International Journal of Innovative
Computing, Information and Control ICIC International ©)2012 ISSN 1349-4198
Volume 8, Number 8, August 2012 pp. 5523-5542

RESIDENCY-BASED DISTRIBUTED COLLABORATIVE KEY
AGREEMENT FOR DYNAMIC PEER GROUPS

CHIl-JYH Guo AND YUH-MING HUANG

Department of Computer Science and Information Engineering
National Chi-Nan University
No. 1, University Road, Puli, Nantou 54561, Taiwan
huby@mail2000.com.tw; ymhuang@csie.ncnu.edu.tw

Received May 2011; revised September 2011

ABSTRACT. The contributory group key agreement is suitable for real group-oriented net-
work environments because it avoids the drawbacks of the centralized key generation center
and the problem with the single point of failure in three different types of group-oriented
communication schemes. Previous studies have pointed out that the group member topol-
ogy and the group key re-establishment strategy are two important aspects of scheme
performance, especially with frequent member changes and large group sizes. Hence,
based on the binary tree topology, we proposed the Residency-based Batch Rekeying Al-
gorithm (RBR) to deal with membership dynamic events and group key re-establishment
to maintain the forward/backward secrecy. The Residency-based Batch Rekeying Algo-
rithm is divided into four phases, namely the Queue-Tree phase, the QT-Merge phase,
the ST-Merge phase, and the Relocation phase. Using the concepts of subtree division
and residency time classification, we design a new key tree topology to ensure that the
join/leave member’s location is as near as possible to the key tree root node to reduce the
rekeying cost. Finally, we show that the rekeying cost of RBR is lower than that of any
other proposed scheme via both mathematical analysis and simulation experiment.
Keywords: Residency-based rekeying, Interval-based rekeying, Contributory group key
agreement, Dynamic peer groups

1. Introduction. With the development of networking technologies, many group-orient-
ed applications, such as bank transactions, teleconferencing, and multi-player games,
conveniently assist humans with information dissemination. Unequivocally, information
security is an important issue in communication privacy and data integrity. For example,
in the ad hoc network, in order to prevent unauthorized access, encryption algorithms
are commonly used for secure data delivery. The encryption keys must be negotiated by
all group members so that they can receive and decrypt the information [1]. Instead of
repeatedly processing a pair-wise Diffie-Hellman group key agreement [2] between each
pair of group members, group-oriented communication uses a group key [3-5] held by all
group members to encrypt the communication content [6,7] and simultaneously achieve
both confidentiality and efficiency.

The group key management approaches of past studies can be classified into three differ-
ent types. The approach shown in Figure 1(a), called Centralized Group Key Distribution,
relies on a single Key Generation Center (KGC') to generate and distribute all of the keys
to group members. Despite the advantage of a lower computation cost for each member,
this approach has two problems [8]: 1) KGC must be constantly available and 2) KGC
must exist in every possible subset of a group in order to support continued operation
in the event of network partitions. Another approach, called Decentralized Group Key
Distribution and shown in Figure 1(b), involves dynamically selecting a group member to

5523

5524 C. J. GUO AND Y. M. HUANG

Group Members Group Members Py P
‘ . roup CmMbpers
0® - ¢ @ 60 O 0000 - ©
Unicast/Multicast L (.il'ull_;’!._K._c_)' Unicast/Multicast (.jn-ll}l.‘ K;:'\.
4 ‘ Collaboration
Key Generation Center @ Select Group Member } (;rtlll|3 3\1\
(a) (b) ()

FIGURE 1. Three types of the group key management approaches. (a)
The centralized group key distribution. (b) The decentralized group key
distribution. (c¢) The contributory group key agreement.

generate and distribute all of the keys to the other group members. Because any parti-
tion can elect a member to be the key server, this approach is more robust and applicable
to group key management. However, the key server must consume significant costs to
establish long-term pairwise secure channels with all current members to distribute the
group key, and some problems still arise, as in the KGC case. In contrast to the above
approaches, the Contributory Group Key Agreement (or Group Key Agreement), requires
all group members to contribute their shares and compute the group key collaboratively
[8-12], as shown in Figure 1(c). This avoids the problems with the centralized trust and
the single point of failure. Moreover, some contributory methods do not require the es-
tablishment of pair-wise secret channels among group members. Because the contributory
group key agreement does not need to depend on the KGC, this type of group key man-
agement becomes necessary in the situation [10]: 1) a central key server KGC cannot be
established; 2) the group members are equal and do not trust another entity to manage
their private key; or 3) the members and server do not share any common knowledge about
each other’s secret keys beforehand. Over the past decades, several contributory group
key agreement schemes have been proposed [8-16], and all of these schemes have pointed
out that there are two important aspects of scheme performance that should be noticed.
1) The complexity for generating the group key will closely depend on the group member
(key tree) topology. For example, using the ring-based member topology, Burmester and
Desmedt (BD) [12] proposed an efficient protocol that takes only two rounds per member
to generate a group key. However, it requires 2n (n is the group size) broadcast messages,
which are expensive on a wide area network [8]. Under the same conditions, using the
balanced binary tree-based topology, Kim et al.’s Tree-based Group Diffie-Hellman pro-
tocol (TGDH) [8] requires logn rounds and broadcasts 2logn messages per member to
generate a group key. Moreover, when group member dynamic events occur, the group
key needs to be reconstructed to maintain the backward and forward secrecy. Therefore,
2) a group key re-establishment strategy (called the Rekeying algorithm) is another as-
pect that should be considered. However, this operation often consumes a large amount
of communication and computation overhead, especially for a large dynamic group, which
is an important issue for some lower-capability devices such as mobile ad hoc or sensor
networks. In 1994, Burmester and Desmedt (BD) [12] proposed an efficient protocol in the
initialization phase of group key establishment. However, the rekeying cost upon group
membership change events is still high. To improve that, Steiner et al. extended the two-
party Diffie-Hellman protocol [2] to the group Diffie-Hellman protocol (GDH) [17,18].
While it is more efficient, it still requires a high cost when members leave. Recently, in
order to achieve scalability for contributory group key agreements, based on the use of the
binary balanced tree topology to maintain the key material, Kim et al. proposed TGDH
[8], where the average rekeying rounds when a single member joins/leaves is logn. In

RESIDENCY-BASED DISTRIBUTED COLLABORATIVE KEY AGREEMENT 5525

TGDG, the rekeying cost for the remaining members is in direct proportion to the depth
of the join/leave member’s location (node depth). In order to reduce the join/leave node
depth, Mao et al. proposed the Dynamic SubTree (DST) [10] group key agreement using
a special join-exit-tree topology and exploiting cost amortization in 2006. It reduces the
average rekeying rounds when a single member joins/leaves to ©(loglogn). However, Yu
et al. [11] indicated that DST has an unrealistic requirement that the member’s leave time
is known by others in advance. If this condition does not hold, the time cost is higher
than that in TGDH. In addition, Yu et al. used a novel logical key tree structure (called
PFMH) to divide the group into the join tree and main tree. In addition, they used the
concept of phantom member position to design the PFMH tree-based contributory group
key agreement (PACK) to achieve the performance lower bound proposed by Snoeyink
et al. [19]. Unfortunately, the height of the main tree (leave node position) is nearly
log n, and simulation results also showed that the computation and communication costs
in PACK are slightly higher than those in TGDH upon a single member leave event.

According to the rekeying timing, the rekeying strategies can be classified into two cate-
gories. 1) The individual-based distributed rekeying algorithms, including [2,8,10,11,17,18].
A rekeying is performed immediately upon the occurrence of a member join/leave event,
even if the member only stayed for a very short time. Intuitively, the computation/commu-
nication cost can be reduced by 2) the interval-based distributed rekeying algorithm. Each
rekeying and its adjacent rekeying are separated by a fixed time interval. After the previ-
ous rekeying, the interval-based distributed rekeying algorithm will temporarily disregard
all of the incoming membership join/leave events for a rest period of one time interval. In
2006, Lee et al. [9] first proposed the interval-based distributed rekeying algorithm, called
the Queue-Batch algorithm (QB), and showed that the rekeying cost is lower than that
of an individual-based distributed rekeying algorithm. Recently, several interval-based
distributed rekeying algorithms [20-25] have been proposed, but these algorithms are still
similar to QB.

In order to evaluate the performance of the rekeying process, both a mathematical anal-
ysis and simulation experiment should be used. Conventionally, in previous studies [8-11],
the performance evaluation in a mathematical analysis was made under the assumption
that the key tree is completely balanced. However, this assumption may be inconsistent
with reality. Through the queuing theory [26], we used a simulation experiment that pro-
vides all user dynamic events to random demands to evaluate the overhead of all of the
proposed algorithms and found that the membership dynamic events in the simulation
experiment could lead to an unbalanced key tree and high rekeying cost. For example,
QB can be regarded as a special case of our proposed scheme where the join tree capacity
is unlimited. In fact, in the simulation, the rekeying costs of QB were higher than those
in the mathematical analysis. Therefore, to meet reality, we gave more attention to the
simulation results.

In this paper, based on the tree-based group key agreement and interval-based dis-
tributed rekeying algorithm, we propose the Residency-based Batch Rekeying (RBR)
algorithm, and the contributions are as follows. 1) Using a lower capacity join tree and
the concept of QB, we propose using Queue-Tree and QQT-Merge phases to deal with the
member join events, which allows the computation and communication costs of member
join events to be reduced and more efficient than those of PACK. 2) Dividing the main
tree into several subtrees and disposing those subtrees’ root nodes depth are ascending
from the root node. Based on the members’ residence times, we propose using ST-Merge
and Relocation phases to reset the location of each subtree so that the longest-staying
members (having higher leaving probability) are closest to the root node. We not only
solve the unrealistic requirement of DST that the member’s leave time is known by others

5526 C. J. GUO AND Y. M. HUANG

in advance, but achieve higher rekeying performance than PACK during the member leave
events. 3) We evaluate the performance of our RBR algorithm using both a mathematical
analysis and simulation experiment.

The rest of this paper is organized as follows. Section 2 briefly introduces the tree-
based group Diffie-Hellman protocol. Section 3 presents the proposed RBR algorithm
with four phases. In Section 4, we evaluate the overhead of our proposed scheme using
a mathematical analysis and make a comparison with other schemes. In Section 5, the
simulation results are presented and discussed. In Section 6, we briefly describe the
security analysis, and finally the conclusions are presented in Section 7.

2. Background of Tree-Based Group Diffie-Hellman Protocol (TGDH). Over
the past few decades, tree-based contributory group key agreements have been the most
promising because of their scalability. In this section, we briefly introduce the tree-based
group Diffie-Hellman (TGDH) [8] protocol for reconstructing the group key for security
requirements, such as group key security, forward secrecy, backward secrecy, and key
independence in user dynamic events. In TGDH, the key set that was maintained by
each user is arranged in a hierarchical binary tree, as illustrated in Figure 2. To facilitate
the reading, we assign a node ID, v, to every tree node. Each node v holds a secret (or
private) key, K,, and computes a blinked (or public) key, BK, = ¢g%* mod p. All of the
arithmetic operations are based on the Diffie-Hellman protocol and performed in a cyclic
group of prime order p with generator g. The i-th group member is denoted by M;, and
arranged on the leaf nodes in a key tree. Each M; selects an individual secret key through
a secure pseudo random number generator and publishes its corresponding blinked key
to the sibling node. Moreover, all members hold all secret keys from their associated leaf
node up to the root node, called the key-path, and the secret key of the root node held
by each member simultaneously is the group key. Moreover, the co-path denotes the set
of the sibling nodes of each node in the key-path. Based on the Diffie-Hellman protocol
[2], each non-leaf v consists of two child nodes (i.e., 2v + 1 and 2v + 2); the secret key of
non-leaf node v can be generated by one child node’s secret key and another child node’s
blinked key. The secret key of non-leaf node v is as follows:

K’u = (BK2U+1)K2U+2 modp = (BK2,0+2)K2U+1 Inod p= gK2”+1-K2v+2 mod P (1)

For example, in Figure 2, member M, first generates a random number to be an individ-
ual secret key, K. After receiving all of the blinked keys along the co-path (BK7, BKjy,
BK,), M, generates the secret key (K3, K1, Ky) using the above two-party Diffie-Hellman
agreement, and K is the group key. Upon occurrence of a member join/leave event, the
group key needs to be rebuilt (rekeying process) to maintain the backward secrecy (joined
members cannot access previous information) and forward secrecy (former members can-
not access future information). Therefore, a special member called the sponsor is elected

.

G @
M] Mg M; M4

FIGURE 2. Key tree in the tree-based group Diffie-Hellman (TGDH) protocol

RESIDENCY-BASED DISTRIBUTED COLLABORATIVE KEY AGREEMENT 5527

to deal with the key updating (reselect his/her secret key and communicate with the join
member) and adjust the node position in a member leave case.

3. Residency-Based Batch Rekeying Algorithm. In this section, we first present
our logical key tree topology and the associated algorithms in Sections 3.1 and 3.2, re-
spectively. Furthermore, we describe each phase in our RBR algorithm in Section 3.3.

3.1. Key tree topology. As shown in Figure 3, our proposed logical key tree consists
of three parts: 1) the queue tree of dynamic size, which is used to deals with the member
join/leave events during one idle rekeying time interval, 2) the join tree with a lower
capacity, which is primarily used to deal with the member join events, and 3) the main
tree, which is organized into several subtrees using the concept of STR [14] (short for
Skinny tree) to primarily deal with the member leave events. Let N be the average group
size, and the height of the key tree is at least log N (tree is balanced). We divide the key
tree (including the joint tree and the main tree) into g = [log V| subtrees, denoted by ST,
where 1 < ¢ < g. During the period of every rekeying time interval, all join members first
pre-build a temporary key tree, called the queue tree, and the queue tree is merged into
the join tree at the beginning of every rekeying time interval. Independently maintaining
a join tree with a lower height makes the queue tree be inserted into a shallower location,
which can reduce the rekeying cost for member join events. Later, the join tree will be
relocated into be the sibling tree of the deepest and leftmost subtree in the current main
tree if the number of members in the join tree reaches the maximum capacity. Besides,
before performing the relocation process, the two shallowest subtrees in the main tree
(STq, ST3) will be merged to keep the number of subtrees less than g. In this way, the
members in ST, (the shallowest subtree in the main tree) stay much longer, so those
members have relatively higher leaving probabilities. For the same reason, the rekeying
cost for member leave events can be reduced.

O

Ficure 3. Topology for the proposed RBR algorithm

3.2. Algorithm. As shown in Figure 4, RBR consists of four phases: the Queue-Tree
phase, Queue-Tree-Merge (QT-Merge) phase, SubTree-Merge (ST-Merge) phase, and Re-
location phase. Referring to [9], within the batch rekeying time interval, all join members
are added into a temporary queue tree in the Queue-Tree phase. At the beginning of
every batch rekeying time interval, the QT-Merge phase first completely immigrates the
queue tree into the shallowest leave node location in the join tree and then deals with
the member leave events (promotes the sibling nodes and elects the sponsors). After the
QT-Merge phase, the Relocation phase is activated to move the whole join tree into the
main tree as a sibling of the deepest and leftmost subtree if the number of members in
the join tree is greater than its maximum capacity. Notice that, once the total number of

5528 C. J. GUO AND Y. M. HUANG

v No
Membership :
Initialization g Reset-Index SEpnuty RN (yeue-Tree __Nmz2C
Events .
) A ¥ yYes
Nse=g No

No Rekeying Time

yYes

QT-Merge

FIGURE 4. Structure of the proposed RBR algorithm

subtrees is greater than g, the ST-Merge phase will be activated before activating the Re-
location phase to keep the number of subtrees equal to g. The interval-based distributed
rekeying algorithm is more efficient in terms of less communication and computations
costs because it performs the rekeying just in the fixed time slots. After completing one
operation of batch rekeying, the interval-based rekeying algorithm temporarily disregards
the following membership dynamic events until the beginning of the next rekeying time
interval. At this time, another batch rekeying is started. However, the length of the
rekeying time interval is a tradeoff with the forward /backward confidentiality. The batch
rekeying algorithms are developed based on the following assumptions [9].

1. All members are trusted in the key establishment process.

2. The group communication satisfies view synchrony [8,27] that defines reliable and
ordered message delivery under the same membership view. It means that when a
member broadcast a message under the membership view, the message is delivered
to the same set of members viewed by the sender.

3. Rekeying operations of all members are synchronized to be carried out at the begin-
ning of every rekeying time interval.

4. When a new member sends a join request, it also includes its individual blinded key.

5. All members in the group know the existing key tree structure and all the blinded
keys within the tree.

6. To retain the forward/backward confidentiality, sponsors are needed to broadcast
the blinded key along its key-path. In the batch rekeying algorithm, more than one
sponsor may be elected, and a renewed node may be rekeyed by more than one
sponsor. Therefore, we assume that the sponsors can coordinate with one another
such that the blinded keys of all the renewed nodes are broadcast only once.

3.3. Pseudo-code of each phase. In this section, some notations are presented as
follows. Let N be the average group member size. Ngr, Njr and Ny respectively
denote the number of members in the queue tree, the join tree, and the main tree. ST;
denote the j*® subtree. Note that ST, is the join tree, and the number of members in the
i*" group is denoted by Ngr,. Npg denotes the number of backbone’s external node. The
join tree capacity is denoted by C';, and the number of members leaving from the join
tree and main tree are denoted by Lj;r and Ly, respectively.

3.3.1. Initialization phase and index-reset phase. The Initialization phase is used to set
the genesis of group. The system first builds the virtual backbone using the MH key tree
topology [11], where the number of external nodes in the backbone is equal to g = [log N'|.
In the following operation, each external node of the virtual backbone is used to hang a

RESIDENCY-BASED DISTRIBUTED COLLABORATIVE KEY AGREEMENT 5529

subtree, i.e., it is the root node of the subtree. To facilitate the reading, the backbones
internal/external node indices are denoted by I; / E;, where 1 <i<g—1land1<j <g.
The Pseudo-code of the Indez-Reset phase is shown in Figure 5.

Index-Reset
1. Set the backbone internal nodes indexed by /; from top to bottom, where 1<i< g—1

and the root node indexed by /;.
2. Set the backbone external nodes indexed by E; from top to bottom, where 1< j<g.

FIGURE 5. Pseudo-code of the index-reset phase

Queue-Tree [9]
if (a new member joins {

1.

2. if (Queue Tree is empty) /* no new member in Queue Tree */

3. Create a new Queue Tree with the only one member;

4, else { /* Some new members in Queue Tree */

5. Find the insertion node; Add the new member to Queue Tree;

6. Elect the rightmost under the subtree rooted at the sibling of the join node to be
the sponsor;

7. if (sponsor) /* sponsor's responsibility */

8. Rekey renewed nodes and broadcast new blinded keys;}

9. }

FIGURE 6. Pseudo-code of the queue-tree phase

QT-Merge (JoinTree, Queue-tree, Lain, Lioin)

1. if (Lyr==0) { do nothing; } /* no leave member in the Main Tree */

2. if (L;y==0) {/* no leave member in the Join Tree */

3. Add the Queue Tree to either the shallowest node (which need not to be the leaf
node) of the Join Tree such that the merge will not increase the resulting tree height,
or the root node of the Join Tree if the merge to any locations will increase the
resulting tree height;

4. if (N, <C,){ /* Join Tree is not full */

5. Elect the member who is the rightmost leaf node of the subtree rooted at the sibling
node of the Queue Tree root in the Join Tree;}

6 else{/* Join Tree is full */

7. Relocation;}

8. }

9. else{ /* there are leaves */

10. Add the Queue Tree to the highest leave position of the key tree Join Tree;

11 Remove the remaining Lj,;,-1 and Ly, leaving leaf nodes and promote their
siblings;

12. if (N, <C,){ /* Join Tree is not full */

13. Elect one member from the Join Tree and Main Tree, respectively, to be the

sponsors if they are the rightmost members of the subtree rooted at the sibling
nodes of the deepest departed leaf nodes in the Join Tree and Main Tree;}
14. else{ Relocation;}

15. }
16. if (sponsor) /* sponsor's responsibility */
17. Rekey renewed nodes and broadcast new blinded keys;

FiGUuRE 7. Pseudo-code of the QT-merge phase

5530 C. J. GUO AND Y. M. HUANG

3.3.2. Queue-tree phase and QT-merge phase. In the batch rekeying algorithm, at the
beginning of every rekeying time interval, the key tree needs to process both member join
and leave events. However, higher computation/communication overheads result from
processing two different member dynamic events simultaneously, which may cause an
ineffective rekeying operation. Therefore, we first preprocess the Queue-Tree phase for
join members to pre-build a temporary queue tree during the idle rekeying interval. Next,

!.FI 1

Main Tree (ST+~ST,) f! "r'i' Join Tree (ST))
L (&)
A @) /68 eecece
(E4)
". ST, ®
00 .
!;.l
(&) E.)
00 0000
e st =
£
(a)
I
Main Tree (ST+~ST,) f! F._. Join Tree (ST))
L E"I
Y- _
A @) e s 000000
Aol
R
L@ s,
!'...1
(&) Eql @
® & 'Y OOV 0009
- = ST, S,
OO0 = Queue Tree
ST,
(b)
&
Main Tree (STe~5T,) i Ey Join Tree (ST,)
I :;.::'.
LIIE‘. :‘_ 3.51‘, 5] (1] .. - . _ .
PY R 0000
e Quent Tree
5Ty
I
3 . @® : Current member
SN q [] © : Join member
e) L = (L) : Leave member
- - »l X
0000 (s): Sponsor
(c)

FIGURE 8. Example of the queue-tree and QT-merge phases. (a) The key
tree structure after batch rekeying. (b) The key tree structure before next
batch rekeying. (c¢) The key tree structure after next batch rekeying.

RESIDENCY-BASED DISTRIBUTED COLLABORATIVE KEY AGREEMENT 5531

we merge the temporary queue tree into the join tree using the ()7T-Merge phase in the
beginning of the every rekeying interval. The pseudo-codes of the Queue-Tree phase and
QT-Merge phase are illustrated in Figure 6 and Figure 7, respectively. For example, the
key tree structure after a particular batch rekeying is shown in Figure 8(a). During the
rekeying interval before the next batch rekeying, there are some new members that want
to join and some current members that want to leave. As shown in Figure 8(b), the join
members first process the Queue-Tree phase to form a queue tree and elect the rightmost
member under the subtree rooted at the sibling of the join node to be the sponsor. The
leave nodes in the whole key tree are first removed, and the subtrees rooted at the leave
nodes’ siblings are not promoted immediately until the beginning of the next rekeying
time interval. As shown in Figure 8(c), the QT-Merge phase merges the temporary queue
tree into the shallowest leave node location in the join tree and elects the sponsors for
other leave nodes.

3.3.3. ST-merge phase and relocation phase. Past studies have shown that the cost for
remaining members to process the batch rekeying is in direct proportion to the depth of
the join or leave node level. Hence, based on the average number of group members, we
divide the whole key tree into some subtrees to reduce the height of the join tree. As
our proposed key tree topology, STy is the join tree, and the shallower queue tree insert
location will cut down the rekeying cost. For the same reason, members in STy (the
shallowest subtree in the main tree) are the longest-staying and have the highest relative
leaving probability. In order to maintain the topology of the key tree, the Relocation
and ST-Merge phases will be operated if Ny < C';. The join tree will be relocated into
the sibling with the deepest subtree in the main tree if the number of join tree members
has reached the maximum capacity. To keep the number of subtrees less than g, the
ST-Merge phase first determines the lowest subtree rooted at Ey (root node of ST), and
then merges ST3 to be a sibling with this subtree. Figure 9 and Figure 10 illustrate the
pseudo-codes of the Relocation and ST-Merge phases, respectively.

Relocation
/* Relocate Join tree™®/

Find the deepest internal node in virtual MH Tree, denoted by Zueepes: 5
Create E

deepest+1

RLink — E

deepest+1 deepest+1 ?

1

2

3

4

5. E-d;'«-;x'.wr + LLH'.’k —> EI ;
6. I
7

8

9

1

1

deepest LL ”?k - E{Iﬁ_v_'pc'.wr &

/* Rebuild Join tree root node */

Create E

I,.RLink — E, ;

0. Index-Reset;

1. Elect one member to be the sponsor if he/she is the rightmost member of the subtree
rooted at the sibling nodes of the deepest departed leaf nodes in the Main Tree, or they

are the rightmost member rooted at Eg :
12. if (sponsor) /* sponsor's responsibility */
13. rekey renewed nodes and broadcast new blinded keys;

FIGURE 9. Pseudo-code of the queue-tree phase

5532

C. J. GUO AND Y. M. HUANG

ST-Merge

9

1
2
3
4.
5.
6
7
8

if (H E, LefiChild = H E, R.r'g.‘nfm'h.‘) {
Create E, ., anddrop I;
E, woncnia-RLink = Es, Ey g cyg- LLink = Ey 0, and 1 LLink — 1, ;
}elseif (Hy o < Hp piguonia) 4
Create E,, ., anddrop I;
E, o RLink = Ey Ey oy LLink = Ey oy and I LLink —1,;
} else{
Create E, and drop 1;;

E, RLink —~E, and E,.LLink —E,;

10. L.RLink—E, and I,.LLink —1,;
1.}
12. Index-Reset;

FIGURE 10. Pseudo-code of the QT-merge phase

'/h::
() (5)
(@) (&)
Y - = 7<
ORNCY \ ST,
(&) A
_V) ST, Join Tree
(@)
— =2 o 5T,
() &)
ST, 5T
Main Tree
(a)
@)
¢ .f";) @}u;]
@ ®= L
. (EE) sy 2
B [ST:] £
ST ,
N x \\
(ERE . [STy]
s EglEe] ST,
ST, ST/
[STi] [ST] Main Tree
(b)

FIGURE 11. Example of the ST-merge and relocation phases. (a) BEFORE
the ST-merge and Relocation. (b) AFTER the ST-merge and relocation.

RESIDENCY-BASED DISTRIBUTED COLLABORATIVE KEY AGREEMENT 5533

For example, the key tree structure before the ST-Merge and Relocation is shown in
Figure 11(a). Before the ST, Relocation phase, the two shallowest subtrees in the main
tree (STy, ST3) will be merged to keep the number of subtrees less than g. As shown in
Figure 11(b), because the height of Ey’s left subtree is shorter than Ey’s right subtree,
in the ST-Merge phase, ST3 is merged to be the sibling of E5’s left subtree. Next, ST,
is relocated to be the sibling with the deepest subtree, ST,, in the main tree in the
Relocation phase. Finally, the Indez-Reset phase resets the backbone’s internal /external
nodes index. Note that, to facilitate the reading, [F;] and [ST;] denote the external node
index and subtree index before the ST-Merge and Relocation phases, respectively.

4. Mathematical Analysis. In this paper, we evaluate the performance of the RBR
Algorithm using two methods: mathematical analysis and simulation. Before these eval-
uations, we generate the membership dynamic events according to the following proba-
bilistic models: the member join events according to a Poisson process with an average
arrival rate of \. The member leave events are defined by the members staying time in
the group, which follows an exponential distribution with a mean of « [13,26]. Therefore,
the average group member size is N = aA. The mathematical analysis considers the com-
plexity of the algorithms under the assumption that the key tree is completely balanced
[9]. For ease of evaluation, through the queuing theory [26], we define the group member

residual rate f; = e for the time between Ry, and B, = e s’ after the time kRy,
where R; is the rekeying time interval.

In previous studies, the number of rounds was usually used to evaluate the efficiency of
the rekeying process in the Diffie-Hellman contributory group key agreement [9-11,17,18].
However, a difference in the mathematical computations in distinct rounds may cause
an inequality comparison [17,18]. To address this problem, we apply the simple round
concept [28] in our RBR algorithm. In each round, each member not only can perform
at most one two-party Diffie-Hellman operation, but can also send and receive at most
one message. According to [10], we define the average join/leave rounds as the number
of rounds to perform the rekeying process for a member join/leave event. The average
join/leave rounds, denoted by AverageRounds jym, Jleave, 15 defined as

Total Round z,;
AverageRounds join) reave = Join/Leave

(2)

where Total Round join/reave 15 the total number of Diffie-Hellman rounds performed for
N join/ Leave join/leave events. In addition, the communication cost of a contributory key
agreement refers to the number of messages sent for a rekeying process during a join or
leave event. Under the fundamental assumptions that each sending message incurs the
same communication cost [10], we evaluate the communication performance using the
average number of messages per member join or leave event. For a member join/leave
event, because the changed node and its sponsor are needed to update the blind keys along
their key-paths, the average join/leave communication cost can intuitively be regarded as
twice the average join/leave rounds. Furthermore, we evaluate the computation efficiency
by the average number of total exponentiations per member join or leave event.

NJoin/Lecwe

4.1. Member join. Time 0 is set as the time point after the previous Relocation phases,
and whole join tree members have moved to the main tree (i.e., the join tree is now empty).
Consider the circumstances that during £ rekeying time intervals, there are a total of z
members in the join tree. At the rekeying time point, the queue tree is combined with the
join tree. At the beginning of every batch rekeying time interval, the whole queue tree is
immigrated into the shallowest leave node location in the join tree directly. Hence, the

5534 C. J. GUO AND Y. M. HUANG

join rounds for each batch rekeying are the sum of the backbone’s depth and the height
of the join tree (i.e., rounds = 1 + H joinTree)-

For example, as shown in Table 1, R; members join the queue tree between adjacent
rekeying time intervals. At time 0, it only needs one round to immigrate the queue tree
into the empty join tree. At time 2R;, the number of join tree residual members is AR;[3;.
Hence, it needs 1+ log AR/, rounds for the queue tree to be immigrated to the join tree.

After kR;, the total members in the join tree is equal to z, and

_ nk
x:AR1(1+B1+---+5f_2)51+AR1:)\Rl(1 51) (3)

We can evaluate the total join rounds of x join members as follows:
1 + (1 +1og AR By +log AR (1 + 51)51) + (1 +1og AR (1 + B1 + 57)51)
+(1+10g)\R1(1+51+612--- f_2)31))
< k+(— 1)1og AR;(1+ B + B -+)6y (4)
k+ (k—1)log \R; (1 prt 1) =k + (k— 1) log(z — AR;)
<k+(k—1)logz

As a result, the average join rounds and average communication costs for one member to
join the group are as follows:

1
AverageRounds joim < — (k + (k — 1) logx + himain)
T

1 k -2
:—(k+(k—1)loga:+g—2+logx):5(logx+1)+gm (5)

| = 8

(logz+1)+1

8

k
AverageCommunicationCost 7 = 2 <—(logx +1)+ 1) (6)
x

Denoting Ngojr as the old join tree size, the computation cost of each rekeying time
interval is equal to Ny + 2(Noyr + 1). The term N7 in the computation cost comes
from performing the Diffie-Hellman operation to generate the group by the members in
the main tree. In the QT-Merge phase, the queue tree merge can be regarded as a one
member join. Therefore, according to [11], the term 2(Ng r+ 1) in the computation cost
comes from one member joining the old join tree. Because the average number of group
members N = Ny + Nojr + Ngr, the computation cost of each rekeying time interval
is bounded as follows:

NMT+2(NOJT+1):NMT+2NOJT+2§N+NOJT+1 (7)
Between, the total computation cost in term 2(Noyr + 1) is
(AR1By+1) + (ARr(By + B7) + 1) + -+ (ARg (B + B2 -+ B771) +1) (8)

<(k=1)(AR;(Bi+ B2+ B H+1)=(k—1)(x — AR+ 1) < k(z +1)

TABLE 1. Performance analyses for member join events

Time |0 Rj 2R; kR;

Nor |0 AR; AR; \R;

Nyr 0 0 ARy AR; (1 + B + 5% 4t Bf—?) B
Rounds |0 1 1+4logARBi ... 1+logAR; (L+Bi+ B+ -+B7°) A

RESIDENCY-BASED DISTRIBUTED COLLABORATIVE KEY AGREEMENT 5535

TABLE 2. Performance analysis for member leave events in average case

ST; | Nst, BackboneLevel Rounds(Backbone) Round(ST;)
ST, | =0 g—1 xp3 (4 0
ST, | 52 g—1 252 (4 0
: 3 : K L
STy | aff w55 (3) 265 (10g 2%
STy | 20§~ 3 B3 285" (log 2™")
STQ NST2 2 NST2 . 2 NST2 (lOg NSTQ)
ST, x 1 x-1 xrlogx

Hence, the computation cost for one member to join the group is presented as follows:

ComputationCost joim < % (kN + k(x +1)) = S(N +z+1) 9)
4.2. Member leave. In our proposed key tree topology, each subtree attached to the
main tree’s backbone is a variation of the structure of the STR protocol. Hence, for a
member leave event, the rekeying overheads (such as rounds, communication, and compu-
tation cost) depend on the location of the deepest leave node [14]. According to [29], we
evaluate the average case when the member leaves from the I-th subtree, ST%. Consider
the circumstances that during £ rekeying time intervals, the total join member quantity,
z, is equal to the total leave member quantity.
As an example of the -th subtree, ST%, in Table 2, the residual member quantity,

g
Nsr, = xzf3, and the average rounds for each STg¢’s remaining member is the sum
2

of the ST4’s backbone depth (i.e., £) and the height of the ST, (ie., xBZ%) Hence,

)
g g g
the average rounds for all of STg¢’s remaining members are x5 (g) + x5 (log xﬁg) =

xBZ% (% + log xﬁé%). Furthermore, all of the members in ST% ~ ST, are unaltered, and

only need £ rounds (ST4’s backbone depth).

For z members that leave from the main tree during time 0 ~ kR; (only k batch
rekeying intervals), the total rounds (for rekeying the N remaining members) are as
follows:

Total Roundsy e = % - (Total Roundsp,eqpe (Backbone) + Total Roundseqpe(ST;))
9
<x62 (£) + 262 (£) +---+ 285 (£) +---+x6§‘2-3+NST2-2+x-1)

_ k g b - -
A («Tﬁf logzf; + -+ xf§ *logzf 2>)
(v (50 +2) o
. (g
< k 3g—4)(g—2
<3 +<:E52 ((% —1)logz + (%) 10g62>)(Appendm2)

+(NST2 lOg NST2) (Appendiz3) + (.CU lOg .ZU)

Therefore, the average leave rounds and average communication costs for one member to
leave the group are as follows:

1 /1
AverageRoungsreae < — (N (TotalRounds)) (11)
T

5536 C. J. GUO AND Y. M. HUANG

AverageCommaunicationCosteae = 2 (AverageRounds) (12)

Because each subtree, ST;, in the main tree is balanced, those subtrees can be regarded
as a TGDH case. According to [11], the computation cost of each subtree, i, is equal to
2Ngr,. In addition, the extra computation cost of the backbone (%) should be included.
For 0 ~ kRy, the computation cost for one member to leave the group is presented as

follows:

ComputationCostreqpe
k
== (2 (NST% + -+ Ngr, + NgT, +NST1> + g)
~f (g BE 4+ aBi 7+ Nov, +2) + 2
_x T 2 T 2 ST» x 2 (13)
k
SE(2($5+"'+$5+NST2+$)+2>
k
(o (() 1)+)
x 2 2

4.3. Comparison and discussion. From the above mathematical analysis, the special
batch rekeying factor (%) that appears in those equations is explained as follows.

1. k = x: This means that exactly one membership dynamic event occurs during each
batch rekeying time interval. Roughly, it can be implied to match the individual-
based rekeying case.

2. k > x: Because only £ membership dynamic events (rekeying process) occur during
k batch rekeying time intervals, the remaining k-x times cause no rekeying cost and
can be disregarded. Just as in case 1, it can be implied to match the individual-based
rekeying case roughly.

3. k < x: In the interval-based rekeying case, the total cost of z membership dynamic
events is equally divided into £ batch rekeying time intervals. Therefore, the average
rekeying cost of an interval-based rekeying case is (g) times that of the individual-
based rekeying case.

The average rekeying time costs for a single member join/leave event for the different
schemes are presented in Table 3. Under the assumption that the key tree is completely

TABLE 3. Comparison of the average time cost, communication cost, and
computation cost among PACK, TGDH, DST, and QB upon single member
join/leave event

Single Member Join

Time Cost Communication Cost Computation Cost
PACK [11] 1~2 2~ 4 N
TGDH [§] log N 2log N 2N
DST [10] 1+ loglog N 1+ loglog N N +log N
QB [9] Elog N 2% log N 2k N
Single Member Leave
Time Cost Communication Cost Computation Cost
PACK log N 2log N (1~25)N
TGDH log N 2log N 2N
DST 1+1log N +loglog N 2(1+ log N + loglog N) 3N
QB Elog N 2% log N 25N

RESIDENCY-BASED DISTRIBUTED COLLABORATIVE KEY AGREEMENT 5537

Average Time Cost Upon si Joi i i Average Computation Cost Upon Single Member loi i Average C ion Cost Upan single member Join [Mathematical Anabysis)
3500 30
— PACK e TGOH 05T ab =1 2 = PACK = TG0H - DST & - PACK, == TGOH s D5T an (kfx=1]
12+ QB (uws017) —=-RBA(kfx=l) —a—RBA (ki=0.17) S 3000 Q8 (k/z=l) -+ OB (fxeD9) o= RBR (k/xe1) 35 =-OB Dufes0.17) ~e-RBR (fxsl] e RBA (k/xs0117)
o = —=~RER (kfi=0.5) =
5 10 e 5 - &
% e § 00 = g, _ 1
- 5 - = =
g 8 i L s 2 2000 E - = =
5 o~ —— s B 1 - — m——
g o - = 1500 5 = o
E = 2 E 10 -
z 4 e — = 1000 é
&
) % 5
2 500 B —
—s » 4 =L -
o E (] o
o w00 400 600 800 1000 1200 1400 1600 o 200 400 600 8OO 1000 1200 1400 1600] 00 400 600 800 1000 1200 1400 1600
Hwerage Group Size Mverage Group Sie Awerage Group Size
Average Time Cost Upon singh ical Analysis) Average C ost U le Memb Average C ication Cost Upon sing L ical Analysis)
L 5000 30 -
——PACK —=—TGOH - 05T + OB (k/fw=1] £ = PACK —=—TGOM -
' 3 4500 QU fxfed) = O k/nn64] ~== RBA [k/we1) - F
LI i funi o= MR [kfx= =~ RO {k/x=l.B6) = ! d
QB [k/xe0 56) B (ke B 0,86 b o g = Fe

MNumber of Rounds

—PACK - TGOH - O5T
= QBlkfxsl) +- 08 [&fas0.B6) e~ ABA (ifus1]
= KBR k/x=0.86)

o 00 400 GO0 BO0 1000 1300 1400 1600 o 00 400 600 BOO 1000 1200 1400 1600 o 200 400 600 BO0 1000 1300 1400 1600
Average Group Sire Average Group Size Average Group Size

Ficure 12. Comparison of the rekeying costs among RBR, PACK, TGDH,
DST, and QB in mathematical analysis

balanced, when % =1 (implying individual-based rekeying), the average rekeying rounds
of QB are equal to TGDH, but higher than RBR. As shown in Figure 12, the average time
cost and communication cost of RBR(% = 0.17)/RBR(% = 0.86) upon a single member
join/leave event are respectively lower than those of the other schemes. Under our key tree
topology, because the join tree capacity is lower than the group size, the computation cost
of RBR (£ = 0.9) upon a single member join event is lower than the other schemes, even
the interval-based rekeying algorithm, QB. Moreover, upon a single member leave event,
RBR (£ = 0.64) is more efficient than the other schemes in relation to its computation
overhead. Note that the mathematical analysis of Lee et al.’s QB [9] protocol is described
in detail in Appendix 4. In addition, the computation cost of PACK is (1 ~ 2.5)N; we

take the average cost (1.25)N for the convenience of analysis.

5. Simulation Results. As mentioned above, in our simulations, we generate the mem-
ber activities according to the following probabilistic models: the member join events
according to a Poisson process with the average arrival rate A\. The leave events are de-
fined by the members’ staying time in the group, which follows an exponential distribution
with mean « [13,26]. Therefore, the average group member size is N = a\. For each
simulation, the initial group size is set to empty; we fix A = 1, and vary a to get different
average group member sizes. For each different average group member size case, there is
a sequence of 100aA member join/leave events in this simulation. We set the rekeying

time interval RI to 1, 2 and 4, and it can roughly take P% = % We evaluate three cases as

follows: 1) Ry =1 — f = 1: Implying that the interval-based rekeying case matches the
individual-based rekeying case, then comparing that with three individual-based rekeying
algorithms: PACK [11], TGDH [8] and DST [10]. 2) R; =2 — & = 0.5: Evaluating the
performance of the interval-based rekeying case using QB [9] and our proposed RBR, in
a shorter rekeying time-interval case. 3) Ry =4 — f = 0.25: Evaluating the performance
of the interval-based rekeying case in a longer rekeying time-interval case.

As shown in Figure 13, RBR (R; = 4) has the lowest time cost among all of the
schemes. Compared with PACK (the lowest one of the three individual-based rekeying
algorithms), RBR (R; = 4) has a more than 45% reduction upon a single member join
and a more than 20% reduction upon a single member leave. It should be noted that the
queue tree in the QB scheme will be merged to one of the shallowest leave node positions,

5538 C. J. GUO AND Y. M. HUANG
 MersgeTime Cost Join (Simulation Result) Average Member i) a5 Upon Single Member Jain [Simulation Result)
A —PACK ~-TGOH ~=-DST o0 »
12 ~Q8(Risl) ~ QB{RI=Z) OB {Ai=d) § b A 5] g TR Wi, e
g e Y g - v g S)
g * e e e %xm g2 - ——
& 8 ! g - = L ==
E o Eﬁm Tur A
Z 4 e e é L ————— —t——— 4
. B z "
2 s w] - i
—— £ e e - p—
Z 0
p o 00 40 €00 OO 1000 100 1400 1600 0 200 400 600 800 1000 1200 1400 1600 ? O 200 400 600 OO 1000 1300 1400 1600
Awverage Group Size Average Group Size Average Group Size
Average G Member Leave ag; Result)
5000 80
—PACK =TGOH DT s — = =
2 §:: < QB (Riel] QB (Rind) o OB (Rind] =2 B - ;’:‘::--II TacsTala-il - 2‘|m-u
B ‘E 1o | IR DUEIY o RORR2) =B et / ;! P ~+-RER {Ria1) —=-RER (RisZ) ~+RER (Ried]
§ , -;‘-m // //__,. §w e
7 3 w0 o e 2w 4 /
: = = P s = | =
= i) T e iy 00 i 2 Ba| L f s a3
2 i ~ OB (A1) o OB (RZ] - QB (Risd] AE . e £l o ‘_::________._o———______‘
- HBH (=] —— B8R (RisZ) =B8R (Ri=d) 3™ ﬁ{_g_—;-_::_____ —
o o o
o 0 600 B0 1000 1200 1400 1600 o 0 4 B0 1000 1200 1400 1600 O 00 40 B0 BOD 1000 1300 1400 1600
Average Group Size Mrage Group Size Average Group Sae
Ficure 13. Comparison of the rekeying costs among RBR, PACK, TGDH,
DST and QB in simulations
Performance Increase of Our proposed RBR (Ri=4, averagr group size = 200) Performance Increase of Our proposed RBR (Ri=4, averagr group size = 1600)
mQB (Ri=4) WPACK = DST mTGDH ®OB(Ri=4) WPACK mDST mTGDH
89.3% 89.3% 90.5% 92.7%
87.83 % 90
E}.s!s 4.6% sLi% 85.7% 9%
77.3
740
G 53 5% 67.73
57.6% 57.4 7.2%57.6%
31.5% 3
25 396 25 331 T 285
Number of mber of Number of umber of Number of Number of Number of Number of Number of Number of Number of Number of
Rounds {lgin) Rounds (Leave] Multicast (Jain) Multicast Modular Exp. Modular Exp. Rounds (loin) Rounds (Leave] Multicast (Join) Multicast Modular Exp. Modular Exp.
(Leave) {dain) (Leave) (Leave) {Jain) (Leave)
FIGURE 14. Performance increase rates among PACK, TGDH, DST and
QB in simulations
but this position may not be the shallowest position in the whole key tree. This will

lead to an unbalanced key tree and increase the rekeying time cost. Hence, the average

time cost of QB (R; =

1) is the highest of all the schemes and needs to increase R

to reduce the overhead. In contrast to our proposed RBR, the join tree capacity and
Relocation phase can prevent the spread of an unbalanced tree and increase the rekeying
efficiency. Note that the overhead upon a single member join includes the Relocation
and ST-Merge phases. In addition, because the longest-staying members (having higher
leaving probabilities) will be moved to the subtree closest to the root node automatically,
the computation and communication costs will be reduced significantly. At the same
time, because the join tree has a lower capacity and is the closest to the root node,

the computation and communication costs are lower than other schemes.

As shown in

Figure 14, we illustrate the performance increase rate for PACK, TGDH, DST, and QB in
simulations. It should be noted that in the case of a smaller average group size (less than
300 approximately), the overhead of RBR (R; = 4) is slightly higher than QB (R; = 4) in
the average time/communication cost upon a single member leave. However, the average
cost computed as the average for the member join and leave cases is still the lowest one,
and is more efficient, especially for a large average group size.

RESIDENCY-BASED DISTRIBUTED COLLABORATIVE KEY AGREEMENT 5539

6. Security Analysis. In this section, we describe two security requirements as follows.
1) Forward/Backward secrecy: forward/backward secrecy implies that a compromise
of the current key should not compromise any future/earlier key. In our proposed scheme,
as the proofs of TGDH [8], when a member dynamic event occurs, the sponsor who is
elected to deal with the rekeying process will first reselect its secret key. After receiving all
of the blinded keys along his/her co-path, the sponsor computes a corresponding blinded
key with its new secret key, and broadcasts this blinded key along its key-path. Finally,
the new group key can be generated by all of the members and the forward and backward
secrecy can be satisfied. 2) Key confirmation: key confirmation implies that all of the
group members are actually holding the same group key. To achieve that confirmation,
each member needs to reveal some information about its group key to all of the other
members. In previous studies, several methods have been proposed but have suffered
from high broadcast overhead and collusion attack [9,30]. Based on our proposed key
tree topology, we can embed the concept of [9] to confirm the group key within the same
subtree members to improve the above problems, which achieves key confirmation.

7. Conclusions. In this paper, based on the concepts of subtree division and residency
time classification, we proposed four phases, including the Queue-Tree phase, QT-Merge
phase, ST-Merge phase and Relocation phase, to deal with membership dynamic events.
Without predicting the departure time of the leave member, the higher leaving probability
members will automatically be moved to the subtree closest to the root node. Using the
key tree topology of RBR ensures that the join/leave members’ locations are as close as
possible to the key tree root node, which significantly reduces the rekeying cost. Using
both a mathematical analysis and simulation experiment, the performance of RBR was
evaluated and found to achieve lower rekeying costs in terms of time, computation, and
communication than the existing schemes.

REFERENCES

[1] N. Asokan and P. Ginzboorg, Key agreement in ad hoc networks, Computer Communications, vol.23,
no.17, pp.1627-1637, 2000.

[2] W. Diffie and M. Hellman, New directions in cryptography, IEEE Transactions on Information
Theory, vol.22, no.6, pp.644-654, 1976.

[3] C. K. Wong, M. Gouda and S. S. Lam, Secure group communications using key graphs, IEEE/ACM
Transactions on Networking, vol.8, pp.1, pp.16-30, 2000.

[4] A. Perrig, D. Song and J. D. Tygar, ELK, a new protocol for efficient large-group key distribution,
Proc. of IEEE Symp. Security Privacy, pp-247-262, 2001.

[5] H. Harney and C. Muckenhirn, Group key management protocol (GKMP) specification, RFC,
vol.2093, 1997.

[6] P. Judge and M. Ammar, Gothic: A group access control architecture for secure multicast and
anycast, Proc. of IEEE INFOCOM, pp.1547-1556, 2002.

[7] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor and B. Pinkas, Multicast security: A taxonomy
and some efficient constructions, Proc. of IEEE INFOCOM, pp.708-716, 1999.

[8] Y. Kim, A. Perrig and G. Tsudik, Tree-based group key agreement, ACM Transactions on Informa-
tion and System Security, vol.7, no.1, pp.60-96, 2004.

[9] P. C. Lee, C. S. Lui and K. Y. Yan, Distributed collaborative key agreement and authentication
protocols for dynamic peer groups, IEEE Transactions on Networking, vol.14, no.2, pp.263-276,
2006.

[10] Y. Mao, Y. Sun, M. Wu and K. J. Liu, JET: Dynamic join-exit-tree amortization and scheduling for
contributory key management, IEEE Transactions on Networking, vol.14, no.5, pp.1128-1140, 2006.

[11] W. Yu, Y. Sun and K. J. Liu, Optimizing the rekeying cost for contributory group key agreement
schemes, IEEE Transactions on Dependable and Secure Computing, vol.4, no.3, pp.228-242, 2007.

5540 C. J. GUO AND Y. M. HUANG

[12] M. Burmester and Y. Desmedt, A secure and efficient conference key distribution scheme, Proc.
of Workshop Theory and Application of Cryptographic Techniques (EUROCRYPT’94), pp.275-286,
1994.

[13] K. C. Almeroth and M. H. Ammar, Multicast group behavior in the Internet’s multicast backbone
(mbone), IEEE Comm. Magazine, pp.124-129, 1977.

[14] Y. Kim, A. Perrig and G. Tsudik, Group key agreement efficient in communication, IEEE Transac-
tions on Computers, vol.53, no.7, pp.905-921, 2004.

[15] I. Ingemarsson, D. T. Tang and C. K. Wong, A conference on key distribution system, IEEE Trans-
actions on Information Theory, vol.28, no.5, pp.714-720, 1982.

[16] D. G. Steer, L. Strawczynski, W. Diffie and M. Wiener, A secure audio teleconference system, Proc.
of Advances in Cryptology, pp-520-528, 1990.

[17] M. Steiner, G. Tsudik and M. Waidner, Diffie-Hellman key distribution extended to group commu-
nication, Proc. of the 8rd ACM Conf. Computer and Comm. Security, pp.31-37, 1996.

[18] M. Steiner, G. Tsudik and M. Waidner, Key agreement in dynamic peer groups, IEEE Transactions
on Parallel and Distributed Systems, vol.11, no.8, pp.769-780, 2000.

[19] J. Snoeyink, S. Suri and G. Varghese, A lower bound for multicast key distribution, Proc. of INFO-
COM’01, 2001.

[20] M. Rajaram and D. Thilagavathy, An interval based contributory key agreement, Proc. of Interna-
tional Conference on Wireless Communication and Sensor Computing, pp.1-6, 2010.

[21] M. Rajaram and D. Thilagavathy, Authenticated collaborative key agreement for dynamic peer
groups, Proc. of International Conference on Man-Machine Systems, pp.11-13, 2009.

[22] M. Rajaram and D. Thilagavathy, An interval-based contributory key agreement, International Jour-
nal of Network Security, vol.13, no.2, pp.92-97, 2011.

[23] M. Rajaram, D. Thilagavathy and N. K. Devi, Resilient group key agreement protocol with authen-
tication security, Proc. of International Conference on Innovative Computing Technologies, pp.1-6,
2010.

[24] J. Zhang, J. G. Luo, B. Li and S. G. Yang, SIKAS: A scalable distributed key management scheme
for dynamic collaborative groups, Proc. of IEEE International Conference on Multimedia and Ezxpo,
Canada, pp.1205-1208, 2006.

[25] J. Zhang, B. Li, C. X. Chen and P. Tao, EDKAS: A efficient distributed key agreement scheme
using one way function trees for dynamic collaborative groups, Proc. of IMACS Multiconference on
Computational Engineering in Systems Applications, Beijing, pp.1215-1222, 2006.

[26] K. C. Almeroth, A long-term analysis of growth and usage patterns in the multicast backbone
(mbone), Proc. of INFOCOM’00, vol.2, pp.824-833, 2000.

[27] A. Fekete, N. Lynch and A. Shvartsman, Specifying and using a partionable group communication
service, Proc. of the 16th ACM Symp. Principles of Distributed Computing, pp.53-62, 1997.

[28] K. Becker and U. Wille, Communication complexity of group key distribution, Proc. of the 5th ACM
Conf. Computer and Communications Security, pp.-1-6, 1998.

[29] Y. Amir, Y. Kim, C. Rotaru, J. Schultz, J. Stanton and G. Tsudik, On the performance of group
key agreement protocols, ACM Transactions on Information and Systems Security (TISSEC), vol.7,
no.3, pp.1-32, 2004.

[30] M. Just and S. Vaudenay, Authenticated multi-party key agreement, Proc. of Advances in Cryptology
(ASIACRYPT’96), LNCS, vol.1163, pp.36-49, 1996.

RESIDENCY-BASED DISTRIBUTED COLLABORATIVE KEY AGREEMENT 5541

Appendix 1. The upper bound of x5 () + 32 (—) R xﬁg_Q 3+ Ngr, - 2+x-1
shown in Equation (11).
9
(wﬁ2()+ B3 (8) +-- - +abs (§)+---+xﬁg_2-3+NST2-2+x-1>

(2By + B2+ -+ 2BY >+ Nst, +) N

F(wfy + 22+ -+ 288 + Nem,) +(N —z))
= | +@By+ B3+ -+ 2B) < | +@Boa+aBi+ - +a8i7?)

g g

(2B + B3 +xfy 4+ afy) +(@fy + b5 + -+ af5)

N (14)

TN - 2) (30-2)(30-2)
< | +@Be+axfa+ - +ab2) | = 7+2N—x

+ (209 + xPo + - -+ + x33)
= 120 (39—46);(9—4) +2N — 2 < 20, (39:1)9 492N — 7
=N (G0, 4 0) — o <N (2 4 0) = N2 -

Appendix 2. The upper bound of 35 (log xBQ%) + -+ 289 *(logzBJ?) shown in Equa-
tion (11).

g

wBy(10g2B5) + -+ wpy *(logapy ") < (wB2(logxB}) + -+ + afh(logwsy %))
= (w82 (logw +10g 85) + -+ + w8 (log x + log 41 77)) (15)

= (46, (4 — 1) ogw + (2422) 108,))

Appendix 3. The number of members in STs. If the average group member size is N,
and]\/vST1 =T.

Ngr, =N — Ngp, — (Nspy + Nop, + - - + NSTg)
=N-—z— (zb+af;+ - +ap)

=N —z(1+ b+ B2+ 4877 (16)
_ Ba(1— 577
—N—x<1+—1_52)

Appendix 4. Performance evaluation of the Lee et al.’s QB algorithm [9]. To facilitate
the performance analysis, QB can be regarded as a special case of our proposed scheme
where the join tree capacity is unlimited is larger than the average group size N. Because
all member dynamic events are occurred in the join tree (i.e., do not require the main
tree and subtrees), the Relocation and ST-Merge phase are not required. As shown in
Table 4, RI new members join into the queue tree between each adjacent rekeying time
interval (i.e., RI members leave from the join tree simultaneously). Hence, the number
of join tree residual members is N-RI, which needs log(N-RI) rounds for the queue tree
to be immigrated to the join tree and deal with the rekeying process. Consider the
circumstances that during k£ times rekeying time intervals, the total members in the join
tree is equal to x. We evaluate the average rounds and average communication costs for
one join/leave events are as follows:

1
Average Rounds join jicave = — (K — 1) log(N — AR;)) <
T

SHES

(log V) (17)

5542 C. J. GUO AND Y. M. HUANG

AverageCommunicationCost 1o /Leave = 2 (AverageRoundsjom/leave) (18)

During k times rekeying time intervals, the total computation costs for N group members
are 2k(N-RI). Therefore, the computation costs for one join/leave events are as follows:

1 k
TotalComputationCost join fteave = — (2k - (N — AR;)) < 2—N (19)
x T

TABLE 4. Cost analysis for member join/leave events in Lee et al.’s QB algorithm

Time |0 Rj 2R; kR;

Nor |0 ARy AR; AR,

Nyr 10 0 AR5y AR; (1 + B + 5% 4t B{FZ) B
Rounds |0 1 1+logARsf; ... 1+1logAR; (1 +B8 B4+ B{cﬂ) 3,

