case MLC1 in Figures 5(a) and 6(a)). They
are even equivalent to the hybrid classification cases (case HMLC2 in Figures 5(b) and
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Buildings Trees Roads Grass

FIGURE 7. Results of (a) ANN, (b) SVM, (¢) HANN2, and (d) HSVM2 for
Area 1

6(b)). Thus, the computational and time costs of parameter identification are worthwhile.
However, there were some differences among the ANN, SVM, and hybrid classifications.
In the SVM experiment, many misclassifications of small trees occurred inside a large,
grassy field in Area 1 (case SVMI1 in Figure 7(b)). The vegetation discrimination between
trees and grass was better by ANN than by SVM. Conversely, ANN misidentified many
areas of road and small pavement patches inside the grassy field as grassy spots, as shown
in Figure 7(a), more so than did SVM. However, the SVM misclassified buildings and
trees in an area beside the park with dense tree cover and on the roof of a large building
in Area 2 (case SVMI in Figure 8(b)).

To further analyze the hybrid classification method, additional ANN and SVM experi-
ments were performed to evaluate the improvement when the two-level-height scheme was
applied to the ANN (case HANN2) and to the SVM (case HSVM2). As shown in Table 5,
the overall accuracy of HANN2 did not improve for Area 1, while the accuracy of HANN2
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Buildings Trees  Roads Grass

FIGURE 8. Results of (a) ANN, (b) SVM, (¢) HANN2, and (d) HSVM2 for
Area 2

decreased 3% for Area 2. This indicated that the hybrid approach did not improve ANN
performance. However, the overall accuracy of SVM2 improved by about 4% for Area 1
and 3% for Area 2, indicating that the hybrid approach did improve the performance of
SVM. However, neither the hybrid ANN nor the hybrid SVM (case HANN2 and HSVM?2)
had higher classification accuracy than the hybrid MLC (case HMLC2). Furthermore,
even with a 3-4% improvement in accuracy, the HSVM2 method still required twice the
computational cost and more time to identify parameters compared to the hybrid case.
Instead, the 3-4% improvement could be achieved by simply using the hybrid MLC.

The above findings were confirmed by the HANN2 and HSVM2 classification result
images for Areas 1 (Figure 7(c) and 7(d)) and 2 (Figure 8(c) and 8(d)). Figures 7(c) and
8(c) show many buildings surrounded by false trees, which indicates more misclassification
of trees and buildings compared to the ANN1 case (Figures 7(a) and 8(a)). On the other
hand, many misclassifications of small trees inside a large, grassy field in Area 1 in the
SVMI1 case were improved in the HSVM1 case, as shown in Figure 7(c). In addition,
the misclassification between buildings and trees in an area beside the park with dense
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tree cover and on the roof of a large building in Area 2 (case SVM1 in Figure 8(b)) was
reduced in the hybrid SVM (case HSVM1 in Figure 8(d)).

Generally, a non-parametric approach (e.g., ANN or SVM) may be able to overcome the
ambiguity of multi-source data for urban classification. However, some misclassifications
between high and low objects may still occur in the ANN and SVM results. The above ex-
periments confirmed the role of height, represented by the unique two-level-height scheme
embedded in the hybrid classification method, as a key factor in urban classification. The
ANN or SVM approach cost about 60 times or 197724 times more, respectively, in terms
of computing power compared to MLLC, as shown in Table 4. These methods may not be
worth their additional costs.

There are several advantages to using the proposed hybrid classification method to sep-
arate ground features into categories. The major advantages of the new two-height-level
classification framework not only demonstrate the computational efficiency for practical
urban classification applications but also reveal the importance of LIDAR height in ur-
ban classification algorithms. The method offers a mechanism for reducing the number
of categories at each level to overcome the ambiguity between low and high objects. In
the hybrid method, height information plays a key role in feature selection and is a start-
ing point for classifying multi-source data for urban classification. The proposed hybrid
framework could be extended using other key features in other classification applications.

4. Conclusions. For the simultaneous acquisition of LIDAR data and aerial imagery in
urban classification applications, it is critical to use spatially heterogeneous multi-source
data effectively. LIDAR height information can be used to overcome difficulties in dis-
crimination between trees and grass, as well as misclassification of buildings due to diverse
roof compositions and shadow effects. The hybrid classification method proposed in this
study integrates a two-height-level scheme into the traditional pixel-based MLC. This
scheme demonstrates the importance and functionality of LIDAR height in a classifica-
tion system from a new viewpoint. LIDAR height is not only used for texture in the
classification system but also divides the vertical dimension into two stratification levels
and then extracts ground-feature segments from each level. In this way, high efficiency
can be achieved in practical urban classification applications. This scheme is not used
in traditional pixel-based classification. The OBC approach uses LIDAR height data to
represent objects horizontally only, without considering the vertical dimension.

Furthermore, as our results demonstrate, the proposed method has two major advan-
tages over ANN or SVM non-parametric classification methods in terms of efficiency and
accuracy. First, the computing efficiency of the hybrid classification method is higher
than the SVM or ANN methods by a factor of about 60 and 197724, respectively, due
to the two-layer approach based on a simple MLC method, which can be easily applied
with general image-processing tools. In addition, the classification accuracy of the hybrid
method was 4-7% higher than that of the ANN or SVM. Its accuracy may not always
be superior to these other methods, but when used properly, it is equivalent in value to
complex computational algorithms.

The proposed hybrid classification method provides a way to integrate knowledge-based
rules into traditional pixel-based MLC classification. In addition, it can be incorporated
into the non-parametric SVM method to handle more complex problems. Finally, this
method is straightforward and understandable and can be replicated by applying the
MLC function rules in commercial classification software such as ENVI, ERDAS Imagine,
and PCI Geomatics, without any programming. We have outlined the fundamentals of
the hierarchical hybrid classification method for classifying multi-source data for urban
areas. The results provide a solid base for further study and research. In the future,
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more subcategories could be added to the hybrid classification method according to user
requirements. More critical discrimination of ground-feature rules should also be explored
by the feature selection method if more subcategories are required.
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