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Abstract. This paper, according to practical method in robot manipulator control, in-
troduces a novel robust control approach for trajectory tracking of electrically-driven
robotic manipulators in task space. A new task space control scheme is proposed to
overcome uncertainties of actuator dynamics, robot dynamics and kinematics. A robust
controller is designed based on Lyapunov method, using dynamic delay, backstepping
method and unknown bounds of uncertainties. It is proven that the closed loop system
has global uniform ultimate boundedness stability. Although, for overcoming the uncer-
tainties in actuator dynamics, robot dynamics and kinematics is a major advantage, the
proposed control cannot pass the singular points in task space and there will be malfunc-
tions when it is applied on the practical implementation. Modifications are used to derive
a control law which is free of velocity terms and can pass the singular points into task
space. The control approach is applied on a two-link elbow robotic manipulator which is
driven by permanent magnet dc motors and can be applied on up to n-links robotic ma-
nipulators, too. The performance of proposed control laws is confirmed by simulations.
Keywords: Robot manipulators, Uncertain kinematics, Uncertain dynamics, Actuator
dynamics, Backstepping method, Task space, Practical implementation

1. Introduction. It is well known that the kinematics and dynamics of robots are highly
nonlinear with coupling existing between joints. There is a problem in the compatibility
of the nonlinearity and uncertainty of the robot dynamics, and to cope with this, it has
been shown in [1,2] that a simple joint space controller such as the PD or PID feedback
is effective for setpoint control.

A great many control schemes for robotic manipulators have been developed in the
literature during the past few decades. In most of the control methods [1-5], the controllers
are designed at the torque input level and the actuator dynamics has not been considered.
As shown by Good et al. [6], the actuator dynamics constitutes an important part of
the whole robot system and may cause detrimental effects when neglected in the design
procedure, especially, in the cases of highly varying loads. Recently, the actuator dynamics
has been explicitly applied in some joint space control schemes, and especially, it has been
developed to deal with this problem at rigid-link robots, as can be found in [7,8].
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For most robot applications, a desired position for the end-effector is usually specified
in task space or Cartesian space. In order to move the robot end-effector to the desired
position, the exact knowledge of the kinematics is required. It is needed to solve the
inverse kinematics problem to generate the desired position in joint space [3-5]. When
the control problem is formulated directly in task space, the necessity to solve the inverse
kinematics problem is eliminated [3-5]. However, these kinds of the schemes still require
the exact knowledge of a Jacobian matrix from joint space to task space. In a sense, the
exact parameters of the kinematics are required to calculate the Jacobian matrix.
Miyazaki and Masutani proposed a feedback control law with imperfect rotation trans-

formation of the mapping from joint space to visual space [9]. Other task space control
schemes are proposed later [10,11]. To apply these task space control schemes, it is as-
sumed that the model of manipulator Jacobian matrix from joint space to Cartesian space
is exactly known. Therefore, the exact parameters of manipulator kinematics from joint
space to Cartesian space such as exact lengths of links and object are still required in
the controller. Unfortunately, no physical parameters can be derived exactly. Moreover,
when the robot picks up objects or tools in different lengths, unknown orientations and
gripping points, the overall kinematics is going to be changed and, therefore, it is going
to be difficult to derive exactly. Thus, the robot would not be able to manipulate the tool
to a desired path if the length or gripping point of the tool is uncertain.
To overcome the problem of uncertain kinematics, several approximate Jacobian set-

point controllers were proposed recently [12,13]. The proposed controllers do not require
the exact knowledge of kinematics and Jacobian matrix that is assumed in the literature
of robot control.
However, the results in [12,13] are focusing on setpoint control of robot. Recently, an

adaptive Jacobian controller was proposed for trajectory tracking control of robot ma-
nipulators [14]. The controller does not require the exact knowledge of kinematics and
Jacobian matrix. However, it is assumed that the actuator model is known exactly in [14].
Since the actuator model may be uncertain in practice, calibration is necessary to identify
the exact parameters of the actuator in implementing the robot controllers. In addition,
the actuator parameters could change as temperature varies due to the overheating of
motor or changes in ambient temperature. Hence, in the presence of the modeling uncer-
tainty or calibration error, the convergence of the tracking error may not be guaranteed.
An adaptive Jacobian controller was proposed for trajectory tracking control of robot

manipulators recently [15]. The controller does not require the exact knowledge of kine-
matics, Jacobian matrix, dynamics and actuator models. However, it is assumed in [15]
that the dynamic model has parametric uncertainties, whereas, the unstructured uncer-
tainties such as friction and disturbance in model dynamic may make the closed loop
system unstable.
The reminder of this paper is organized as follows. In Section 2, the mathematical mod-

els of an n-link electrically driven robot manipulator are given and the tracking problem
is considered. Section 3 presents control design based on delay technique. Backstepping
method and establish of backstepping control are explained in Sections 3.1 and 3.2, re-
spectively. In Section 4, stability proof of closed loop control is illustrated and practical
mention of proposed control is considered in Section 5. According to notations of Section
5, proposed control law is modified in Section 6. Section 8 demonstrates the simulation
results which are obtained by carrying out a case study of a two-link elbow robot provided
in Section 7 and some conclusions are drawn in Section 9, finally.

2. Plant Dynamics. If a direct current (dc) motor driven by an amplifier is used as an
actuator at each joint of the robot, the dynamics of the robot with degree of freedom can
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be expressed as [16,17]

D (q) q̈ + Vm (q, q̇) q̇ +G (q) +Bq̇ + Fdq̇ + Fs (q̇) + Td = Ku (t) (1)

where q (t) ∈ Rn denotes the joint angles of the manipulator, q̇ (t) and q̈ (t) are the vectors
of joint velocity and joint acceleration, respectively. D (q) ∈ Rn×n is the inertia matrix
which is symmetric and positive definite, Vm (q, q̇) q̇ ∈ Rn is a vector function containing
coriolis and centrifugal forces, G (q) ∈ Rn is a vector function consisting of gravitational
forces. B ∈ Rn×n is a diagonal matrix of the effective damping of actuators, Fd ∈ Rn×n

is a diagonal matrix of viscous and dynamic friction coefficients, Fs (q̇) ∈ Rn is the vector
of unstructured friction effects such as static friction terms. Td ∈ Rn is the vector of any
generalized input due to disturbances or un-modeled dynamics, u (t) ∈ Rn is a voltage
or current inputs to the amplifiers and K ∈ Rn×n is a diagonal transmission matrix that
relates the actuator input u (t) to the control torque τ .

Constraint 2.1. The maximum voltage that joint actuator can supply is umax. So we
have:

|ui| ≤ umax
i , i = 1, 2, . . . , n

For simplicity Equation (1), h (q, q̇) can be shown as:

h (q, q̇) = Vm (q, q̇) q̇ +G (q) + Bq̇ + Fdq̇ + Fs (q̇) + Td (2)

By substituting Equation (2) into Equation (1), we have:

D (q) q̈ + h (q, q̇) = Ku (t) (3)

3. Control Design Based on Delay Technique. In Equation (3), D̂(q)q̈ is added and
subtracted

D(q)q̈ + h(q, q̇) + D̂(q)q̈ − D̂(q)q̈ = Ku(t) (4)

By defining D(q)− D̂(q) = ∆D(q), Equation (4) is rearranged as:

D̂(q)q̈ + h(q, q̇) + ∆D(q)q̈ = Ku(t) (5)

By defining h(q, q̇) + ∆D(q)q̈ = h̃(t), Equation (5) is simplified as:

D̂(q)q̈ + h̃(t) = Ku(t) (6)

A control law is presented as:

Ku(t) = D̂(q)Ĵ−1(q)ν + ĥ(t) (7)

where D̂(q) can be simplified version of the known parts of D(q), ĥ(t) is estimated of h̃(t),

Ĵ−1(q) is the inverse of Jacobian matrix and ν is a new control vector. We now replace

h̃(t) in (6) with an estimate ĥ(t), as ĥ(t) = h̃(t− λ), where λ is a small time interval.

Assumption 3.1. The approximation is based on the assumption that h̃(t) does not
change its value much during a small time interval λ, a valid assumption in free space, but
possibly a poor assumption for constrained motion, as external torques can be arbitrarily
large and fast.

With this assumption, we set ĥ(t) from (6) as:

ĥ(t) = h̃(t− λ) = Ku(t− λ)− D̂(q)q̈(t− λ) ∼= h̃(t) (8)

According to Equation (7) and Equation (8) we have

Ku(t) = D̂(q)Ĵ−1(q)v + Ku(t− λ)− D̂(q)q̈(t− λ) (9)
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By defining Ku(t − λ) − D̂(q)q̈(t − λ) − h̃(t) = ∆h, (9) is substituted into (6) and is
simplified as:

q̈ = Ĵ−1(q)ν + D̂−1(q)∆h (10)

Ĵ(q) is multiplied in both side of (10)

Ĵ(q)q̈ = ν + Ĵ(q)D̂−1(q)∆h (11)

The velocity vector in task space Ẋ is therefore related to the velocity vector q̇ as [17]:

Ẋ = J(q)q̇ (12)

where J(q) ∈ Rn×n is the jacobian matrix of mapping from joint space to task space.
Notice that if the robots kinematics is uncertain, the jacobian matrix becomes uncertain,
too. Thus J(q) is estimated by Ĵ(q). The derivative of Equation (12) respect to time can
be written as:

¨̂
X = Ĵ(q)q̈ +

˙̂
J(q)q̇ (13)

where
¨̂
X is acceleration in the task space. By defining ν = w − ˙̂

J(q)q̇ and according to
(13), Equation (11) is transferred to Task space as:

¨̂
X = w + Ĵ(q)D̂−1(q)∆h (14)

Control law w is selected to the following form

w = ∆w + Ẍd (15)

where Ẍd is desired acceleration in the task space and ∆w is a new control law. By defining

position error ê = X̂ −Xd, acceleration error ¨̂e =
¨̂
X − Ẍd, structured and unstructured

uncertainty η = Ĵ(q)D̂−1(q)∆h, (14) is simplified as:

¨̂e(t) = ∆w + η (16)

By defining X̂1 = ê(t) and X̂2 = ˙̂e(t), (16) is expressed as:{
˙̂
X1(t) = X̂2(t)
˙̂
X2(t) = ∆w + η

(17)

3.1. Backstepping method. The form of Equation (17) is shown that the backstepping

method can be used for control of closed loop system (17) [18]. Therefore, X̂2(t) is designed

as the input which causes X̂1(t) converges to zero. Hence, X̂2(t) is expressed as:

X̂2 (t) = −µ X̂1 (t) , ∀µ > 0 (18)

To prove the stability of system presented by Equation (17), the Lyapunov function
candidate is presented as:

V
(
X̂1

)
=

1

2
X̂T

1 (t) X̂1 (t) (19)

The derivative of Equation (19) respect to time can be written as:

V̇
(
X̂1

)
=

˙̂
XT

1 (t) X̂1 (t) (20)

According to (17), (18) and (20), we have

V̇
(
X̂1

)
= −µ X̂T

1 (t) X̂1 (t) ≤ 0 (21)

(21) is shown X̂1(t) that is error in task space convergence to zero.
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3.2. Establish of backstepping control. To establish (18), we select sliding surfaces
Z to the following form

Z = X2 (t) + µX1(t) (22)

where X1(t) and X2(t) are X −Xd and Ẋ − Ẋd, respectively. X, Ẋ, Xd and Ẋd are end-
effector position, end-effector velocity, desired position in task space and desired velocity
in task space, respectively. The derivative of Equation (22) respect to time can be written
as:

Ż = Ẋ2 (t) + µ Ẋ1 (t) (23)

According to (17), it is clear that jacobian matrix has uncertainties therefore Ẋ2(t) ∼=
∆w+ η because X1 (t) and X2 (t) can be measured by sensors or vision technique instead
of we compute them. Ẋ2(t) ∼= ∆w + η is substituted into (23)

Ż = ∆w + η + µ Ẋ1 (t) (24)

Control law is expressed as:

∆w = γ − µ Ẋ1 (t) (25)

where γ is new robust control that is proposed for compensation of structured and un-
structured uncertainties. (25) is substituted into (24)

Ż = γ + η (26)

According to η = Ĵ(q)D̂−1(q)∆h, that is contained of the structured and unstructured
uncertainties therefore we can expressed the second assumption of proposed control.

Assumption 3.2. According to physical properties of robot dynamics, we can express
as [16,17]:

µ1I ≤ D (q) ≤ µ2I or µ1 ≤ ‖D (q)‖ ≤ µ2 (27)

where ‖◦‖ stand for the Euclidean norm, µ1 and µ2 are positive constant. It is clear that

Ĵ(q) is bound therefore we can select a properly delay λ until the following assumption
is established

‖η‖ ≤ ρ (28)

where ρ is a positive constant.

4. Stability Proof. To prove the stability of closed loop system, the Lyapunov function
candidate is presented as:

V (Z) =
1

2
ZTZ (29)

The derivative of Equation (29) respect to time can be written as:

V̇ (Z) = ZT Ż (30)

(26) is substituted into (30)

V̇ (Z) = ZTγ + ZTη (31)

In order to satisfy V̇ (Z) ≤ 0, it is sufficient to propose a following control law:

γ =
−Z ρ

‖Z‖
(32)

Under the above control law and with attention of Section 3.1, V (Z) is then a Lyapunov
function and thus the equilibrium point e = 0 is asymptotically stable except for Z = 0
since the control law is not defined at Z = 0 as stated by Equation (32). Thus, e → 0 as
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t → ∞ but never reaches e = 0. Chattering is then appeared as a side effect of switching
rule (32). In order to attenuate chattering problem, the control law (32) is modified as

γ =

{ −ρZ
‖Z‖ ‖Z‖ > σ
−ρZ
σ

‖Z‖ < σ
(33)

where σ is a small positive constant. We can express totally control law as

Ku(t) = D̂(q)Ĵ−1(q)ν +
{
Ku(t− λ)− D̂(q)q̈(t− λ)

}
ν = (γ − µ ė(t) + Ẍd)− ˙̂

J(q)q̇
Z = ė(t) + µ e(t)

γ =

{ −ρZ
‖Z‖ ‖Z‖ > σ
−ρZ
σ

‖Z‖ < σ

(34)

5. Practical Mention of the Proposed Control Law. Sensing requirements is an-
other important problem which has to be considered. The control law (34) is formed
by measuring joint positions q, the joint velocities q̇ and the end-effector positions X
and the end-effector velocities Ẋ. A joint position is commonly measured by an optical
encoder and a joint velocity may be measured directly or by soft derivative of joint po-
sition. Meanwhile, many commercial sensors are available for measurement of X, such
as vision systems, electromagnetic measurement systems, position sensitive detectors or
laser tracking systems. However, Ẋ is rarely measured in robotic applications while vi-
sion technique can be used for this purpose. Alternatively, vision technique was used to
measure the end-effector position X, precisely, and then Ẋ can be computed.
In addition of above sentences, there is an inverse jacobian matrix in the control law

(34), so, it is assumed that there are no singular points in the desired path in task space
like the one which the jacobian matrix becomes a full rank matrix. In the next section,
above constraints are modified in the proposed control law.

6. Modifying the Control Law. In practical purposes aspect, in (34), sliding surface
can be modified as

Z = X̂2 (t) + µX1(t) (35)

where X1(t) and X̂2(t) are X − Xd and
˙̂
X − Ẋd, respectively. In (35), end-effector

positions X can be measured by sensors or vision system and end-effector velocities
˙̂
X

can be computed by Equation (12). In the case of passing the singular points, to avoid
singularity problem, transpose jacobian can be used in substitution of inverse jacobian in
the control law (34) [19]. Thus, we can express modified control law to the following form

Ku(t) = D̂(q)ĴT (q)ν +
{
Ku(t− λ)− D̂(q)q̈(t− λ)

}
ν =

(
γ − µ

(
Ĵ q̇ − Ẋd

)
+ Ẍd

)
− ˙̂

J(q)q̇

Z =
(
Ĵ q̇ − Ẋd

)
+ µe(t)

γ =

{ −ρZ
‖Z‖ ‖Z‖ > σ
−ρZ
σ

‖Z‖ < σ

(36)

Remark 6.1. The control law (36) does not have the practical constraint problems of the
control law (34) and robot manipulator also can pass the singular points in task space by
this control law.
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Remark 6.2. In comparison with the control laws (34) and (36), it is shown that in the

select of sliding surface Z and due to the mentioned reasons in the Section 5, “Ĵ q̇” is used
instead of Ẋ. So the practical implementation problems of control law (34) are solved by
this modification.

Remark 6.3. According to practical considerations in robot manipulator control design,
another significant advantage of modification control law is the simplicity of its implemen-
tation. In addition, its design does not rely on the boundaries of dynamic and kinematic
uncertainties and disturbances in the robot manipulator model. While, in many proposed
tracking controller for robot manipulator, the boundaries of uncertainties must be known
in joint space and also in task space.

7. Case Study of Two-Link Elbow Robot Manipulator. In order to verify the per-
formance of proposed control scheme, as an illustration, we will apply the above presented
controller to a two-link elbow robot manipulator driven by permanent dc motors as shown
in Figure 1. The dynamic of the two-link elbow robot manipulator can be described in
the following differential equations [16,17]:[

D11 D12

D21 D22

]
q̈ + Vm(q, q̇)q̇ +G(q) +Bq̇ + Fdq̇ + Fs + Td = Ku(t) (37)

D11 = m1l
2
c1
+m2(l

2
1 + l2c2 + 2l1lc2 cos(q2)) + I1 + I2 +

Jm1

r21
(38)

D12 = D21 = m2

(
l2c2 + l1lc2 cos (q2)

)
+ I2 (39)

D22 = m2l
2
c2
+ I2 +

Jm2

r22
(40)

V (q, q̇) =

[
−m2l1lc2 q̇2 sin(q2) −m2l1lc2(q̇1 + q̇2) sin(q2)
m2l1lc2 q̇1 sin(q2) 0

]
(41)

G(q) =

[
(m1lc1 +m2l1)g cos(q1) +m2lc2g cos(q1 + q2)

m2lc2g cos(q1 + q2)

]
(42)

Fd =

[
Fd1 0
0 Fd2

]
(43)

Figure 1. Two-link elbow robot manipulator
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Fs =

[
Fs1

Fs2

]
(44)

Td =

[
Td1 sin(t)

Td2

]
(45)

B =


(
Bm1+

Kb1
Km1

R1

)
r21

0

0

(
Bm2+

Kb2
Km2

R2

)
r22

 (46)

K =

[
Km1

r1R1
0

0
Km2

r2R2

]
(47)

where qi for i = 1, 2 denotes the joint angle, li is the link length, mi is the link mass, Ii is
the link’s moment of inertia given in center of mass, lci is the distance between the center
of mass of link and the “i”th joint, Jmi

is the sum of the actuator and gear inertias, ri is
gear ratio, Fdi is dynamic friction, Fsi is static friction, Tdi is disturbance and un-model
dynamic, Bmi

is the coefficient of motor friction and includes friction in the brushes and
gears, Kmi

is the torque constant, Kbi is the back emf constant, Ri is armature resistance
and u(t) is armature voltage. The Jacobian matrix is in the form of

J(q) =

[
−l1 sin(q1)− l2 sin(q1 + q2) −l2 sin(q1 + q2)
l1 cos(q1) + l2 cos(q1 + q2) l2 cos(q1 + q2)

]
(48)

The kinematic equation is given by

X =

[
l1 cos(q1) + l2 cos(q1 + q2)
l1 sin(q1) + l2 sin(q1 + q2)

]
(49)

The link’s parameters are estimated by a gain of 0.9 from real values given in Table 1.
We set the controller with µ = 10, σ = 0.1, λ = 0.001 and ρ = 5. Desired path in task
space and initial condition are expressed in Table 2.

Table 1. Parameters of two link elbow robot

l1 = 1 l2 = 1 lc1 = 0.5
lc2 = 0.5 m1 = 15 m2 = 6
I1 = 5 I2 = 2 Fd1 = Fd2 = 1
Fs1 = Fs2 = 1 Td1 = Td2 = 10 g = 9.8
Jm1 = Jm2 = 0.0001 r1 = r2 = 0.01 R1 = R2 = 1
Bm1 = Bm2 = 0.01 Km1 = Km2 = 0.01 Kb1 = Kb2 = 0.01

Table 2. Desired path and initial condition

Xd = 0.95 + 0.05 sin(3t) Yd = 0.95 + 0.05 cos(3t)
Xd (0) = 0.95 Yd (0) = 1

8. Simulation Results.
Simulation 1. The task space control given by (34) is simulated with ρ = 5. We

cannot figure out any differences between the desired and actual trajectories as shown in
Figure 2. The control inputs are under the permitted values of 150 V as shown in Figure
3. The norm of tracking error in the task space has been reduced efficiently as it has a
maximum value of 1.6 mm as shown in Figure 4. The tracking performance is enhanced
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by increasing the bounding function ρ as illustrated in Figure 5. The simulation results
show norm of errors for given values of 5, 10 and 20 to ρ, respectively.

According to above results, it is concluded that the proposed control without chattering
as well as overcome to dynamic, kinematic and actuator model uncertainties. In Figure
3, we conclude that the input controls do not saturate and remain at an acceptable
level. Despite all these advantages, the proposed control cannot pass the singular points,
consequently, it is difficult for practical implementation of this controller due to the reasons
stated in Section 5. In the next section, the simulation results of modified control (36)
are going to show that the above defects have been resolved.

Simulation 2. The modified control law (36) is compared with (34) on norm of tracking
error while parameters are the same as sim1 and ρ = 5. However, its norm of tracking
error is larger than control law (34) with a maximum value of 2 mm as shown in Figure
6. We can reduce the maximum norm of tracking error by increasing ρ in the modified
control law as is shown in Figure 7. The simulation results show norm of errors for given
values of 5 and 25 to ρ, respectively.

Figure 2. Trajectory track-
ing by control law (34)

Figure 3. Control inputs

Figure 4. Norm of tracking
error in task

Figure 5. Comparing track-
ing error according to increas-
ing ρ
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Figure 6. Comparing con-
trol approach

Figure 7. Comparing track-
ing error according to increas-
ing ρ

Figure 8. Trajectory tracking by control law (36)

The specific usage of control law (36) is when we cannot use Jacobian inverse for example
for redundant robots or passing the singular points. For this purpose, a circle with radius
of 0.5 m centered at (0.5, 0) is given to control system as a desired trajectory. The desired
trajectory passes a singular point (0, 0) where the determinant of Jacobian matrix is zero.
The control approach (36) works well and we can see a little difference between the desired
and actual trajectories as shown in Figure 8 while the control approach based on inverse
Jacobian cannot be applied.
According to above simulation results, it is concluded that the modified control (36)

compared with the control input (34) have a higher tracking error, but it still have accept-
able performance. Tracking error can be reduced by selecting the appropriate coefficients
of input control without the saturated actuators. Unlike the control law (34), modified
control (36) can pass the singular points in the task space and implementation problems
have been solved in its design.

9. Conclusion. A novel approach was developed for trajectory tracking control of electri-
cally-driven robotic manipulators in task space. In this approach, we do not be informed
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about uncertainty boundaries, certainly. The simulation results confirmed that the pro-
posed control law can provide a desired tracking performance for a robotic manipulator
with uncertain dynamics, uncertain kinematics and uncertainties in actuator models. It
is concluded that the proposed approach can be used for task-space tracking control of
a normal-cost due to overcoming uncertainties. In contrast, a perfect joint space control
approach will never provide a desired tracking performance in task space for such a robot.
Moreover, applying feedback linearization technique without realizing and canceling the
uncertainties cannot operate well.

The modifications were presented in order to simplify sensing problem such the one
on the control law to be independent of velocities. In addition, we can use transpose
Jacobian in replace of inverse Jacobian whenever the inverse Jacobian cannot be applied
for example in the cases of singularity and redundancy. The use of switching rule was
efficient to cancel the effects of estimations and obtaining uniform ultimate boundedness
tracking error.
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