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Abstract. This study developed a neural fuzzy network (NFN) model with evolution-
ary learning algorithm for use in the field of food mycology for predicting growth in
foodborne fungi. The evolutionary learning algorithm in the proposed model is a hybrid
Taguchi-genetic algorithm (HTGA) that simultaneously finds the optimal antecedent and
consequent parameters by directly minimizing root-mean-squared error (RMSE), which is
a key performance criterion. The minimum RMSE is then used to optimize the number
of fuzzy rules for the NFN. Experimental results show that the proposed HTGA-based
NFN model with eight fuzzy rules outperforms recently reported neural networks in terms
of accuracy in predicting the maximum specific growth rate of foodborne Monascus ruber.
Keywords: Fungal growth, Food mycology, Neural fuzzy network, Genetic algorithm

1. Introduction. Advances in prediction modeling now enable rapid and cost-effective
assessment of microbial growth. In the food manufacturing industry, many applications
of microbial growth prediction models include product development, risk assessment of
food-borne illness, and education [1]. Recently, these models have been used to assess shelf
life in food products by forecasting the growth of micro-organisms that cause spoilage.
Fungal spoilage of food commodities causes significant economic losses. Although indus-
trial standards have greatly improved in recent years, food spoilage by fungi remains a
major concern for both food producers and regulatory agencies. In recent years, newly
developed food manufacturing, processing and packaging techniques have increased the
importance of characterizing foodborne fungi [2]. Fungi can adversely affect the organolep-
tic value of food commodities due to the appearance of visible mycelium and off-flavour
development. In addition to diminishing the nutritional value of many foods, they are a
public health risk because they can produce toxic metabolites that are potentially car-
cinogenic [3]. Improving food quality and safety requires appropriate tools for predicting
fungal growth. In recent years, many studies in predictive microbiology have analyzed
foodborne pathogens, but few have developed predictive models of growth in filamentous
fungi [4]. The few reported predictive models for food mycology include those developed
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by Panagou and Kodogiannis [5], one of which combined neural network with multilayer
perceptron (PKNN + MLP) and one of which combined neural network with radial basis
functions (PKNN + RBF), to model the relationship between growth parameters (tem-
perature, pH and water activity) and the desired output (maximum specific growth rate)
of Monascus ruber. The models were compared with the conventional polynomial model
in terms of accuracy in predicting the growth ofMonascus ruber. When using the full data
set, accuracies with root mean square error (RMSE) were 0.167, 0.110 and 0.092 in the
polynomial model, the PKNN + MLP model, and the PKNN + RBF model, respectively.
Thus, the proposed PKNN models outperformed the conventional polynomial model in
terms of prediction accuracy. Their key parameters for predicting the maximum specific
growth rate of Monascus ruber were, in order of sensitivity, temperature, water activity,
and pH. A recent literature review, however, shows that the PKNN models are the only
reported use of neural networks to predict the growth of foodborne Monascus ruber.
Although PKNN models have demonstrated good accuracy, the current study shows

that a neural fuzzy network (NFN) model is even more accurate for predicting the growth
of Monascus rubber. Because they combine the semantic transparency of rule-based fuzzy
systems with the learning capability of neural networks, NFNs have become a popular
research topic in recent years [6-20]. The main advantage of NFNs is their resolution
of the black box nature of the neural network paradigm as the connectionist structure
of an NFN essentially defines the IF-THEN rules. However, parameter training remains
problematic. For example, an unresolved problem in NFN design is simultaneously finding
the optimal antecedent and consequent parameters by directly minimizing the RMSE
performance criterion. One solution is genetic algorithm (GA), which has proven to be a
powerful technique for training system parameters and for finding a global solution while
optimizing the overall structure by minimizing the error function [21].
This study proposes a novel NFN with hybrid Taguchi-genetic algorithm (HTGA-based

NFN) that improves accuracy in predicting Monascus ruber growth by simultaneously
optimizing the antecedent and consequent parameters and by directly minimizing the
RMSE performance criterion. The HTGA is applied because it reportedly outperforms
conventional genetic algorithms [22,23]. The minimum RMSE is then used to optimize
the number of fuzzy rules for the HTGA-based NFN. After the experimental results are
given, the model is compared with the PKNN models in terms of prediction accuracy.
The present study therefore developed a novel HTGA-based NFN and compared its

performance with PKNN + MLP and PKNN + RBF approaches in terms of accuracy in
predicting the growth of this fungus [5]. Specifically, the objectives were (i) to develop
an intelligent methodology for using HTGA-based NFNs to predict the combined effects
of temperature, pH and water activity on the maximum specific growth rate of Monascus
ruber, (ii) to compare prediction accuracy between the proposed HTGA-based NFNs and
the PKNN + MLP and PKNN + RBF approaches, and (iii) to evaluate the number
of fuzzy rules required when using HTGA-based NFN to predict fungal growth. To our
knowledge, this is the first application of an NFN for predicting fungal growth. Compared
with conventional methodologies used in predictive mycology, the proposed approach is
simpler yet equally effective.
This paper is organized as follows. Section 2 describes the proposed HTGA for solv-

ing the parameter adjustment problem in NFN models of Monascus ruber growth. For
comparison purposes, Section 3 then describes the results of a performance test of the
proposed HTGA-based NFN model using the same data sample used in Panagou and
Kodogiannis [5]. Finally, Section 4 concludes the study.
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2. Materials and Methods. In Panagou and Kodogiannis [5], 73 data sets were ob-
tained in experimental studies of the maximum specific growth rate µmax of Monascus
ruber. Of these, the current study selected 60 data sets (Table 1) to train the proposed
HTGA-based NFN, where R = ln (µmax); after training, the remaining 13 data sets (Table
2) were then used to verify the accuracy of the predicted value y. Three growth param-
eters that have a major impact on fungal growth include temperature (x1), pH value
(x2) and water activity (x3) [24]. Therefore, as in the work of Panagou and Kodogian-
nis [5], these three growth parameters were used as input variables for the NFN, and
the predicted value y was selected as the output variable of the NFN. Figure 1 shows
the nodes in the NFN architecture, including those in the layers for input, membership
function, rules, consequent, and output (5 layers). An NFN consists of a set of fuzzy IF-
THEN rules that describe the input-output mapping relationship of the network. In the
Takagi-Sugeno-Kang model, the antecedents of fuzzy rules partition the input space into
linguistic term sets whereas the consequent constituent functions as a linear combination
of input variables plus a constant value [13].

The n fuzzy rules can be given in the following form:

Rj : IF x1 is M1j AND x2 is M2j AND x3 is M3j,
THEN y = a0j + a1jx1 + a2jx2 + a3jx3,

(1)

where Rj denotes the jth implication; n is the number of fuzzy rules; xi is the input
variable; y is the output variable; Mij is the linguistic term of the precondition part;
akj is the coefficient of consequent part; i = 1, 2, 3; j = 1, 2, . . . , n; and k = 0, 1, 2, 3.
Depending on their measurement ranges, the values for variables x1, x2, x3 and y are
scaled in the rank [0, 1].

The resulting output of NFN inferred from Equation (1) is represented as

y =
n∑

j=1

hj (a0j + a1jx1 + a2jx2 + a3jx3), (2)

in which hj = wj

/
n∑

j=1

wj, wj =
3∏

i=1

Mij, Mij are the grades of Gaussian membership of

xi in the antecedent fuzzy sets Mij (i = 1, 2, 3 and j = 1, 2, . . . , n), and

Mij = exp

(
− [xi −mij]

2

σ2
ij

)
, (3)

in which mij and σij are the center and the width, respectively, of the Gaussian member-
ship function of the ith implication of the jth input variable xi.

After training, antecedent parameters (mij and σij) and consequent parameters (akj)
(i = 1, 2, 3, j = 1, 2, . . . , n, and k = 0, 1, 2, 3) can be optimized by directly minimizing
the following RMSE performance criterion:

J =

√∑
(R− y)2

N
, (4)

where N denotes the number of training data sets.
Equation (4) shows that the value of the performance criterion J actually depends on

the set {mij, σij, akj} (i = 1, 2, 3, j = 1, 2, . . . , n, and k = 0, 1, 2, 3). Therefore,

J = f(mij, σij, akj). (5)
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Table 1. Experimental results for 60 training data sets [5]

Temperature (◦C) (x1) pH (x2) water activity (x3) ln(µmax) (R)
20 3.5 0.173 1.3483
20 4.0 0.173 1.1731
20 4.5 0.173 1.1346
20 5.0 0.173 0.9247
25 4.0 0.173 1.9864
25 4.5 0.173 2.1961
25 5.0 0.173 2.1372
30 3.5 0.173 2.4632
30 4.0 0.173 2.7704
30 5.0 0.173 2.5810
35 3.5 0.173 2.5864
35 4.5 0.173 2.8113
40 3.5 0.173 2.3165
40 4.0 0.173 2.1162
40 4.5 0.173 2.3842
20 3.5 0.207 1.2921
20 4.0 0.207 1.1752
20 4.5 0.207 0.8983
20 5.0 0.207 0.6296
25 3.5 0.207 2.0487
25 4.5 0.207 1.7376
25 5.0 0.207 1.5829
30 3.5 0.207 2.4361
30 4.0 0.207 2.3366
30 5.0 0.207 2.0407
35 3.5 0.207 2.4896
35 4.0 0.207 2.4532
35 4.5 0.207 2.3217
35 5.0 0.207 2.0677
40 3.5 0.207 2.4623
40 4.5 0.207 2.3635
40 5.0 0.207 2.1958
20 3.5 0.238 0.9383
20 4.0 0.238 0.7944
20 4.5 0.238 0.5462
25 3.5 0.238 1.7595
25 4.5 0.238 1.3797
25 5.0 0.238 1.3886
30 3.5 0.238 2.1991
30 4.0 0.238 2.1593
30 4.5 0.238 1.9997
30 5.0 0.238 1.7117
35 3.5 0.238 2.2086
35 4.0 0.238 2.1058
35 4.5 0.238 2.0274
40 3.5 0.238 2.0452
40 4.0 0.238 2.2202
40 4.5 0.238 2.1272
25 3.5 0.250 1.2073
25 4.0 0.250 0.9179
30 3.5 0.250 1.7978
30 4.0 0.250 1.7615
30 4.5 0.250 1.7459
30 5.0 0.250 1.6355
35 4.0 0.250 1.9248
35 4.5 0.250 1.8596
35 5.0 0.250 1.7971
40 3.5 0.250 1.3653
40 4.0 0.250 1.7113
40 4.5 0.250 1.7120
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Figure 1. Three-input/output NFN architecture
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Table 2. Experimental results for 13 test data sets [5]

Temperature (◦C) (x1) pH (x2) water activity (x3) ln(µmax) (R)
25 3.5 0.173 2.1051
25 4.0 0.207 1.8690
25 4.0 0.238 1.6340
25 4.5 0.250 0.5328
30 4.5 0.173 2.7427
30 4.5 0.207 2.3003
35 4.0 0.173 2.5109
35 5.0 0.173 2.6405
35 3.5 0.250 1.9633
40 5.0 0.173 2.1102
40 4.0 0.207 2.4161
40 5.0 0.238 1.9147
40 5.0 0.250 1.5193

This optimization problem is equivalent to the following:

minimize J = f(mij, σij, akj). (6)

The HTGA, which is described in detail below, can be used to search for the optimal
solution for the optimization problem in Equation (6), where Equation (6) is a nonlinear
function with continuous variables. The HTGA combines the genetic algorithm [25-31]
with the Taguchi method [32-34]. In the HTGA, the Taguchi method is performed between
the crossover and mutation operations of a TGA. The genetic algorithms are enhanced by
using two major Taguchi tools (signal-to-noise ratio and orthogonal arrays) to optimize
gene selection in crossover operations by incorporating the systematic reasoning capability
of the Taguchi method (for a detailed description of the Taguchi method, see [32,33]; for
a detailed discussion of HTGA, see [22,23,35,36]). The detailed steps of the HTGA are
as follows:
Detailed Steps: HTGA

Step 1: Set parameters.
Input: population size M , crossover rate pc, mutation rate pm, and number of
generations.
Output: the set of V = {mij, σij, akj} and the value of J in Equation (5).

Step 2: Initialize by using J in Equation (5), which is the fitness function defined
for the HTGA. Calculate the fitness values of the initial population, where
randomly generated chromosomes in the initial population are given in the
form V = {mij, σij, akj} for the problem in Equation (5).

Step 3: Perform selection operation by roulette wheel approach.
Step 4: Perform Crossover operation. The probability of the crossover is determined

by the crossover rate pc.
Step 5: Select a suitable two-level orthogonal array Lγ (2

γ−1) for the matrix experi-
ments, where γ denotes the number of experimental runs, and γ − 1 is the
number of columns in the orthogonal array.

Step 6: Execute the matrix experiments using randomly selected chromosome pairs.
Step 7: Calculate the fitness values of the γ experiments in the orthogonal array

Lγ (2
γ−1) by using Equation (5).

Step 8: Calculate the effects of the various factors.
Step 9: Generate one optimal chromosome based on the results from Step 8.
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Step 10: Repeat Steps 6 through 9 until the expected number M × pc is met.
Step 11: Perform Taguchi method to generate the population.
Step 12: Perform mutation operation. The probability of the mutation is determined

by the mutation rate pm.
Step 13: Generate the offspring population.
Step 14: Sort the fitness values in increasing order among the parents and offspring

populations.
Step 15: Compare feasible M chromosomes and select the best chromosomes for the

constraint for use as the parents of the next generation.
Step 16: If the specified stopping criterion is met, go to Step 17. Otherwise, repeat

Steps 3-16.
Step 17: Compare RMSE performance criteria J to determine if the stopping condition

has been met. If so, go to Step 18. Otherwise, repeat Steps 2-17.
Step 18: Display the optimal chromosome and the optimal fitness value.

3. Results and Discussion. The proposed HTGA-based NFN model was directly com-
pared with the PKNN models. In the evolution environment for the HTGA-based NFN,
population size was 200, crossover rate was 0.9, mutation rate was 0.1, and generation
number was 500. The training parameters for the HTGA-based NFN were −1 ≤ mij ≤ 1,
0.1 ≤ σij ≤ 1, and −1 ≤ akj ≤ 1 (i = 1, 2, 3, j = 1, 2, . . . , n, and k = 0, 1, 2, 3). For the
training data, test data and full data sets, Table 3 shows that, in both the HTGA-based
and conventional GA-based NFNs, RMSE performance criterion J obtained two to twelve
fuzzy rules. The data in Table 3 reveal the following characteristics of the HTGA-based
NFN: (i) the proposed HTGA obtains a smaller performance criterion J compared with
conventional GA, (ii) when using the full data set, eight or nine fuzzy rules give the low-
est RMSE (0.0865 or 0.0863, respectively); that is, eight or nine fuzzy rules is optimal
for an HTGA-based NFN; (iii) when using the test data set, eight fuzzy rules gives a
lower RMSE compared to nine fuzzy rules (RMSE = 0.1614 versus 0.1735, respectively);
that is, eight fuzzy rules gives better prediction results compared to nine fuzzy rules; (iv)
when using the training, test and full data sets, two fuzzy rules yields the worst predic-
tion results; therefore, the smaller the number of fuzzy rules, the less accurate the NFN;
(v) when using training data, twelve fuzzy rules gives the best RMSE (0.0432); when
using test data, however, twelve fuzzy rules gives the worst RMSE (0.1959); therefore, an
overly large number of fuzzy rules may result in a model over-fitted to recognizing specific
subjects in the training data rather than learning general predictive values.

Models with two and eight fuzzy rules were also compared in terms of effects on com-
putational performance. Figure 2 shows the convergence results for training RMSE per-
formance criterion J in Equation (6) with two and eight fuzzy rules when using HTGA.
Clearly, eight fuzzy rules outperforms two fuzzy rules in terms of the RMSE performance
criterion. After training, entering three growth parameters of any one of the 13 test
data sets into the HTGA-based NFN obtains the predicted value of y. In Figures 3 and
4, comparison of predictive performance when using different numbers of fuzzy rules in
HTGA-based NFN shows that, compared to two fuzzy rules, eight fuzzy rules generally
obtains a better model fit. In Figures 5 and 6, comparison of residual value spreads
for two and eight fuzzy rules in HTGA-based NFN shows that residuals are distributed
symmetrically around 0; that is, residuals do not tend to be either positive or negative.
Compared to the HTGA-based NFN with two fuzzy rules, the one with eight fuzzy rules
obtained a narrower spread of residual values and thus a better prediction performance.
Therefore, the proposed HTGA-based NFN model with eight fuzzy rules obtains a smaller
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Table 3. Comparison of training, test and full data for RMSE perfor-
mance criterion J between HTGA-based NFNs and in conventional GA-
based NFNs for different numbers of fuzzy rules

Number of fuzzy rules

RMSE performance criterion J
HTGA-based NFN Conventional GA-based NFN

Training Test Full Training Test Full
data data data data data data

2 0.1641 0.2145 0.1741 0.1733 0.2599 0.1916
3 0.1324 0.2014 0.1471 0.1579 0.2937 0.1893
4 0.1181 0.2204 0.1418 0.1306 0.2604 0.1615
5 0.0699 0.2161 0.1111 0.1146 0.2500 0.1481
6 0.0590 0.2019 0.1006 0.1087 0.2413 0.1417
7 0.0609 0.1758 0.0925 0.1191 0.2455 0.1496
8 0.0588 0.1614 0.0865 0.1364 0.2248 0.1558
9 0.0503 0.1735 0.0863 0.1127 0.2327 0.1417
10 0.0517 0.1755 0.0876 0.1149 0.2882 0.1601
11 0.0594 0.1868 0.0954 0.1224 0.2556 0.1548
12 0.0432 0.1959 0.0915 0.1093 0.2606 0.1480
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Figure 2. Convergence results for training RMSE performance criterion
J when using HTGA

RMSE when using the optimal antecedent and consequent parameters shown in Tables 4
and 5, respectively.
Table 6 compares the RMSE in prediction obtained by the proposed HTGA-based NFN

with eight fuzzy rules (0.0588 in training data, 0.1614 in test data, and 0.0865 in full data)
with that obtained by PKNN + MLP (0.088 in training data, 0.179 in test data, and 0.110
in full data) and that obtained by PKNN + RBF (0.063 in training data, 0.167 in test
data, and 0.092 in full data). The comparison shows that the predictive accuracy of the
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Figure 3. Comparison of predicted values versus observed values when
using HTGA-based NFN in training data set
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Figure 4. Comparison of predicted values versus observed values when
using HTGA-based NFN in test data set
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Figure 5. Comparison of residual values: predicted versus observed values
when using HTGA-based NFN in training data set
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Figure 6. Comparison of residual values: predicted versus observed values
when using HTGA-based NFN in test dataset
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Table 4. Optical antecedent parameters

Input variables
x1 x2 x3

m11 = 0.4259 σ11 = 0.2410 m21 = 0.6952 σ21 = 0.2775 m31 = −0.0961 σ31 = 0.7232
m12 = −0.0690 σ12 = 1.0000 m22 = 0.4113 σ22 = 0.5045 m32 = 0.3905 σ32 = 0.2794
m13 = 1.0000 σ13 = 0.9535 m23 = −0.2436 σ23 = 0.9848 m33 = −0.3781 σ33 = 0.8667
m14 = −0.2085 σ14 = 0.3209 m24 = 0.0873 σ24 = 0.2271 m34 = 0.0196 σ34 = 0.2299
m15 = −0.7439 σ15 = 0.6437 m25 = 0.3558 σ25 = 0.4032 m35 = 1.0000 σ35 = 0.1492
m16 = −0.7941 σ16 = 0.4831 m26 = 0.0517 σ26 = 1.0000 m36 = −1.0000 σ36 = 0.7746
m17 = 0.4459 σ17 = 0.2211 m27 = 0.0560 σ27 = 0.5922 m37 = 0.1417 σ37 = 0.4423
m18 = 0.6448 σ18 = 0.2202 m28 = 0.4948 σ28 = 0.9734 m38 = 0.5699 σ38 = 0.1627

Table 5. Optical consequent parameters

Fuzzy rule
Rule 1 a01 = 0.9892 a11 = −0.0757 a21 = −0.5409 a31 = 0.6146
Rule 2 a02 = 0.9240 a12 = −0.5543 a22 = 0.5352 a32 = 0.1945
Rule 3 a03 = 0.2114 a13 = 0.0855 a23 = −0.3640 a33 = 0.4179
Rule 4 a04 = −1.0000 a14 = −0.4426 a24 = −1.0000 a34 = 0.3598
Rule 5 a05 = 0.5064 a15 = −0.2614 a25 = −0.6628 a35 = 0.2937
Rule 6 a06 = 1.0000 a16 = −0.4451 a26 = −1.0000 a36 = −0.0984
Rule 7 a07 = 0.8182 a17 = 0.5060 a27 = 0.2489 a37 = 0.8766
Rule 8 a08 = 0.6462 a18 = −0.2004 a28 = −0.3709 a38 = 0.3783

Table 6. Comparison of results

Performance index Model
Data set

Training Test Full

RMSE

PKNN + MLP 0.088 0.179 0.110
PKNN + RBF 0.063 0.167 0.092

HTGA-based NFN with
0.0588 0.1614 0.0865

eight fuzzy rules

proposed HTGA-based NFN approach with eight fuzzy rules is higher than that of both
PKNNs.

4. Conclusions. The proposed HTGA-based NFN accurately predicts the maximum
specific growth rate of Monascus ruber in terms of three growth parameters (temperature,
pH and water activity). When applied in the NFN, the HTGA simultaneously optimized
antecedent and consequent parameters by directly minimizing the RMSE performance
criterion. Comparisons of experimental results for full data showed that the RMSE of
0.0865 obtained by the proposed HTGA-based NFN approach with eight fuzzy rules was
superior to the RMSEs of 0.110 and 0.092 obtained by PKNN + MLP and PKNN +
RBF, respectively.
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