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Abstract. In this paper, we present two Sysquake interactive tools for the design of
fractional-order proportional-integral-derivative (FOPID) controllers. The first tool deals
with the time and frequency domain design of FOPID controllers, allowing the user to
analyze the effects of changing user-chosen parameters. In the time domain, both set-
point and load disturbance step responses of the control system are shown, as well as the
effect of measurement noise. In the frequency domain, the Bode diagrams of all the most
important closed-loop transfer functions are plotted. The second tool allows the user to
determine automatically the controller parameters by applying a loop shaping technique,
namely, by mapping a point of the process Nyquist plot to a target point of the loop
transfer function Nyquist plot with a predefined value of its derivative. In this context,
constraints on the gain or phase margin or on the maximum sensitivity can be effectively
considered. It is believed that this kind of Computer Aided Control System Design tools
are very useful from an educational viewpoint and in allowing a widespread use of FOPID
controllers in industry.
Keywords: Fractional-order PID controllers, CACSD, Tuning, Loop-shaping design,
Education

1. Introduction. Fractional-Order Proportional-Integral-Derivative (FOPID) controll-
ers have received significant attention in the last decades both from an academic and
industrial point of view (see, for example, [1-9] and also [10-12] for more comprehensive
reviews). In particular, different tuning methodologies and different tuning rules have
been proposed in the literature.

However, in spite of this research effort, the use of FOPID controllers in industry is still
quite limited. This can be due to many reasons such as

• the performance improvement that can be obtained by using a FOPID controller has
not been fully characterized yet, especially if all the control specifications (set-point
following, load disturbance rejection, noise rejection, control effort) are considered;

• simple, effective and robust tuning rules are still not available (especially addressing
different control tasks);

• additional functionalities that are well established for standard (integer-order) PID
controllers [13] have not been fully developed yet for FOPID controllers.

It is a matter of fact, in any case, that the design of FOPID controllers is a more com-
plex task with respect to the setting of standard integer-order PID controllers. Indeed,
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there are five parameters to tune instead of three, if the basic controller expressions are
considered, and the physical meaning of the parameters of a FOPID controller is not very
intuitive. This is a significant obstacle for the use of this kind of controllers by the process
operators.
In order to provide an effective help in this context, two interactive tools implemented in

Sysquake [14], which is a software with excellent interactive capabilities, are presented in
this paper (note that such a kind of tool is already available for standard PID controllers
[15]). Actually, interactive tools have shown to be very useful in the control education
field [16-18] because they provide a real-time connection between decisions taken during
the design phase and the consequent result. This characteristic is a clear advantage with
respect to noninteractive tools, for which an excellent one related to FOPID controller is
available [19].
The first interactive tool is related to the basic analysis and design of FOPID controllers

[20]. The effects of changing user-chosen parameters are shown both in the time and
frequency domain. In the time domain, both set-point and load disturbance step responses
of the control system are shown, as well as the effect of measurement noise. In the
frequency domain, the Bode diagrams of all the most important closed-loop transfer
functions are plotted.
The second interactive tool allows the user to tune the FOPID controller by applying

a loop shaping design approach [21]. In particular, the tool determines automatically
the controller parameters by mapping a point of the process Nyquist plot to a point of
the loop transfer function Nyquist plot with a predefined value of its derivative. In this
context, constraints on the gain or phase margin or on the maximum sensitivity can be
effectively considered. Indeed, suitable formulae have been devised so that the parameters
of a fractional-order PI or PD controller can be determined. Then, the user can change the
controller parameters by interactively verifying their effects on the control performance
both in the time and frequency domain. The tool is therefore useful for the design of
FOPID controllers and, in general, for learning their properties and for understanding
their use.
The paper is organized as follows. FOPID controllers are briefly reviewed in Section 2.

The basic design interactive tool is then presented in Section 3, while that related to the
loop shaping design is described in Section 4. Conclusions are in Section 5.

2. FOPID Controllers. The control scheme considered is shown in Figure 1 where C
and P are the controller and the process transfer functions respectively, x is the process
output, y is the measured output, u is the control variable, r is the reference signal and
e = r− y is the control error. Then, d denotes the load disturbance signal and n denotes
the measurement noise signal.
The FOPID controller transfer function is based on the definition of the generalized

operator aD
α
t (where a and t are the limits and α is the order of the operation), for which

the Riemann-Liouville (RL) and the Grünwald-Letnikov (GL) definitions are generally
applied. The RL definition is given by (α > 0):

aD
α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α−n+1
dτ, n− 1 < α < n (1)

where Γ(x) is the Gamma function of x.
The GL definition is (α ∈ R):

aD
α
t f(t) = lim

h→0

1

hα

[ t−a
h ]∑

k=0

(−1)α
(
α
k

)
f(t− kh) (2)
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where (
α
k

)
=

Γ(α + 1)

Γ(k + 1)Γ(α− k + 1)
(3)

and [x] represents the integer part of x.
Assuming null initial conditions, the Laplace transform L of a fractional derivative of

a signal f(t) (being f(t) a causal function of t and omitting the subscripts for simplicity)
is simply given by

L{Dαf(t)} = sαF (s), α ∈ R. (4)

Thus, the classical PID controller can be generalized into a FOPID controller, the so
called PIλDµ controller, whose integro-differential equation can be expressed as:

u(t) = K

(
e(t) +

1

Ti

D−λe(t) + TdD
µe(t)

)
(5)

where K is the proportional gain, Ti is the integral time constant, Td is the derivative
time constant, λ is the (non-integer) order of the integrator and µ is the (non-integer)
order of the derivative action. The corresponding transfer function is expressed as

C(s) =
U(s)

E(s)
= K

(
1 +

1

Tisλ
+ Tds

µ

)
. (6)

Note that this controller is in ideal form, but expressing it in parallel form is trivial [13];
by considering k = K, ki = K/Ti and kd = K · Td we obtain

C(s) = k +
ki
sλ

+ kds
µ. (7)

It turns out in any case that in the PIλDµ controller there are five parameters to tune,
with respect to the three parameters of the standard PID controller (for which λ and µ
are fixed to one). Actually, as typically done for standard PID controllers [13], it is worth
filtering the derivative action by means of a first-order filter in order to avoid an excessive
amplification of the measurement noise. The value of the filter time constant is chosen as
a fraction of the derivative time constant; therefore, the controller transfer function can
be written as

C(s) = K

(
1 +

1

Tisλ
+

Tds
µ

1 + Td

N
s+ 1

)
. (8)

This obviously introduces an additional parameter. From one point of view, having
more parameters to tune provides more flexibility in the design, but from another point
of view they make the design more complex, especially because the physical meaning of
the new parameters is not very clear. Indeed, while their interpretation in the frequency
domain has been well investigated (see, for example, [22]), the interpretation in the time
domain is not very clear, especially if all the different typical control tasks (set-point
following, load disturbance rejection, measurement noise rejection) are considered.

Furthermore, in order to implement it, the fractional PIλDµ controller has to be approx-
imated by an integer-order controller. There are many methods for doing it effectively
[23, 24]. In the interactive tools we describe in this paper we consider the Oustaloup’s
method [25] which consists in approximating the transfer function

H(s) = sν ν ∈ R (9)

by a rational function with a recursive distribution of n zeros and poles

H̃(s) = k′
n∏

i=1

1 + s
ωzi

1 + s
ωpi

(10)
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Figure 1. The considered control scheme

where k′ is an adjusted gain so that if k = 1 then the gain is 0 dB for a 1 rad/s frequency.
Zeros and poles are determined, by considering a frequency range [ωl, ωh] for which the
approximation is accurate (this is not guaranteed outside this interval), according to the
following formulae for ν > 0:

ξ =
(

ωh

ωl

) ν
n

η =
(

ωh

ωl

) 1−ν
n

ωz1 = ωl
√
η

ωpi = ωz,i−1ξ i = 1, . . . , n
ωzi = ωp,i−1η i = 1, . . . , n− 1

(11)

For ν < 0 the role of poles and zeros is interchanged.
It appears that the user has also to select the order n of the approximation and the

lower and upper frequency ωl and ωh of the range for which the approximation is valid.
The influence of these parameters on the achieved performance might not be very clear
also in this case and therefore there is the need to include them in the interactive tool.

3. The Interactive Tool for Basic FOPID Control Design. The tool is similar
to that proposed in [15] for standard PID controllers. The main screen of the tool is
shown in Figure 2 where it can be seen that on the left-hand side the parameters of the
controller can be selected (and performance and robustness indexes can be seen), while
the right-hand side is reserved for the plots. Details are given in the next subsections.

3.1. Process selection. The kind of process can be selected, among a wide variety (in-
cluding processes with dead time), by means of a menu (see Figure 3). The process
transfer function is shown symbolically in the top left-hand side of the screen, with in-
teractive elements for changing its representative parameters. When the user modifies
any of these parameters, the symbolic representation of the process transfer function is
immediately updated, as well as all the corresponding graphic elements. It is worth noting
that, in addition to those already provided, the user can insert any kind of (single-input-
single-output) transfer function by using a simple Matlab-like command.

3.2. Controller selection. Five buttons are available for selecting the desired fractional
controller type. The buttons correspond to proportional (P), integral (I), proportional-
integral (PI), proportional-derivative (PD) and proportional-integral-derivative (PID).
Below the buttons, there are sliders which allows to modify the appropriate controller
parameters. In particular, there is a slider for the proportional gain, for the integral time
constant, for the derivative time constant, for the filter N of the derivative action, for
the non-integer order λ of the integrator, for the non-integer order µ of the derivative
action, for the number of poles n of the approximating integer controller (see (10)), and
for the endpoints ωl and ωh of the bandwidth for which the approximation (10) is valid.
Note that the number of available sliders changes according to the chosen controller. For
example, if a PI controller is selected, then the sliders related to Td, N and µ disappear.
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Figure 2. The main screen of the first interactive tool

Figure 3. Selection of process transfer function

3.3. Performance and robustness indexes. Parameters that characterize the perfor-
mance and the robustness of the control system are also displayed on the screen and
updated when the user modifies the controller parameters. The performance criteria are
related to the set-point response, the load disturbance response, and the measurement
noise response. Regarding the set-point response, the integrated absolute error (IAE)
and the overshoot are shown [26]. The integrated absolute error is employed also for
the performance of load step disturbance response, together the maximal error (emax),
and the time to reach the maximum (tmax). Note that the integrated absolute errors
and the maximal error values are normalized to unit step changes in set-point and load
disturbances. Finally, the performance indexes related to response to measurement noise
are the standard deviations of the process variable (sigma x), measured output (sigma y),
and control signal (sigma u).
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Figure 4. Selection of graphic mode

Figure 5. Graphical options available

Typical indexes, such as the maximum sensitivity (Ms), the maximum complementary
sensitivity (Mt), and the gain (Gm) and phase (Pm) margins are shown in order to give
information about the robustness of the control system [26].

3.4. Graphics. Two graphics are shown on the right-hand side of the screen. Three
representation modes can be selected from the Settings menu (see Figure 4). These
modes are time domain, frequency domain, and time/frequency domain. In the first case
the time response of the process output is shown in the top part, while the corresponding
control variable is shown in the bottom part. In this latter case the contribution of the
proportional, integral and derivative actions can be plotted separately. In the first part of
the plot, the set-point step response is plotted, while in the second and third part the load
step disturbance response and the measurement noise responses are shown respectively.
The initial time and the amplitude of the input signals can be easily adjusted by clicking
and dragging on the endpoint of the vertical green lines. The vertical and horizontal
scales can be changed using the black triangles available in the graphics. By placing the
mouse cursor on the plot, the related coordinates are shown automatically. By clicking
with the right button of the mouse on a graphic, other options are available (see Figure
5).
Among them, a grid can be inserted to better evaluate the result from a quantitative

point of view. In the control variable plot, the three control actions of the fractional
PIλDµ controller can be plotted separately by using the buttons above the plot.
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Figure 6. An example of the frequency mode

The checkboxes ‘save’ and ‘delete’ above the process output graphic make possible to
store a simulation for comparison. When the save button is selected, the current design is
frozen and displayed in blue, and a new design in red appears, so that the two designs can
be compared (see Figure 2). The performance and robustness measures are also shown in
the two cases so that a quantitative comparison can be done.

The graphic features for the frequency domain mode are very similar to the previous
case. Here one or more Bode plots are shown. Five buttons allow the user to plot the
sensitivity function S, the complementary sensitivity function T, the transfer function
PS between the load disturbance and the process output, the control sensitivity transfer
function CS (namely, the transfer function between the reference signal r and the controller
output u), and the open-loop transfer function L. A screenshot in the frequency domain
mode is shown in Figure 6.

When both modes are selected, the graphic at the top of the page is devoted to the
time domain (the process output or the control variable can be selected alternatively),
while that at the bottom is devoted to the frequency domain (the magnitude or the phase
of the Bode plot can be selected alternatively).

3.5. Illustrative example. As an illustrative example, the process

P (s) =
1

(s+ 1)3
(12)

has been considered. At the beginning, a standard PID controller (namely, with λ = µ =
1) tuned according to the SIMC tuning rules [27] is selected by using the appropriate
sliders (it is K = 2.5, Ti = 2.5, Td = 0.6, N = 10). Then, the ‘save’ checkbox has been
selected, so that the design has been saved. Finally, by easily modifying the controller
parameters, the values for the FOPID controller have been selected as K = 2.5, Ti = 1.61,
Td = 1.12, λ = 0.91, µ = 1, N = 10. The FOPID controller is approximated by using the
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CRONE method with n = 4 zeros and poles. The resulting time-domain screenshot in
that shown in Figure 2, while the frequency response of the control system is that shown
in Figure 6. The performance improvement can be noted by looking at the performance
indexes provided by the tool. It is worth noting that the improvement has been obtained
easily by exploing the user-friendly interface.

4. The Interactive Tool for Loop Shaping FOPID Control Design.

4.1. Methodology. The loop shaping design described in [26] is here extended to FOPID
controllers. The general idea is to map a point of the process Nyquist plot to a point of
the loop transfer function Nyquist plot (the so-called target point). The first derivative
of the loop transfer function Nyquist plot at the target point is also imposed.
For this purpose, it is convenient to consider the FOPID controller transfer function

(7). Then, given a design frequency ω, the process frequency response can be expressed
as

P (jω) = a+ jb = rejφ. (13)

If we consider a FOPD controller (a similar reasoning can be applied to the FOPI con-
troller), the point on the Nyquist plot of the loop transfer function corresponding to the
frequency ω can be expressed as

L(jω) = kP (jω) + kd(jω)
µP (jω) = x+ jy. (14)

By writing

jµ = ej
π
2
µ = cos

(π
2
µ
)
+ j sin

(π
2
µ
)
, (15)

we obtain
L(jω)

P (jω)
=
(
k + kdω

µ cos
(π
2
µ
))

+ j
(
kdω

µ sin
(π
2
µ
))

, (16)

that is, we obtain the following two equations:

k + kdω
µ cos

(π
2
µ
)
= Re

(
L(jω)

P (jω)

)
=: A(ω) (17)

kdω
µ sin

(π
2
µ
)
= Im

(
L(jω)

P (jω)

)
=: B(ω) (18)

where it is worth noting that A(ω) and B(ω) are known because the original and the
target point are known. Thus, (17) and (18) is a system of two equations with three
unknowns, namely, k, kd and µ. A third equation can be obtained by specifying the angle
α of the loop transfer function at the target point. In fact, by noting that the derivative
of P (jω) can be expressed as (see (13))

P ′(jω) = r′ejφ + jrφ′ejφ, (19)

we have
dL(jω)

dω
= j dC(jω)

djω
P (jω) + L(jω)

P (jω)
P ′(jω)

= jkdµj
µ−1ωµ−1(a+ jb) + (x+ jy)

(
r′

r
+ jφ′)

= kdµω
µ−1
[
(a+ jb)

(
cos π

2
µ+ j sin π

2
µ
)]

+ (x+ jy)
(
r′

r
+ jφ′)

= kdµω
µ−1
[(
a cos π

2
µ− b sin π

2
µ
)
+ j

(
a sin π

2
µ+ b cos π

2
µ
)]

+
[(
x r′

r
− yφ′)+ j

(
xφ′ + y r′

r

)]
(20)
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Hence, by equating the real and imaginary parts, we obtain:

Re
(

dL(jω)
dω

)
= kdµω

µ−1
(
a cos π

2
µ− b sin π

2
µ
)
+
(
x r′

r
− yφ′)

Im
(

dL(jω)
dω

)
= kdµω

µ−1
(
a sin π

2
µ+ b cos π

2
µ
)
+
(
xφ′ + y r′

r

) (21)

Then, the following equation

Re
(

dL(jω)
dω

)
Im
(

dL(jω)
dω

) = tan(α) (22)

can be rewritten as

sinα

cosα
=

kdµω
µ−1
(
a sin π

2
µ+ b cos π

2
µ
)
+
(
xφ′ + y r′

r

)
kdµωµ−1

(
a cos π

2
µ− b sin π

2
µ
)
+
(
x r′

r
− yφ′

) (23)

that is,

kdµω
µ−1
[(
a sin π

2
µ+ b cos π

2
µ
)
cosα−

(
a cos π

2
µ− b sin π

2
µ
)
sinα

]
=
(
xφ′ + y r′

r

)
cosα +

(
x r′

r
− yφ′) sinα. (24)

Eventually, we obtain

kdµω
µ−1
[
(−a sinα+ b cosα) cos

π

2
µ+ (a cosα + b sinα) sin

π

2
µ
]
= C(ω) (25)

where

C(ω) =

(
xφ′ + y

r′

r

)
cosα−

(
x
r′

r
− yφ′

)
sinα (26)

is known. Thus, (17), (18) and (26) represent a system of three equations with three
unknowns. By considering that a = r cosφ and b = r sinφ, (25) can be rewritten as

−kdµω
µ−1r

[
sin(φ− α) cos

π

2
µ+ cos(φ− α) sin

π

2
µ
]
= C(ω) (27)

and, by diving (27) by (18), we have

−µr

ω

[
sin(φ− α) cot

π

2
µ+ cos(φ− α)

]
=

C(ω)

B(ω)
. (28)

Equation (28) can be solved numerically for µ (it can be easily proven that the solution
is unique) and then from (18) we have

kd =
B

sin π
2
µ
ω−µ (29)

and finally from (17):

k = A− kdω
µ cos

π

2
µ. (30)

As already mentioned, a similar reasoning can be applied to a FOPI controller, where the
parameters to be determined are k, ki and λ.

It is worth stressing at this point that specifying the angle α of the loop transfer
function at the target point can be effectively used in order to satisfy stability margin
constraints. Indeed, constraints on the gain and phase margins can be addressed by
a suitable selection of the target point. Further, by specifying also the angle of the
loop transfer function at the target point, a constraint on the maximum sensitivity Ms

(which can be represented as a circle centered in the critical point (−1, 0) with radius
1/Ms), or on the maximum complementary sensitivity Mt (which can be represented as
a circle centered in the point −M2

t /(M
2
t − 1) with radius Mt/(M

2
t − 1)) can be also

addressed explicitly. A constraint that considers both the maximum sensitivity Ms and
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the maximum complementary sensitivity Mt can be selected by specifying the M circle
that encloses both the Ms and Mt circles. The M circle has the centre in the point
(x1 + x2)/2 and radius (x1 − x2)/2 where

x1 = max

{
Ms + 1

Ms

,
Mt

Mt − 1

}
(31)

and

x2 = max

{
Ms − 1

Ms

,
Mt

Mt + 1

}
. (32)

For further details, see [26].

Remark 4.1. It is worth noting that, by applying the loop shaping procedure, the stability
of the closed-loop system (as well as the positiveness of the controller parameters) is not
guaranteed in general for all the selections of the design parameters. However, the user
can easily recognize when such a kind of undesirable situations happen.

Remark 4.2. The procedure described above involves the solution of the nonlinear equa-
tion (28). In order to avoid numerical problems, it is convenient to select a value of µ
and then to obtain the values of kd, k and α directly by using Equations (18), (17) and
(22) respectively. In other words, for given values of the design frequency ω and of the
target point (x, y), the user can satisfy the value of α by conveniently modifying the value
of µ. Note that the value of µ has a very intuitive geometrical interpretation because it
represents the angle between the proportional and derivative actions. Indeed, this angle
can be changed in an interactive way in the tool.

4.2. The interactive tool: overview. The main screen of the tool is shown in Figure 7
where it can be seen that on the right-hand side both the process and loop transfer function
Nyquist plots are shown, while in the left-hand side the parameters of the controller can be
selected (and performance and robustness indexes can be seen) and the control system step
responses (both for the set-point and load disturbance) are plotted. Plot functionalities
(modification of the scale, insertion of a grid, and so on) are again available for improving
the presentation of the results.
The process selection is made as in the tool for the basic design (see Section 3.1) and

performance and robustness measures are still available.

4.3. Controller selection. In the controller section, two kinds of tuning are available.
The loop shaping mode automatically selects the controller parameters according to the
method described in Section 4.1. Note that when a FOPID controller (where all the
three actions are employed) is selected, because a method for the determination of all
the five parameters is not available, the loop shaping technique for integer-order PID
controllers [26] is actually employed, that is, the values λ = µ = 1 are selected. The
design constraints (namely, phase margin Pm, gain margin Gm, maximum sensitivity Ms,
maximum complementary sensitivity Mt, and M) can be chosen by suitable buttons,
while the design frequency and the non-integer parameter λ and µ can be selected by two
sliders or by dragging the suitable points on the Nyquist plot.
If the free mode is chosen, the controller parameters can be changed by using the sliders

or by dragging the arrows (one for each gain) in the Nyquist plot. In particular, modifying
the length of the arrows affects the gains of the controller, while modifying the angles of
the integral and derivative action (by clicking on small circles drawn on purpose on the
unit circle) affects the values of λ and µ respectively.
It is worth noting that all the controller parameters can also be selected by inserting

them by means of an appropriate menu.
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Figure 7. The main screen of the loop shaping design interactive tool

4.4. Example. As an illustrative example, consider again process (12). After having
inserted the process parameters, the PI loop shaping design has been selected with a design
frequency ω = 0.5, a constraint on the maximum sensitivity Ms = 2 and a constraint on
the maximum complementary sensitivity Mt = 2. Then, the value of the parameter λ has
been modified until the loop transfer function Nyquist plot is tangent to the M circle. It
results λ = 1.2, k = 1.09 and ki = 0.61. The obtained result can be evaluated in Figure
7. Then, after having selected the ‘save’ button, the free mode has been selected and the
controller parameters are modified as λ = 1.1, k = 1.5 and ki = 0.6, so that a performance
improvement results (see again Figure 7).

Indeed, a satisfactory response can be achieved very easily.

5. Conclusions. In this paper, two interactive software tools for the analysis and de-
sign of FOPID controllers have been presented. These tools allow the user to verify
interactively the effect of changing the different controller parameters and they represent
therefore a contribution for a better understanding of fractional controllers, in particu-
lar, of the physical meaning of the various involved parameters, both in the time and
frequency domain.

The tools can therefore represent a step toward the full characterization of FOPID con-
trollers from an industrial point of view. In fact, the tools can be employed to understand
in which situations FOPID controllers can replace the standard PID controllers effectively
and to train process operators to use them.

Also from the academic point of view, it is believed that the software tools can be
very useful for the research of new methodologies for the design of PIλDµ controllers
(new tuning rules, performance assessment techniques, and so on), because they allow the
researcher to quickly verify the effectiveness of a devised method.

The software tools are freely available upon request to the authors.
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