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Abstract. Utility mining in knowledge discovery has recently become a prominent re-
search issue due to its many practical applications. A high utility itemset in utility mining
considers not only quantities but also profits of items in transactions. Most of previous
approaches were based on the traditional utility upper bound model to find high utility
itemsets in databases. By using the model, however, a huge number of candidates have
to be generated, and a good deal of time to count utility upper bounds of itemsets has to
be needed for mining. In this paper, we thus propose a level-wise mining approach to find
efficiently high utility itemsets in databases. In particular, a pruning strategy is designed
to gradually cause better utility upper bounds of itemsets in passes. Also, data size could
be gradually reduced to save data scan time. Finally, the experimental results on syn-
thetic datasets and a real dataset show the proposed approach outperforms the traditional
two-phase utility mining approach in pruning effect and execution efficiency.
Keywords: Data mining, Utility mining, High utility itemsets, Level-wise mining ap-
proach, Pruning strategy

1. Introduction. Data mining is a critical process of knowledge discovery in databases,
with the goal of extracting useful patterns or rules from data sets. Among the data
mining issues, association-rule mining [1,2] is one of the most important and has a wide
range of applications in areas from retailing to medicine. However, association-rule mining
only considers the high occurrence of items in a transaction database [1], and thus does
not reflect any other factors, such as price or profit. Also, the same significance is also
assumed for all the items in a database, and thus the actual significance of itemsets cannot
be easily recognized. For example, assume there is an itemset like {DVD PLAYER, LCD
TV}. This itemset may be not frequent in a database, but may have high utility over
the entire database due to the high prices of LCD TV. As this example illustrates, some
products (items) with high profit but low frequency may not be found in databases by
using association-rule mining approaches. To deal with this, a utility mining approach
was proposed by Chan et al., 2003 [3]. Since both the individual profits and quantities
of products (items) in transactions were considered in their proposed approach [3], the
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actual utility of itemsets could be determined. The high utility itemsets, which had utility
values larger than or equal to a predefined threshold, could thus be easily found.
However, since the downward-closure property in association-rule mining [1] cannot

be directly used in utility mining [3]. To deal with this, Liu et al. thus proposed a
two-phase utility mining (TP) algorithm to find high utility itemsets from databases
by adopting their specific downward-closure property [12]. By this property, the utility
values of all the items in a transaction were summed up as the transaction utility and
used as the upper bound of any itemset in that transaction. This property was called
the transaction-weighted utilization (TWU) model [12]. By using the TWU model, their
proposed algorithm can effectively handle the problem of utility mining. However, when
using the model, it was observed that many unpromising candidates were still generated
in each pass for mining.
In this study, we thus propose an efficient utility mining algorithm, which is a level-wise

pruning approach (also termed the gradual pruning approach, or GPA), to discover high
utility itemsets from a database. In particular, a new pruning strategy can be applied to
reduce the number of candidates in each pass, in which unpromising items are removed
early from transactions to make more precise utility upper bounds for itemsets. Also,
the data size in each pass can be gradually reduced to save the scanning time needed for
mining. The experimental results show that the number of candidates required by GPA is
obviously less than that required by the TP algorithm [12]. The GPA algorithm executes
faster than the TP algorithm as well.
The remaining parts of this paper are organized as follows. The related works are

reviewed in Section 2. The problem to be solved and the proposed mining algorithm with
a pruning strategy are stated in Section 3. An example is then given to illustrate the
detailed process of the proposed algorithm in Section 4. The experimental results are
next shown in Section 5, and the conclusions and directions for future work are given in
Section 6.

2. Review of Related Works. As mentioned in the introduction, the main principle
of data mining is how to extract desired patterns or rules in a set of data. One common
type of data mining is to derive association rules from transaction data, such that the
presence of certain items in a transaction will imply the presence of some other items
[1,2]. However, only the occurrences of items are considered in association-rule mining,
but values for both profits and quantities are usually included in real-world transaction
data. Consequently, some high-profit but low-frequency products may not be found by
the association-rule mining algorithms. For example, both jewels and diamonds have
high utility values, but may not be a frequent product combination when compared with
food and drink in a transaction database. To deal with this, Chan et al. proposed an
approach called utility mining to discover high utility itemsets in a transaction database
[3]. In Chan et al.’s study [3], a utility itemset is identified by considering not only the
quantities of the items in transactions, but also their individual profits. Formally, both
local transaction utility and external utility are used to measure the utility of an item.
The local transaction utility of an item is directly obtained from the information stored in
a transaction database, like the quantity of the item sold in a transaction. The external
utility of an item, like its profit, is given by users. External utility thus often reflects user
preferences, and can be represented by a utility table or a utility function. By using a
transaction dataset and a utility table together, the discovered itemset is able to better
match a user’s expectations than if found by considering only the transaction dataset
itself.
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However, utility mining is much harder than traditional association-rule mining, as
the former lacks the downward-closure property. Liu et al. thus proposed a two-phase
utility mining algorithm to find high utility itemsets in a database by adopting a new
downward-closure property [12]. The above is called the transaction-weighted utilization
(abbreviated as TWU) model [12], which mainly uses the summation of the utility values
of all the items in a transaction as the upper bound of any itemset in that transaction to
keep the downward-closure property. With the aid of the TWU model, the whole process
of the mining algorithm can be divided into two phases. In the first phase, the possible
candidate itemsets are found in a transaction database by the TWU model. Then, in the
second phase, the database is rescanned to find the actual utility value of each candidate
itemset and identify the high utility itemsets with actual utility values larger than or equal
to a pre-defined threshold (called the minimum utility threshold). Based on the principle
of this two-phase mining algorithm, several other studies about utility mining have also
been published [4,5,7,9-11,13-16], such as on-shelf utility mining, temporal utility mining,
and incremental utility mining. However, a large number of unpromising candidates may
still be produced with the TWU model [12], and thus it is desirable to reduce the number.

3. The Proposed Algorithm. In this paper, we propose a gradual pruning (GPA) algo-
rithm with a pruning strategy to efficiently find all high utility itemsets from a database.
A utility itemset considers the individual profits and quantities of products in transaction
data. The problem of utility mining is defined as follows. Assume a database contains a
number of transactions, and each transaction is recorded with the items purchased and
their corresponding quantities. Also, a utility table with the profits of the items is given.
The problem is to find the itemsets with utility values larger than or equal to a predefined
minimum utility threshold. The pruning strategy is first described below.

3.1. Pruning unpromising item strategy. The proposed strategy is mainly applied to
remove unpromising items in transactions, and then improve the upper bounds of utility
values of itemsets for mining. The strategy is still based on the transaction-weighted
utilization (TWU) model proposed by Liu et al. [12]. Based on the downward-closure
property of the TWU model, candidate (r + 1)-itemsets with r + 1 items (Cr+1) of the
next pass are produced from the set of high transaction-weighted utilization r-itemsets
(HTWUr) in the current rth pass. That is, if one item is not a member of any of the set
of HTWUr in the rth pass, then it cannot be a member of any of the high transaction-
weighted utilization itemsets in the later passes. As mentioned above, some items in a
transaction that do not appear in the current set of HTWUr can thus be removed from
that transaction, so that the upper bound of transaction utility of that transaction can
be tighter. To avoid keeping unnecessary transactions, the number of items kept in each
modified transaction is checked for whether it is larger than or equal to the number of
items in the itemsets to be processed in the next pass. If a transaction does not satisfy
the condition, it is removed from the current set of modified transactions; otherwise, it
is kept. Below, an example is given to illustrate how to improve upper bounds of utility
values for itemsets by using the strategy.

For example, assume the following three transactions are to be processed: Trans1:
{1A, 1B, 2C, 1D}, Trans2: {1B, 25C} and Trans3: {1B, 12C}, where the numbers
represent quantities and the symbols represent items. There are four items in the three
transactions, denoted as A to D. Also, the profits of the items are assumed to be 3, 10, 1
and 6, respectively, and the minimum utility threshold is set at 30. First, the transaction
utility of each transaction and the individual utility values of items in each transaction
are found. Take the first transaction Trans1: {1A, 1B, 2C, 1D} as an example. The
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transaction Trans1 includes four items, A, B, C and D, their quantity values are 1, 1, 2
and 1, and their profits are 3, 10, 1 and 6, respectively. Their individual utility values can
then be calculated as 1 ∗ 3 (= 3), 1 ∗ 10 (= 10), 2 ∗ 1 (= 2), and 1 ∗ 6 (= 6), respectively.
Its transaction utility can thus be calculated as 3 + 10 + 2 + 6, which is 21. All the
other transactions can be similarly processed. The transaction utility values of the three
transactions are then 21, 35 and 22.
Next, the transaction-weighted utility (twu) and the actual utility (au) of all possible

items in the transactions can be found in the first pass. Take item B as an example,
which appears in the three transactions, Trans1, Trans2 and Trans3, and their transaction
utility values are 21, 35 and 22, respectively. In addition, the quantity values of B in
the three transactions are all 1, and its profit is 10. Then all the utility values of item
B in the three transactions can be calculated as 1 ∗ 10 (= 10), and thus the transaction-
weighted utility value and actual utility value of the 1-itemset {B} can be calculated as
21 + 35 + 22 (= 78) and 10 + 10 + 10 (= 30), respectively. All the other items in the
transactions can be processed in the same way. The transaction-weighted utility values
of the four 1-itemsets in the transactions, {A}, {B}, {C} and {D}, are 21, 57, 78 and 21,
respectively, and their actual utility values are 3, 30, 39 and 6. In this example, since the
transaction-weighted utility values of only the two 1-itemsets, {B} and {C}, satisfy the
minimum utility threshold (= 30), they are put in the set of high transaction-weighted
utilization 1-itemsets (HTWU1). In addition, only the 1-itemset {C} is put into the set of
high utility 1-itemsets (HU1) as its actual utility value is larger than the minimum utility
threshold.
In the second pass, only one candidate 2-itemset {BC} is generated from the set of

HTWU1. The members of itemsets in the set of candidate 2-itemsets only include two
items, B and C, and only they can be kept in transactions at the second pass. Take
the first transaction Trans1: {1A, 1B, 2C, 1D} as an example. Since the two items A
and D in Trans1 are not the members of itemsets in the set of candidate 2-itemsets, they
are removed from Trans1. The modified transaction then becomes {1B, 2C}. All the
other transactions can be processed in the same way, and the modified transactions are
{1B, 2C}, {1B, 25C} and {1B, 12C}. Next, the number of items kept for each modified
transaction is checked to see whether the number of this transaction is larger than or equal
to the value (= 2). If it is, the modified transaction is kept in the modified transactions,
and otherwise it is removed. Continuing this example, since the first modified transaction
satisfies the condition, it is kept in the set of modified transactions.
After the above process, the transaction utility for each transaction in the set of modified

transactions is updated. Take the first modified transaction {1B, 2C} as an example; It
includes the two items, B and C, and their quantity values are 1 and 2. Also, the profits
for the two items are 10 and 1. The new transaction utility of the transaction can then
be calculated as (1 ∗ 10) + (2 ∗ 1), which is 12. All the other transactions in the set of
modified transactions can be similarly processed, and thus the new transaction utility
values of the three transactions, {1B, 2C}, {1B, 25C} and {1B, 12C}, are found as 12,
35, and 22, respectively. Thus, the transaction-weighted utility of the candidate 2-itemset
{BC} can be calculated as 12 + 35 + 22, which is 69. After the second pass, both the
transaction-weighted utility and the actual utility of the candidate {BC} are 69. The
2-itemset {BC} is thus a high transaction-weighted utilization 2-itemset, and it is also a
high utility 2-itemset.
By using the TWU model without the pruning strategy, the transaction-weighted util-

ity value of the 2-itemset in this example, {BC}, is 78. Thus, the proposed algorithm
can improve the utility upper bounds of itemsets in a database. Another strategy for,
reduction of data sizes, is then described in the following subsection.
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3.2. Reducing data size strategy. For some modified transactions, all the items within
them may become the same after the process of pruning unpromising items. To reduce the
scanning time, the transactions with the same items are merged into one transaction, and
the quantity values of items in the merged transactions are also summed together. After
the above step, the transaction utility values of the merged transactions are re-calculated
and added together as the current total transaction utility. The mining process may be
terminated early when the current total transaction utility is not larger than or equal to
the minimum utility threshold. The main reason is that no itemsets with enough utility
upper bounds can be found from the transactions when the above condition is satisfied.
As noted above, the data size is gradually reduced in the later passes.

Continuing the example described in Section 3.1, the set of modified transactions are
{1B, 2C}, {1B, 25C} and {1B, 12C} after the pruning strategy is performed. In this
example, since the three modified transactions have the same items, B and C, they can
be merged into a new one. Also, the quantity values of the item B in the transactions
are all 1, and the quantity values of the item C are 2, 25 and 12, respectively. The new
quantity values of the two items, B and C, in the new transaction can be then calculated
as 1 + 1 + 1 (= 3) and 2 + 25 + 12 (= 39). The merged transaction is thus {3B, 39C}.
Next, the transaction utility of each merged transaction is re-calculated. In this example,
since the profit values of the above two items are 10 and 1, the new transaction utility
of the merged transaction is calculated as (3 ∗ 10) + (39 ∗ 1), which is 69. As shown in
this example, the proposed algorithm can increase the efficiency of finding high utility
itemsets in a database. The details of the proposed algorithm are stated in the following
subsection.

3.3. The proposed algorithm for finding high utility itemsets. The details of the
proposed algorithm (Gradual Pruning Approach, GPA) are as follows.

The proposed level-wise mining algorithm with a gradual pruning strategy:
INPUT: A set of items, each with a profit value; a transaction database D, in which each
transaction includes a subset of items with quantities; the minimum utility threshold λ.
OUTPUT: A final set of high utility itemsets (HU).
STEP 1: For each yth transaction Transy in D, do the following substeps.

(a) Calculate the utility value uyj of each jth item Iyj in Transy as:

uyj = syj ∗ qyj,

where syj is the profit of item Iyj and qyj is the quantity of Iyj.
(b) Calculate the transaction utility tuy of the transaction Transy as:

tuy =

|Transy |∑
j=1

uyj,

where |Transy| is the number of items in Transy.

STEP 2: Calculate the total transaction utility ttu in the set of transactions as:

ttu =
∑
y

tuy.

STEP 3: For each item I in D, do the following substeps.
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(a) Calculate the transaction-weighted utility twuI of each item I as the summation of
the transaction utility values of the transactions which include the item I. That is:

twuI =
∑

I∈Transy

tuy.

(b) Calculate the actual utility auI of each item Ias the summation of the utility values
of the transactions which include the item I. That is:

auI =
∑

I∈Transy

uyI .

STEP 4: For each item I in D, do the following substeps.

(a) Check whether the transaction-weighted utility twuI of an item I is larger than
or equal to the minimum utility threshold λ. If it is, put it in the set of high
transaction-weighted utilization 1-itemsets, HTWU1.

(b) Check whether the actual utility auI of an item I is larger than or equal to the
minimum utility threshold λ. If it is, put it in the set of high utility 1-itemsets,
HU1.

STEP 5: Set r = 1, where r represents the number of items in the current set of candidate
utility itemsets (Cr) to be processed.
STEP 6: Generate the candidate set Cr+1 from set HTWUr, for which all the r-sub-
itemsets in each candidate in Cr+1 must be contained in set HTWUr.
STEP 7: Acquire the items existing in set HTWUr+1 and denote them as Sr+1.
STEP 8: For each transaction Transy in D, do the following substeps.

(a) Remove the items not appearing in Sr+1 in Transy.
(b) Check whether the number of items kept in the modified transaction is smaller than

the number of items in the current set of candidate utility itemsets Cr+1. If it is,
remove the transaction; otherwise, put it in the set of modified transactions.

STEP 9: Merge the modified transactions with the same items into a new transaction
Transm in the set of modified transactions; the quantity of each item in the merged
transaction Transm is the sum of all its quantities in the transactions to be merged.
STEP 10: Calculate the transaction utility tum of each modified transaction Transm.
That is:

tum =

|Transm|∑
j=1

umj,

where |Transm| is the number of items in Transm.
STEP 11: Calculate the total transaction utility ttur in the set of currently modified
transactions in the rth pass. That is:

ttur =
∑
m

tum.

STEP 12: If the total transaction utility ttur in the set of modified transactions is larger
than or equal to the threshold λ, go to the next step; otherwise, go to STEP 16.
STEP 13: Scan the set of modified transactions to find the transaction-weighted utility
twux and actual utility aux of each itemset x in set Cr+1 as described in STEP 3.
STEP 14: For each candidate (r+1)-itemset x in set Cr+1, do the following substeps.

(a) Check whether the transaction-weighted utility twux of x is larger than or equal to
the minimum utility threshold λ. If it is, put it in set HTWUr+1.

(b) Check whether the actual utility aux of x is larger than or equal to the minimum
utility threshold λ. If it is, put it in set HUr+1.
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STEP 15: If HTWUr+1 is null, do STEP 16; otherwise, set r = r + 1 and repeat STEPs
6 to 15.
STEP 16: Output the final set of high utility itemsets, HU.

4. An Example of Using the GPA Algorithm. In this section, a simple example
is given to show how the GPA algorithm can easily be used to find high utility itemsets
in a set of transactions. Assume the ten transactions shown in Table 1 are used for
mining. Each transaction consists of two features, transaction identification (TID) and
items purchased. There are six items in the transactions, denoted as A to F . The value
attached to each item is the quantity sold in the transaction. Also, assume that the profit
values for the six items are predefined as 3, 10, 1, 6, 5, and 2, respectively. Moreover,
the minimum utility threshold λ is set at 55, and the GPA algorithm then proceeds as
follows.

Table 1. The set of ten transaction data used in this example

TID A B C D E F
Trans1 1 0 2 1 1 1
Trans2 0 1 25 0 0 0
Trans3 0 0 0 0 2 1
Trans4 0 1 12 0 0 0
Trans5 2 0 8 0 2 0
Trans6 0 0 4 1 0 1
Trans7 0 0 2 1 0 0
Trans8 3 2 0 0 2 3
Trans9 1 0 0 1 0 0
Trans10 0 0 4 0 2 0

STEP 1: The utility value of each item occurring in each transaction is found. Take
the second transaction Trans2 in Table 1 as an example. The transaction includes the
two items, B and C, and their quantitiesare 1 and 25. Also, the profits of items B and
C are 10 and 1. Their utility values in Trans2 can be then calculated as 1 ∗ 10 (= 10)
and 25 ∗ 1 (= 25), respectively. After this process, the transaction utility (tu) of each
transaction in Table 1 is found. Continuing the example, the transaction utility of Trans2
can be calculated as 10 + 25, which is 35. All the other transactions can be processed in
the same way. After this step, the transaction utility (tu) values of the ten transactions
in Table 1 are 18, 35, 12, 22, 24, 12, 8, 45, 9, and 14, respectively.

STEP 2: The total transaction utility (ttu), which is the summation of the transaction
utility values of all the transactions, is calculated. Using the data in Table 1, the total
transaction utility can be calculated as 18 + 35 + 12 + 22 + 24 + 12 + 8 + 45 + 9 + 14,
which is 199.

STEP 3: All the possible items are generated from the transaction data, and their
transaction-weighted utility (twu) and actual utility (au) values are also found. Taking
the item A in Table 1 as an example, it appears in four transactions, Trans1, Trans5,
Trans8 and Trans9, and its utility values are 3, 6, 9 and 3, respectively. Its transaction-
weighted utility and actual utility can then be calculated as 18 + 24 + 45 + 9 (= 96) and
3 + 6 + 9 + 3 (= 21), respectively, and the item A and its two values are then put in
set C1. All the other items in Table 1 can be similarly processed, and the results for the
transaction-weighted utility (twu) and actual utility values (au) of all the 1-itemsets in
set C1 are shown in Table 2.
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Table 2. The transaction-weighted utility and actual utility values of 1-
itemsets in C1

1-itemset twu au
{A} 96 21
{B} 102 40
{C} 133 57
{D} 47 24
{E} 113 45
{F} 87 12

STEP 4: In Table 2, since the transaction-weighted utility (= 47) of only {D} does not
satisfy the minimum utility threshold λ (= 55), all the other 1-itemsets, {A}, {B}, {C},
{E}, and {F}, are put in set HTWU1. On the other hand, the actual utility (= 57) of
only {C} in Table 2 satisfies the minimum utility threshold λ (= 55), and thus it is put
in set HU1.
STEP 5: The variable r is currently set at 1, where r is used to represent the number

of items in the current candidate itemsets to be processed.
STEP 6: Ten candidate 2-itemsets are generated from set HTWU1 as follows: {AB},

{AC}, {AE}, {AF}, {BC}, {BE}, {BF}, {CE}, {CF} and {EF}.
STEP 7: The items appearing the items of 2-itemsets in set C2 then include A, B, C,

E and F , and these are put in set S2.
STEP 8: For each transaction in Table 1, the items in it which do not appear in set S2

are removed. Also, it is checked to see whether its new transaction length is larger than
or equal to the value (= 2). If it is, it is kept in the set of modified transactions, and
otherwise it is removed. Taking the first transaction Trans1 in Table 1 as an example,
it includes five items A, C, D, E and F . However, since the item D does not appear in
set S2, it is removed from Trans1. After this process, the number (= 4) of items kept for
that transaction is larger than or equal to the value (= 2), and thus it is kept in the set
of modified transactions. All the other transactions can be processed similarly, and the
results are shown in Table 3.

Table 3. The results of all the modified transactions in this example

TID A B C E F
Trans1 1 0 2 1 1
Trans2 0 1 25 0 0
Trans3 0 0 0 2 1
Trans4 0 1 12 0 0
Trans5 2 0 8 2 0
Trans6 0 0 4 0 1
Trans8 3 2 0 2 3
Trans10 0 0 4 2 0

STEP 9: Some modified transactions with the same items in the set of modified trans-
actions are merged into one.
In Table 3, since only the two transactions, Trans2 and Trans4, have the same items,

namely B and C, they are merged into one transaction. The quantity values of the item
B in Trans2 and Trans4 are both 1, and the quantity values of the item C are 25 and 12.
Their quantity values in the merged transaction can then be calculated as 1 + 1 (= 2)
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Table 4. All the merged transactions in this example

MID A B C E F
Transm1 1 0 2 1 1
Transm2 0 2 37 0 0
Transm3 0 0 0 2 1
Transm4 2 0 8 2 0
Transm5 0 0 4 0 1
Transm6 3 2 0 2 3
Transm7 0 0 4 2 0

and 25+12 (= 37), respectively. The results for all the merged transactions are shown in
Table 4. Note that the identifier number of each transaction is the merged one and not
the original one.

STEP 10: The transaction utility (tu) of each transaction in the set of modified trans-
actions is re-calculated. The process is the same as that mentioned in STEP 1. After this
step, thus, the transaction utility values of the seven merged transactions in Table 4 are
12, 57, 12, 24, 6, 45 and 14.

STEP 11: The current total transaction utility in Table 4 can then be calculated as
12 + 57 + 12 + 24 + 6 + 45 + 14, which is 170.

STEP 12: The new total transaction utility for the seven merged transactions is larger
than or equal to the minimum utility threshold λ, which is 55. Thus, the next step is
done.

STEP 13: The merged transactions in Table 4 is scanned to find transaction-weighted
utility (twu) value and actual utility (au) value of each candidate 2-itemset in set C2.
Take the candidate itemset {AE} in set C2 as an example. This 2-itemset appears in
three transactions, Transm1, Transm4 and Transm6, in Table 5, and their transaction
utility values are 12, 24 and 45, respectively. Also, the utility values of the item A in
the three transactions are 3, 6, and 9, and the utility values of the item E are 5, 10, and
10, respectively. The transaction-weighted utility (twu) of {AE} can then be calculated
as 12 + 24 + 45, which is 81, and the utility values of {AE} in the transactions can be
calculated as (3+ 5)+ (6+10)+ (9+10), which is 43. All the other candidate 2-itemsets
in set C2 can be similarly processed. The results for the calculated transaction-weighted
utility (twu) and actual utility (au) of each candidate 2-itemset in set C2 are then shown
in Table 5.

Table 5. The transaction-weighted utility and actual utility of each 2-
itemset in set C2

2-itemset twu au 2-itemset twu au
{AB} 45 29 {BE} 45 30
{AC} 36 19 {BF} 45 26
{AE} 81 43 {CE} 50 39
{AF} 57 20 {CF} 18 10
{BC} 57 57 {EF} 69 35

STEP 14: In Table 5, the transaction-weighted utility values of only the four 2-itemsets
in set C2, {AE}, {AF}, {BC} and {EF}, satisfy the minimum utility threshold λ (= 55),
and they are put in set HTWU2. In addition, the actual utility of only the 2-itemset
{BC} in set C2 satisfies the minimum utility threshold λ (= 55), and so it is then put in
set HU2.
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STEP 15: In this example, since set HTWU2 is not null, r is incremented to 2 and
STEPs 6 to 15 are repeated. The candidate 3-itemset {AEF} is then generated from set
HTWU2, and the total transaction utility of the merged transactions in the 3th pass is
35 after the STEP 13 is done. The mining task can be terminated early since the total
transaction utility in the 3th pass is smaller than the minimum utility threshold λ, which
is 55. The reason is that the 3-itemset {AEF} does not still have enough transaction-
weighted utility and actual utility to satisfy the minimum utility threshold, even if the
merged transactions in the 3th pass are scanned, and thus the next step is STEP 16.
STEP 16: In this example, set HU only includes two high utility itemsets, {C} and

{BC}, and their actual utility values are both 57, and these are then output as the decision
makers’ auxiliary information. Note that the three itemsets, {AEF}, {CE} and {EF},
are the high transaction-weighted utilization itemsets obtained by using the traditional
TWU model without the pruning strategy [12], but these itemsets are not by using GPA.
As a result, the GPA algorithm can improve the execution efficiency with the strategy for
mining.

5. Experimental Evaluation. A series of experiments were conducted to compare the
performances of the proposed GPA algorithm and the traditional two-phase utility mining
(TP) algorithm [12] with different parameter values. They were implemented in J2SDK
1.5.0 and executed on a PC with 3.0 GHz CPU and 1 GB memory.

5.1. Experimental datasets. In the experiments, the public IBM data generator was
utilized to produce the required testing datasets [8]. Since our purpose was to find out
high utility itemsets, we developed a simulation model, which was similar to that used in
Liu et al. [12]. The quantity values generated by using the simulation model are attached
to items in the transactions. Each quantity ranged from 1 to 5 following the described
way in that study [12]. Moreover, for each dataset generated, a corresponding utility table
was also produced in which a profit value in the range from 0.01 to 10.00 was randomly
assigned to each item. Besides, the related parameters included T , I, N and D, which
represented the average length of items per transaction, the average length of maximal
potentially frequent itemsets, the total number of different items, and the total number
of transactions, respectively.
To show the practical performance, on the other hand, a real public dataset (called

BMS-POS) was also used in the experiments [6]. The real dataset was used in the KD-
DCUP 2000 competition, and it collected several years of point-of-sale data from a large
electronics retailer, making it very suitable as a test dataset. The details of this dataset
are follows. Each transaction consisted of all the product categories purchased by a cus-
tomer at one time. There were a total of 515,597 transactions in this dataset and the
number of different items was 1,657. In addition, the maximal length of a transaction was
164, and the average length was 6.5. However, since there were no quantitative values
and utility values for the items in transactions in BMS-POS, the quantity values and the
utility values forming a utility table were generated by our model and were appended to
the items in transactions.

5.2. Effectiveness of the pruning strategy. Experiments were first made on the syn-
thetic datasets to evaluate the difference in the number of candidate itemsets required by
the two algorithms, GPA and TP. To evaluate the effect of pruning unpromising candi-
dates (abbreviated as C) for the proposed pruning strategy, a measure was defined below
to evaluate the pruning effect:

Pruning Effect =
|CTP | − |CGPA|

|CTP |
,
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Figure 1. The pruning effects of GPA along with different thresholds and
data sizes

where |CTP | and |CGPA| represent the number of candidate itemsets generated by the
two algorithms. Figure 1 showed the pruning effects of the GPA algorithm for the
T10I4N4KD200K dataset with the thresholds varying from 0.10% to 0.02% and for the
T10I4N4K datasets with the sizes varying from 100K to 500K when the minimum utility
threshold λ was set at 0.1%, respectively.

It could be observed from these figures that the pruning effect decreased along with
the minimum utility thresholds. Note that it was not easy to prune the unpromising
candidate itemsets when the values of the minimum utility threshold were set at a lower
level, but at least an average of 18% of the whole pruning rates in Figure 1 was achieved.

5.3. Efficiency evaluation. Figure 2 showed the execution time for the T10I4N4KD20
0K dataset with the thresholds varying from 0.10% to 0.02% and for the T10I4N4K
datasets with the sizes varying from 100K to 500K when λ was set at 0.1%, respectively.

As can be seen easily in these figures, the execution time of the GPA algorithm was
obviously better than that of the traditional TP algorithm, especially when the value of
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Figure 2. Efficiency of the two algorithms along with different thresholds
and data sizes

the minimum utility threshold was small or the data size was large, for a similar reason
as mentioned in Section 5.2. Also, the data size could be gradually reduced in each pass
to rescue the time cost of data scan with the pruning strategy. The GPA algorithm thus
outperformed better than the TP algorithm in discovering high utility itemsets.

5.4. Evaluation on a real dataset. The real dataset BMS-POS was also used to eval-
uate the performance of GPA and TP. Figure 3 showed the effect of pruning unpromising
candidates for the strategy with the threshold varying from 5% to 1%. Figure 4 showed
the execution time for the real dataset BMS-POS with the threshold varying from 5% to
1%.
It can be seen that the GPA algorithm outperformed the traditional TP algorithm

for the real dataset BMS-POS with regard to both pruning effectiveness and execution
efficiency, and the reason for this is the same as mentioned previously.

6. Conclusions. In this paper, we proposed an efficient mining algorithm for finding
high utility itemsets in databases. The main contributions of the paper are summarized
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Figure 3. The pruning effects of GPA along with different thresholds and
data sizes

Figure 4. Efficiency of the two algorithms along with different thresholds

as follows. Firstly, a level-wise pruning algorithm is proposed to obtain more accurate
upper bounds of utility values for itemsets, thus reducing the number of unpromising
candidates for mining. Secondly, the data size in each pass can be gradually reduced,
and the data scan cost can thus be saved. Finally, the upper bounds of utility values and
actual utility values of candidates can be simultaneously found in the process, and thus
an extra additional scanning is not needed. The experimental results also show that the
pruning strategy has a good effect in pruning unpromising itemsets, and the proposed
algorithm also outperforms the two-phase utility mining algorithm for both the synthetic
datasets and a real dataset.
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