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Universidad Juárez del Estado de Durango

Av. Universidad S/N, Fracc. Filadelfia, CP 35010, Gómez Palacio, Durango, México
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Abstract. This paper proposes a method for analysis of statically indeterminate beams,
considering the shear deformations, which is an extension to the slope-deflection method,
which is used to analyze all kinds of continuous beams. This methodology considers
the shear deformation and flexure. The traditional method takes into account only the
flexure deformation and without taking into account the shear deformation; this is how it
usually develops structural analysis of statically indeterminate beams. Also, it makes a
comparison between the proposed method and the traditional method, and the differences
between both methods are greater, especially members of short length as can be seen in
the results tables of the problems considered, in the traditional method not all values
are on the side of safety. Therefore, the usual practice, without considering the shear
deformations in short clear between its supports, will not be a recommended solution and
it is proposed the use of considering shear deformations and also is more attached to
reality.
Keywords: Shear deformations, Poisson’s ratio, Moment of inertia, Elasticity modulus,
Shear modulus, Shear area

1. Introduction. In the structural systems analysis has been studied by diverse re-
searchers in the past, making a brief historical review of progress in this subject.

In 1857, Benoit Paul Emile Clapeyron presented to the French Academy his “theorem
of three moments” for analysis of continuous beams, in the same way Bertot had published
two years ago in the Memories of the Society of Civil Engineers of France, but without
giving some credit. It can be said that from this moment begins the development of a
true “Theory of Structures” [1-3].

In 1854, the French Engineer Jacques Antoine Charles Bresse published his book
“Recherches Analytiques sur la Flexion et la Résistance de Pieces Courbés” in which
he presented practical methods for the analysis of curved beams and arcs [1-3].

In 1867, the “Influence Line” was introduced by the German Emil Winkler (1835-
1888). He also made important contributions to the Resistance of materials, especially in
the flexure theory of curved beams, flexure of beams, resting on elastic medium [1-3].

James Clerk Maxwell (1830-1879), from the University of Cambridge, published what
might be called the first systematic method of analysis for statically indeterminate struc-
tures, based on the equality of the internal energy of deformation of a loaded structure and
the external work done by applied loads, and equality had been established by Clapey-
ron. In his analysis presented the Theorem of the Reciprocal Deformations, which, by its
brevity and lack of enlightenment, was not appreciated at the time. In another publica-
tion later presented his diagram of internal forces to trusses, which combines in one figure
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all the polygons of forces. The diagram was extended by Cremona, by what is known as
the Maxwell-Cremona diagram [1-3].
The Italian Betti in 1872 published a generalized form of Maxwell’s theorem, known as

the reciprocal theorem of Maxwell-Betti [1-3].
The German Otto Mohr (1835-1918) made great contributions to the Structures Theory.

He developed the method for determining the deflections in beam, known as the method
of elastic loads or the conjugate beam. He also presented a simple derivation and more
extensive, which is the general method of Maxwell for analysis in indeterminate structures,
using the principles of virtual work. He made contributions in the graphical analysis
of deflections in trusses, complemented by Williot diagram, known as the Mohr-Williot
diagram of great practical utility. He also earned his famous Mohr Circle for the graphical
representation of the stresses in a biaxial stress state [1-3].
Alberto Castigliano (1847-1884) in 1873 introduced the principle of minimum work,

which had been previously suggested by Menabrea, and is known as the First Theorem
of Castigliano. Later, it presented the second Theorem of Castigliano to find deflections,
as a corollary of the first. Published in Paris in 1879, his famous book “Thèoreme de
l’Equilibre de Systèmes Elastiques et ses Applications” was remarkable by its originality
and very important in the development of analysis of statically indeterminate structures
[1-3].
Heinrich Müller-Breslau (1851-1925), published in 1886 a basic method for analysis of

indeterminate structures, but was essentially a variation of those presented by Maxwell
and Mohr. He gave great importance to Maxwell’s Theorem of Reciprocal Deflections in
the assessment of displacement. He discovered that the “influence line” for the reaction
or an inner strength of a structure was, on some scale, the elastic produced by an action
similar to that reaction, or inner strength. Known as the Müller-Breslau theorem, it is
the basis for other indirect methods of structural analysis using models [1-3].
Hardy Cross (1885-1959) professor at the University of Illinois, published in 1930 his

famous moments distribution method, can be said that revolutionized the analysis of
structures of reinforced concrete for continuous frames and can be considered one of
the greatest contributions to the analysis from indeterminate structures. This method
of successive approximations evades solving systems of equations, as presented in the
methods of Mohr and Maxwell. The Method’s popularity declined with the availability
of computers, with which the resolution of equations systems is no longer a problem. The
general concepts of the method were later extended in the study of pipes flow. Later
became popular methods of Kani and Takabeya also type iterative and today in disuse
[1-4].
In the early 50s, Turner, Clough, Martin and Topp did what may be termed as the

beginning of the implementation structures of the stiffness matrix methods, which have
gained so much popularity today. Subsequently, it is developed the finite element methods,
which have allowed the systematic analysis of large numbers of structures and obtain the
forces and deformations in complex systems such as concrete dams used in hydroelectric
plants. Among its impellers are: Clough, Wilson, Zienkiewics and Gallagher [1,2,5].
Structural analysis is the study of structures such as discrete systems. The theory of the

structures is essentially based on the fundamentals of mechanics with which are formulated
the different structural elements. The laws or rules that define the balance and continuity
of a structure can be expressed in different ways, including partial differential equations
of continuous medium three-dimensional, ordinary differential equations that define a
member or the various theories of beams, or simply algebraic equations for a discretized
structure. While it is deepened more in the physics of the problem, are developing theories
that are most appropriate for solving certain types of structures and that they demonstrate
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to be more useful for practical calculations. However, in each new theory are doing
hypotheses about how the system behaves or element. Therefore, we must always be
aware of these hypotheses when evaluating solutions, the result of applying or developing
theories [6-8].

Structural analysis can be addressed using three main approaches [9]: a) tensor for-
mulations (Newtonian mechanics and vector), b) formulations based on the principles of
virtual work, c) formulations based on classical mechanics [10].

In the design of steel structures, reinforced concrete and prestressed concrete, the study
of structural analysis is a crucial stage in its design, since the axial forces, shear forces
and moments are those that govern the design of rigid frames and for the case of beams
only shear forces and moments, and the damage caused by such effects may become
predominant among the various requests to consider for your design.

As regards the conventional techniques of structural analysis of continuous beams, the
common practice is to neglect the shear deformations.

This paper proposes to consider the shear deformations and a comparison between the
proposed method and the traditional method is realized.

2. Development.

2.1. Theoretical principles. In the scheme of deformation of a beam that is illustrated
in Figure 1, shows the difference between the Timoshenko theory and Euler-Bernoulli
theory: the first θZ y dy/dx not necessarily coincides, while the second are equal [11].

The fundamental difference between the Euler-Bernoulli theory and Timoshenko’s the-
ory is that in the first the relative rotation of the section is approximated by the derivative
of vertical displacement, this is an approximation valid only for long parts in relation to
the dimensions of cross section, and then it happens that due to shear deformations are
negligible compared to the deformations caused by moment. On the Timoshenko theory,
which considers the deformation due to the shear and is therefore also valid for short
beams, the equation of the elastic curve is given by the complex system of equations:

G

(
dy

dx
− θZ

)
=

Vy

Ac

(1)

E

(
dθZ
dx

)
=

Mz

Iz
(2)

where: G = shear modulus, dy/dx = total rotation around axis “z”, θZ = rotation
around axis “z”, due to the flexure, Vy = shear force in direction “y”, Ac = shear area,
dθZ/dx = d2y/dx2, E = elasticity modulus, Mz = moment around axis “z”, Iz = moment
of inertia around axis “z”.

Figure 1. Deformation of a beam element
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Differentiating Equation (1) and substituting in Equation (2), it is arrived at the equa-
tion of the elastic curve including the effect of shear stress:

d2y

dx2
=

1

GAc

dVy

dx
+

Mz

EIz
(3)

From Equation (1), it is obtained dy/dx:

dy

dx
=

Vy

GAc

+ θZ (4)

And of Equation (2), it is given θZ :

θZ =

∫
Mz

EIz
dx (5)

Now substituting Equation (5) into Equation (4) is:

dy

dx
=

Vy

GAc

+

∫
Mz

EIz
dx (6)

2.2. General conditions. The slope-deflection method can be used to analyze all types
of statically indeterminate beams. In this method all joints are considered rigid; i.e., the
angles between members at the joints are considered not to change in value, when the
loads are applied. Thus the joints at the interior supports of statically indeterminate
beams can be considered 180◦ rigid joints. When beams are deformed, the rigid joints are
considered to rotate only as a whole; in other terms, the angles between the tangents to
the various branches of the elastic curve meeting at a joint remain the same as those in
the original undeformed structure.
In the slope-deflection method the rotations of the joints are treated as unknowns.

Then the end moments can be expressed in terms of the rotations. But, to satisfy the
condition of equilibrium, the sum of the end moments which any joint on the ends of
members exert in meeting must be zero, because the rigid joint in matter is subjected to
the sum of these end moments.
These procedures solve the equation system of rotations for statically indeterminate

beams or continuous beams. Therefore, it is important to remember the hypotheses under
which the equations are deduced: a) the material is homogeneous, isotropic and behaves
as linear elastic, i.e., the material is of the same nature, have identical physical properties
in all directions and efforts, which resists, are directly proportional to the deformations
that suffering, and the proportionality factor is called the elasticity modulus, E, i.e.,
σ = Eε (Hooke’s Law), b) the principle of the small deformations, which once loaded
structure, the deformations or linear displacements and angular of the joints and of each
of the points of its members are rather small in such a way that form do not change, nor
are altered appreciably, c) the principle of effects superposition, that supposes the totals
displacements and internals forces totals of the structure under a system of loads, can
be found separately by the sum of the effects of each one of the considered loads, d) you
can only take into account the first order effects such as: internal deformations by flexure
always, while the shear deformations can be taken into account or not.

2.3. Slope-deflection equations. The slope-deflection equations, the moments acting
at the ends of the members are expressed in terms of rotations and the loads on members.
Then, the member AB is shown in Figure 2(a) can be expressed in terms of θA and θB
and the applied loads P1, P2 and P3. Counterclockwise the end moments that acting on
the members are considered to be positive, and clockwise end moments that acting on the
members are considered to be negative. Now, with the applied loading on the member,
the fixed-end moments, MFAB and MFBA are required to hold the tangents at the ends
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fixed in Figure 2(b). The additional end moments, M ′
AB and M ′

BA, should be such as to
cause rotations of θA and θB, respectively. If θA1 and θB1 are the end rotations caused
by M ′

AB, according to Figure 2(c), and θA2 and θB2 by M ′
BA, they are observed in Figure

2(d).

Figure 2. Derivation of slope-deflection equations

The conditions required of geometry are [12-16]:

θA = −θA1 + θA2

θB = θB1 − θB2
(7)

By superposition:

MAB = MFAB +M ′
AB

MBA = MFBA +M ′
BA

(8)

The beam of Figure 2(c) is analyzed to find θA1 and θB1 in function of M ′
AB:

It is considered that VA = VB, doing the sum of moments in B and obtaining M ′
AB, in

function of VA, it obtains:

M ′
AB = VAL (9)

Therefore, the shear forces and moments at a distance “x” are:

Vx =
M ′

AB

L
(10)

Mx =
M ′

AB

L
(L− x) (11)

Substituting Mx and Vx in function of M ′
AB into Equation (6), and are separated shear

deformation and flexure to obtain the stiffness and is presented as follows:
Shear deformation:

dy

dx
=

M ′
AB

GAcL
(12)
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Integrating Equation (12) is presented as follows:

y =
M ′

AB

GAcL
x+ C1 (13)

Considering the conditions of border, when x = 0, y = 0, it is of the following way C1 = 0.

y =
M ′

AB

GAcL
x (14)

Flexure deformation:
dy

dx
=

M ′
AB

EIzL

∫
(L− x)dx (15)

Developing the integral, it is obtained:

dy

dx
=

M ′
AB

EIzL
(Lx− x2

2
+ C2) (16)

Integrating Equation (16), it is obtained:

y =
M ′

AB

EIzL

(
L

2
x2 − x3

6
+ C2x+ C3

)
(17)

Considering the conditions of border, when x = 0, y = 0, it is of the following way C3 = 0.

y =
M ′

AB

EIzL

(
L

2
x2 − x3

6
+ C2x

)
(18)

Now considering the conditions of border, when x = L, y = 0, it is of the following
way:

C2 = −L2

3
(19)

Then, substituting Equation (19) in Equations (16) and (18) is shown as follows:

dy

dx
=

M ′
AB

EIzL

(
Lx− x2

2
− L2

3

)
(20)

y =
M ′

AB

EIzL

(
L

2
x2 − x3

6
− L2

3
x

)
(21)

Substituting x = 0, into Equation (20) to find the rotation in support A due to the flexure
deformation θA1F , it is as follows:

θA1F = −M ′
ABL

3EIz
(22)

Substituting x = L, into Equation (20) to find the rotation in support B due to the
flexure deformation θB1F , it is obtained as follows:

θB1F =
M ′

ABL

6EIz
(23)

If it is considered that they have his curvature radius in the inferior part. Then, the
rotations are positive:

θA1F = +
M ′

ABL

3EIz

θB1F = +
M ′

ABL

6EIz

(24)
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The rotation due to shear deformation θA1C and θB1C , taking into account the curvature
radius is:

θA1C =
dy

dx
=

M ′
AB

GAcL

θB1C =
dy

dx
= − M ′

AB

GAcL

(25)

Adding the shear rotation and flexure in the joint A, it is obtained:

θA1 = θA1F + θA1C (26)

Substituting Equations (24) and (25) into Equation (26), it is as follows:

θA1 = +
M ′

ABL

3EIz
+

M ′
AB

GAcL
(27)

The common factor is obtained in Equation (27) for M ′
AB, is as follows:

θA1 =
M ′

ABL

12EIz

(
4 +

12EIz
GAcL2

)
(28)

By replacing [17,18]:

Ø =
12EIz
GAcL2

(29)

It is obtained G as follows:

G =
E

2(1 + ν)
(30)

where: Ø = form factor, and ν = Poisson’s ratio.
Then, substituting Equation (29) into Equation (28), it is obtained:

θA1 =
M ′

ABL

12EIz
(4 + Ø) (31)

Adding the shear rotation and flexure in the joint B, and make the simplifications corre-
sponding, it is presents:

θB1 =
M ′

ABL

12EIz
(2−Ø) (32)

Analyzing the beam in Figure 2(d) to find θA2 and θB2 in function of M ′
BA of the same

way as was done in Figure 2(c), it is obtain the following:

θA2 =
M ′

BAL

12EIz
(2−Ø) (33)

θB2 =
M ′

BAL

12EIz
(4 + Ø) (34)

Now, substituting Equations (33) and (34) into Equation (7), it is as follows:

θA = −M ′
ABL

12EIz
(4 + Ø) +

M ′
BAL

12EIz
(2−Ø) (35)

θB =
M ′

ABL

12EIz
(2−Ø)− M ′

BAL

12EIz
(4 + Ø) (36)



5480 A. LUÉVANOS ROJAS

Developing Equations (35) and (36), to find M ′
AB and M ′

BA in function of θA and θB, it
is as it follows:

M ′
AB =

EIz
L

[
−
(
4 + Ø

1 + Ø

)
θA −

(
2−Ø

1 + Ø

)
θB

]
(37)

M ′
BA =

EIz
L

[
−
(
4 + Ø

1 + Ø

)
θB −

(
2−Ø

1 + Ø

)
θA

]
(38)

Finally the substituting Equations (37) and (38) in Equation (8), respectively, it is
obtained the slope-deflection equations for statically indeterminate beams:

MAB = MFAB +
EIz
L

[
−
(
4 + Ø

1 + Ø

)
θA −

(
2−Ø

1 + Ø

)
θB

]
(39)

MBA = MFBA +
EIz
L

[
−
(
4 + Ø

1 + Ø

)
θB −

(
2−Ø

1 + Ø

)
θA

]
(40)

3. Application. It developed the following structural analysis of continuous steel beam,
in four part with equal length, and three different problems, as shown in Figure 3, by
the traditional method and the proposed method, i.e., without taking into account and
considering the shear deformation, based on the following data, that are presented below:
w = 3500kg/m
L = 10.00m; 5.00m; 3.00m
E = 2040734kg/cm2

Properties of the beamW24X94
A = 178.71cm2

AC= 80.83cm2

I = 111966cm4

ν = 0.32
Unknowns
θA, θB, θC , θD y θE

Figure 3. Continuous beam in four parts in equal length with uniformly
distributed load

Using Equation (30), it is obtained the shear modulus, as follows:

G =
2040734

2(1 + 0.32)
= 773005.303kg/cm2

Once that is obtained the shear modulus is found the form factor through Equation (29)
as follows:
To 10.00m is:

ØAB = ØBC = ØCD = ØDE =
12(2040734)(111966)

(773005.303)(80.83)(1000)2
= 0.04388324731

To 5.00m is:

ØAB = ØBC = ØCD = ØDE =
12(2040734)(111966)

(773005.303)(80.83)(500)2
= 0.1755329892
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To 3.00m is:

ØAB = ØBC = ØCD = ØDE =
12(2040734)(111966)

(773005.303)(80.83)(300)2
= 0.4875916368

The fixed-end moments for beams with uniformly distributed load are:
To 10.00m is:

MFAB = MFBC = MFCD = MFDE =
wL2

12
= +

(3500)(10.00)2

12
= +29166.67kg-m

MFBA = MFCB = MFDC = MFED = −wL2

12
= −(3500)(10.00)2

12
= −29166.67kg-m

To 5.00m is:

MFAB = MFBC = MFCD = MFDE =
wL2

12
= +

(3500)(5.00)2

12
= +7291.67kg-m

MFBA = MFCB = MFDC = MFED = −wL2

12
= −(3500)(5.00)2

12
= −7291.67kg-m

To 3.00m is:

MFAB = MFBC = MFCD = MFDE =
wL2

12
= +

(3500)(3.00)2

12
= +2625kg-m

MFBA = MFCB = MFDC = MFED = −wL2

12
= −(3500)(3.00)2

12
= −2625kg-m

Calculation of “EI”, for all beams is:

EI = (2, 040, 734)(111, 966) = 228492823000kg-cm2 = 22849282.3kg-cm2

Then, substituting, all these values into the corresponding equations for each beam in
the traditional method and the proposed method.

The slope-deflection equations, neglecting shear deformations (traditional method) are:

MAB = MFAB +
EI

L
[−4θA − 2θB]

MBA = MFBA +
EI

L
[−4θB − 2θA]

The slope-deflection equations, considering shear deformations (proposed method) are:

MAB = MFAB +
EI

L

[
−
(
4 + Ø

1 + Ø

)
θA −

(
2−Ø

1 + Ø

)
θB

]
MBA = MFBA +

EI

L

[
−
(
4 + Ø

1 + Ø

)
θB −

(
2−Ø

1 + Ø

)
θA

]
Once that is obtained the moments in each beam as a function of rotations, it is applied

the condition equilibrium of moments at the joints, which are:
Joint A:

MAB = 0 (I)

Joint B:
MBA +MBC = 0 (II)

Joint C:
MCB +MCD = 0 (III)

Joint D:
MDC +MDE = 0 (IV)

Joint E:
MED = 0 (V)
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These equations are presented in terms of the rotations and in this case, there are 5
equations and 5 rotations (unknowns), these are developed to find their values. Once,
that are found rotations, were subsequently substituted into the slope-deflection equations
to localize the final moments at the ends of the beams. Now by static equilibrium, shear
forces are obtained for each beam. Then, it is obtained the diagrams of shear forces and
moments.
Below are the tables and figures with the results.

Figure 4. Deformations of the beam: (a) for L = 10.00m, (b) for L =
5.00m, (c) for L = 3.00m

4. Conclusions. According to Table 1 and Figure 4, which presents the rotations in
each of the supports, it is observed that the difference in the slope-deflection method,
neglecting and considering the shear deformations, is quite considerable when the light is
reduced between supports of beams and all are not within the safety in the traditional
method. This implies that should be taken into account the deformations permitted by
the rules of construction, because in some situations could be the case does not comply.
In Table 2 and Figure 5 show the shear forces at the ends of the beams between the

two methods, the differences being larger, when the length between supports is reduced.
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Figure 5. Shear forces of the beam: (a) for L = 10.00m, (b) for L =
5.00m, (c) for L = 3.00m

Table 1. The rotations in each one of the joints in radians

Rotations

Case 1

L = 10.00m

Case 2

L = 5.00m

Case 3

L = 3.00m

N S D C S D NSD
CSD

N S D C S D NSD
CSD

N S D C S D NSD
CSD

θA × 104 +36.47 +37.32 0.9772 +4.56 +4.97 0.9175 +0.98 +1.21 0.8099

θB × 104 −9.12 −9.03 1.0100 −1.14 −1.08 1.0556 −0.25 −0.20 1.2500

θC × 104 0 0 0 0 0 0 0 0 0

θD × 104 +9.12 9.03 1.0100 +1.14 +1.08 1.0556 +0.25 +0.20 1.2500

θE × 104 −36.47 −37.32 0.9772 −4.56 −4.97 0.9175 −0.98 −1.21 0.8099

θi = the angle that forms the tangent due to the deformation in the joint i.

N S D = neglecting the shear deformations

C S D = considering the shear deformations
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Figure 6. Final moments of the beam: (a) for L = 10.00m, (b) for L =
5.00m, (c) for L = 3.00m

Table 2. The shear forces in kg

Shear forces

Case 1

L = 10.00m

Case 2

L = 5.00m

Case 3

L = 3.00m

N S D C S D NSD
CSD N S D C S D NSD

CSD N S D C S D NSD
CSD

VAB +13750.0 +13784.4 0.9975 +6875.0 +6939.4 0.9907 +4125.0 +4218.7 0.9778

VBA −21250.0 −21215.6 1.0016 −10625.0 −10560.6 1.0061 −6375.0 −6218.3 1.0252

VBC +18750.0 +18685.3 1.0035 +9375.0 +9256.1 1.0128 +5625.0 +5459.0 1.0304

VCB −16250.0 −16314.7 0.9960 −8125.0 −8243.9 0.9856 −4875.0 −5041.0 0.9671

VCD +16250.0 +16314.7 0.9960 +8125.0 +8243.9 0.9856 +4875.0 +5041.0 0.9671

VDC −18750.0 −18685.3 1.0035 −9375.0 −9256.1 1.0128 −5625.0 −5459.0 1.0304

VDE +21250.0 +21215.6 1.0016 +10625.0 +10560.6 1.0061 +6375.0 +6218.3 1.0252

VED −13750.0 −13784.4 0.9975 −6875.0 −6939.4 0.9907 −4125.0 −4218.7 0.9778

Vij = Shear forces of the beam ij in end i

Vji = Shear forces of the beam ji in end j
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Table 3. The final moments in kg-m

With regard to Table 3 and Figure 6, it is illustrating the final moments, both negative
and positive, there are big differences when you reduce the member length between the
two methods and not all are on the side of safety.

As for Tables 2 and 3, and in Figures 5 and 6 where they are presented, shear forces
and final moments, acting on the beams, these elements are those governing the design
of a structure, were studied by traditional method and the proposed method. The results
showed that differences between the two methods, when members tend to be shorter, the
differences are increased, as in the conservative side as the unsafe side.

This means that this is poorly designed; on the one hand some members are bigger in
their transverse dimension, according to what are needed and in another situation does
not meet the minimal conditions for a satisfactory beam. Since there are two funda-
mentals principles of civil engineering, for structural conditions, that have to be safe and
economical.

Therefore, the usual practice of using the slope-deflection method (Neglecting shear
deformations) is not a recommended solution when having short length between supports.

So taking into account the numerical approximation, the slope-deflection method (con-
sidering shear deformations), happens to be the more appropriate method for structural
analysis of continuous beams and also more attached to the real conditions.
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Soto, Vibrations in systems of pipes with different excitation in its ends, International Journal of
Innovative Computing, Information and Control, vol.6, no.12, pp.5333-5350, 2010.

[11] Flexión Mecánica, http://es.wikipedia.org/wiki/Flexi%C3%B3n mec%C3%.
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