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ABSTRACT. This paper deals with the adaptive synchronization of two identical hyper-
chaotic master and slave Chen systems. First, the slave system is assumed to have
four inputs. Using Lyapunov theory, it is shown that the errors between the states of the
master and the slave systems asymptotically converge to zero. Simulation results are pre-
sented to illustrate the ability of the adaptive controller to synchronize the hyperchaotic
systems. Then, an improved adaptive control law is designed with only three control in-
puts in the slave system. Asymptotic convergence of the errors between the states of the
master and the slave systems to zero is theoretically proven and then validated through
numerical simulations. Moreover, the proposed control scheme is applied to encrypt and
decrypt images where computer simulation results are provided to show the efficiency of
the proposed control law.

Keywords: Chaos, Hyperchaotic systems, Synchronization, Adaptive control, Secure
communications

1. Introduction. The control and the synchronization of hyperchaotic systems have
been studied extensively in the past few years [1-21, 26-35]. In 1999, Hsieh et al. [26]
tackled the synchronization problem of two hyperchaotic Rossler systems, where a feed-
back control law with only two control inputs is designed to synchronize two identical
hyperchaotic Rossler systems with known fixed parameters.

In 2008, Yassen [10] used the Lyapunov stability theory to synchronize hyperchaotic
systems. He managed to synchronize two identical Lii systems, two identical Chen systems
and a Chen system with a Lii system. The main drawback of this work is that four control
inputs are needed to synchronize two hyperchaotic systems. In [21], Li et al. investigated
the synchronization of two hyperchaotic Lorenz systems based on the unidirectionally
linear coupled approach. Also, in [21], circuit implementation of the hyperchaotic Lorenz
system is provided.

In 2009, Chen et al. [30] introduced a new hyperchaotic system by adding a nonlinear
feedback controller to the Chen chaotic system. The authors study the dynamics and
behaviors of the proposed system. Also, a nonlinear feedback controller was designed to
achieve hybrid projective synchronization of the proposed new hyperchaotic system. In
[31], Austin et al. designed an adaptive scheme to synchronize two hyperchaotic Chen
unidirectionally coupling and bidirectionally coupling systems with uncertain parameters.

Adaptive control is a technique which is generally used to overcome the uncertainties of
a system by modifying the controller to adapt to the system’s uncertainties. Since most of
the dynamical models of systems in nature contain some uncertainties, many researchers
have used adaptive control in various fields and applications [2-5, 12, 13, 16-31]. A
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difference between an adaptive controller and a robust controller is that the adaptive
controller does not require prior knowledge about the bounds on the uncertainties of the
system, while a robust controller does. For instance, the change of an airplane’s weight
caused by the continuous consumption of fuel, where a robust control might fail because
of the large bound of the change, an adaptive control would generally overcome such
changes.

The adaptive control and the synchronization of hyperchaotic systems were investigated
in [4, 5, 11-13, 16, 27]. In 2005, Lu and Cao [4] studied the adaptive synchronization of
chaotic and hyperchaotic systems. The authors designed controllers to synchronize two
identical Lorenz chaotic systems with uncertainty in the parameters. They presented
three adaptive controllers to drive the three dimensional uncertain Lorenz system to be
synchronized with the first three states of the four dimensional hyperchaotic Chen system.
Then, the authors tackled the adaptive synchronization of the hyperchaotic Chen system
with the hyperchaotic Rossler system when the parameters are totally unknown. The
analytical results presented in [4] are based on the Lyapunov stability theory. The au-
thor showed the effectiveness and robustness of the proposed design against uncertainties
and external disturbances by adding a random noise in the range of [—2, 2] and showing
through simulations that the proposed controller works. Also, Park [5] managed to de-
sign an adaptive control law for the synchronization of two hyperchaotic Chen systems;
the Lyapunov stability theory was used to derive the adaptive control laws. Numerical
simulation results are provided to show the effectiveness of the proposed control laws.

In 2006, Elabbasy et al. [12] discussed the adaptive synchronization of two hyperchaotic
Lii systems, where adaptive control laws are derived to synchronize two hyperchaotic Lii
systems when the parameters are totally unknown and when the parameters of the master
and the slave systems are different.

In 2008, Wu et al. [13] tackled the problem of adaptive synchronization of two differ-
ent hyperchaotic systems with parameter uncertainty, where adaptive control laws are
derived to drive the hyperchaotic Henon-Heiles system to be synchronized with the hy-
perchaotic Chen system. The number of control inputs used (four) is considered to be
the main drawback of this design. In [16], Tao and Liu proposed novel schemes to control
and synchronize chaotic and hyperchaotic systems. They synchronized two hyperchaotic
Chen systems whose parameters are uncertain. Also, based on the Lyapunov stability
theory, Wu et al. [11] designed adaptive control laws to synchronize two non-identical un-
certain hyperchaotic Chen and second-harmonic generation systems. In [27], Wang and
Wang tackled the adaptive synchronization problem of the chaotic Chen system, coupled
dynamos system and the hyperchaotic Rossler system.

In this paper, two adaptive control schemes are proposed. Using Lyapunov theory, it
is shown that the errors between the states of the master and the slave systems converge
asymptotically to zero. Numerical results are presented to reinforce the analytical results.
Moreover, the proposed controllers are used for secure communications purposes; the
simulation results indicate that the proposed controllers enable us the secure transmission
of images.

The paper is organized as follows. A description of the hyperchaotic Chen system
is presented in Section 2. Section 3 presents the design of the adaptive controller to
synchronize two hyperchaotic Chen systems when the number of control inputs is four.
The developed theory is validated through numerical simulations in Section 4. Section
5 presents an improved adaptive controller design based on three control inputs; the
numerical simulations are given in Section 6 to validate the developed theory. Section 7
presents a secure communication scheme based on the hyperchaotic Chen system using
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the adaptive controller designed in Section 5. Finally, some concluding remarks are given
in Section 8.

2. System Description. In 1999, Chen and Ueta [14] created a novel chaotic dynamical
system, called the Chen system, and it is described by the following set of ordinary
differential equations:
&= a(y — )
y=(b—a)x —xz+by (1)
z=u1xy — cz,
where x, y, z are the state variables and (a,b,c) are the system’s parameters. When
a =35, b =28 and ¢ = 3, system (1) exhibits a chaotic behavior as shown in Figure 1.

45

X y

FI1GURE 1. The chaotic attractor for the Chen chaotic system when a = 35,
b=28 and ¢ =3

This system differs from the chaotic Lorenz system in its dynamical behavior and
topological properties. For instance, the Jacobian of the linearized system, A = [a;j]3x3,
of the Lorenz system satisfy the condition ajsas; > 0 while the Jacobian of the Chen
system satisfies the condition ajzas; < 0. In 2002, Chen and Lii [1] created another novel
dynamical system which represents the transition between the Lorenz system and the
Chen system. This new system satisfy the condition aj2a9; = 0.

The hyperchaotic Chen system is generated from the chaotic Chen system and it is
described as follows:

i‘l = a(y1 — 1‘1) + w1

Y1 =dry — 1121 + Yy

L _ (2)

Z1 =21y — bz

wy = Y121 + rwy,
where xy, y1, z1, wy are the state variables and a, b, ¢, d, r are real constants. When
a=35,b=3¢=12,d="7and 0 < r < 0.085, system (2) is chaotic. When a = 35,
b=3,¢=12,d=17,0.085 < r < 0.798, system (2) is hyperchaotic (see Figure 2). When
a=35,b=3,¢=12,d=7,0.798 < r < 0.9, system (2) is periodic (see [15, 16]).

This paper deals with the synchronization of hyperchaotic systems. Therefore, we will
consider system (2) as the master system. We will define the slave system to be the
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40 200

FIGURE 2. The phase portrait of the attractor of the hyperchaotic Chen
system when a =35, b=3,c=12,d=T7and r=0.5

hyperchaotic Chen system with the same parameter as system (2). Therefore, the slave
system is defined as follows:

To = a(ys — x2) + wo + uy

Yo = dxy — Ta2p + CY2 + Us (3)
2.’2 = XY — bZQ + us

wg = Y229 “+ rwsy + Uy,

where xo, 12, 22, wo represent the states of the slave system, and wuq, us, us, uy represent
the controllers. The rest of the paper deals with the design and implementation of control
schemes to synchronize the master system with the slave system. It should be noted that
the parameters a, b, ¢, d and r are assumed to be unknown.

3. The Design of the First Adaptive Control Law. Using systems (2) and (3), we
can define the error system as follows:

éy = aley —ey) + €y +uy

ey = dey — ege, — T1e, — 216y + Cey + Us (4)

€, = —be, + egey + T18y) + Y168 + U3

Cw = €y, + Y16, + 216y + Ty + Uy,
where e, = 29 — 21, €y = Yo — Y1, €, = 22 — 2, and e, = wy — w;. Our objective is to
design the controllers u;, i = 1,4 and update laws such that the controllers u; will drive
the slave system (3) to be synchronized with the master system (2) for different initial
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values despite the fact that the parameters are unknown. Thus forcing the origin of the
error system (4) to be globally asymptotically stable. The first theorem gives the first
result of the paper.

Theorem 3.1. Let o, i = 1,4 be positive scalars, and let the controllers uy, ua, us, Uy
be such that:

U = —€y — ey + (4 — oy)ey

Uy = —deg + €46, + T16, + Z1€p — (¢+ ag)ey (5)
U3 = —ez€e, — T1€y — Y€, + (b — az)e,

Uy = —eye, — Y16, — 216y — (T + ey,

where a, 13, c, d and 7 are the estimates of the parameters a, b, ¢, d and r, respectively,
and which are updated according to the following update laws:

( da
a ex(ey — €z)
db )
a -
e
dd
E = €€y
i,
L % = €y

Then the slave Chen system is synchronized with the master Chen system for any initial
conditions.

Proof: Using the controllers given in (5) into the error system (4), we get

by = —eq(ey —ey) — e,

€y = —€4ey — €.y — 2y (7)
€, = €p€,; — 36,

Cw = —Er€y — XyCy,

where the parameter errors are defined such that e, = a — a, ¢, = b— b, e. = ¢—c,
eqg—=d—dande, =7 —r. _

Note that since the parameters of the system are constants, then ¢, = &, €y = 13, € = é,
éd:ciandér:?.

Let the positive definite function V; = 1(e2 + e+l ten e’ e’ el el +e’)
be a Lyapunov function candidate for system (7). Then, the time derivative of V; along
the trajectories of system (7) and using the update laws given by (6) is such that:

V, = (€2€s + €yy + €,€, + €yly + €€y + ey + el + eqéy + e,6;)
=e,(—eqley —ey) —arey) + ey(—eqe, — ecey — aney)
+ e, (epe, — aze,) + ey (—erey, — auey,) +eq(es(e, —ey)) (8)
+ ep(—€2) + ecle]) + ea(eqey) + e (el)
= — (€l + me) + azel + ayel,).
Define the error vector e such that: e = [e, e, e, e,]". Also, let & = min{ay, g, a3, v}
Then, Equation (8) implies that,
Vi < —afle|l”. (9)
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Inequality (9) implies that Vi is negative semi-definite. Therefore, it can be concluded
that the state and parameters errors are bounded, i.e., [e; e, €, €, €, € €. €4 €;] € L.
Integrating the inequality V; < —a/|e||? from 0 to ¢, we obtain the following:

t t
o [lieliar < [ ~Vidr =vi0) - (9 < Vi(0), (10
0 0
Therefore, it can be concluded that e € Ly and using (7) it can be concluded that é € L.
Hence, using Barbalat’s lemma [19], we can conclude that tlim e = 0. That is, the
—00

error system (4) is stabilized, and hence despite the system’s uncertainties, the designed
adaptive controllers given by Equation (5) with parameter estimation rules given by (6)
are able to drive the slave system (3) to be synchronized with the master system (2) for
any initial conditions.

4. Numerical Simulations. The adaptive controller given by (5)-(6) is used to syn-
chronize systems (2) and (3). In the simulation, the fourth Runge-Kutta method with
step size 0.01 is used. The initial values for the states of the master and slave systems are
taken to be: 21(0) = 1, y1(0) = 2, 2z;(0) = 3, w1(0) =4, 22(0) = 5, y2(0) =6, 22(0) =7
and w9(0) = 8, and the initial values of the parameter estimates are taken to be: a = 0,
b= 0,¢=0, d= 0, # = 0 and the gains o; are chosen such as a; = 1, for i = 1,4. The
adaptive control laws (5)-(6) are activated at ¢ = 5. The state variables of the master and
slave systems versus time are depicted in Figure 3. It is clear that the hyperchaotic slave
system (3) is synchronized with the hyperchaotic master system (2). The estimates a, b,
¢, d and 7 are depicted in Figures 4-8. From these figures we can notice that although the
parameter estimates did not converge to their true values, the two hyperchaotic systems
are synchronized. Also, note that the parameters converge to constant values.

Moreover, one can notice from the previous figures that the convergence is immediate
after the activation of the four controllers.

In the next section, we improve on the results of the previous section by reducing the
number of controllers used to synchronize the two hyperchaotic Chen systems.

Remark 4.1. It is noticed that the values of the estimated parameters do not converge to
the corresponding true values. This is an expected result as the persistence of excitation
condition 1s required for convergence of the estimated parameters to their true values.
Howewver, it should be kept in mind that the objective of the paper is synchronization and
not parameter identification.

5. An Adaptive Control Law with a Reduced Number of Control Inputs. In
this section, we reduce the number of controllers used for the synchronization of the two
identical Chen systems. Let system (2) be the master system and system (3) be the slave
system. Then, the error system can be defined by the error system (4). The following
theorem gives the main result of this section.

Theorem 5.1. Let «;, ©t = 1,3 be positive scalars and let the controllers be such that:

Uy = (4 — oy)ey — eye, — Yae, — €, — Gey

Uy = — (¢ + an)e, — deg + €€, + 226, (11)
0

g = — (7 + az)e, — eye, — yr1e, — 21€y,

<
)
I
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FIGURE 3. The states of the master and slave systems versus time when

the first control law is used
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where a, l;, c, d and 7 are the estimates of the parameters a, b, ¢, d and r, respectively,

and which are updated according to the following update laws:

¢ da
dt
db
dt
dé
dt
dd
dt
df

Cdt

(12)
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FIGURE 4. The estimate a versus time when the first control law is used
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FIGURE 8. The estimate r versus time when the first control law is used

Then, the slave uncertain Chen system s synchronized with the master Chen system for
any initial conditions.

Proof: Using the controllers (11) into the error system (4), we get

€r = —€q€y + €u€y — (1€ — Y1€, — EyE,

€y = —€cCy — (oly — €4y — T1€, (13)
€, = —be, + ezey + 118y + Y164

Cw = —E€rCy — Q3€y,

where the parameter errors are defined such that e, = a — a, e, = b— b, e. = ¢ —c,
eq = d —d and e, = 7 —r. Note that since the parameters of the system are constants,
then é, = a, é, = b, é. = ¢, ¢g = d and é, = 7.

Let the positive definite function V5 = 1(e2 + er+esten+el e’ +e’ +eit+e”)
be a Lyapunov function candidate for system (13). Then, the time derivative of 5 along
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the trajectories of system (13) while using the update laws (12) is given by:

Vo = (€165 + €y€y + €,€, + €4y + a€q + €pp + €cc + €4éq + €:€,)
= ey(—€uey + €4y — 1€y — Y16, — €y€,)
+e,(—ece, — age, — ege, — T1€,)
+e,(—be, + ezey + x1ey + Yr1€5) + €y (—erey, — azey)
+eq(ex(ey, —ex)) + ec(ez) + eqleqe,) + eq(el)
= —(aye2 + 04262 + be? + azel) (14)
Let the error vector e be such: e = [e, e, €, €,]. Also, let v = min{oy, s, a3, b}. Then,
Equation (14) implies that
Vo < —lle|| (15)
Inequality (15) implies that V5 is negative semi definite. Therefore, it can be concluded
that the state and parameters errors are bounded, i.e., [e; e, €, €, €, € €. €4 €;] € L.
Integrating the inequality V5 < —v||e||? from 0 to ¢, we obtain the following:
t t
v [ lielfar < [ =Vadr = 1500) = att) < Va(0) (16
0 0
Therefore, it can be concluded that e € Ly and using (13) we have é € L. Hence, using
Barbalat’s lemma [19], we can conclude that tlim e = 0. That is, the error system (4) is

—00
stabilized and hence despite the system’s uncertainties, the designed adaptive controllers
given by Equation (11) with parameter estimation rules given by (12) are able to drive the
slave system (3) to be synchronized with the master system (2) for any initial conditions.

6. Numerical Simulations for the Improved Controllers. The adaptive control law
given by (11)-(12) is used to synchronize the hyperchaotic Chen systems (2) and (3). The
fourth Runge-Kutta method with step size 0.01 is used. The initial conditions are the
same as the ones in Section 4. The initial values of the parameter estimates are chosen as
a =0, b= 0,¢=0, d= 0, # = 0 and the gains o; are chosen such as o; = 1, for i = 1, 3.
The control law is activated at ¢ = 5 sec. The state variables of the master and slave
systems versus time are depicted in Figure 9. The estimates of the parameters versus
time are depicted in Figures 10-14. The simulation results indicate that the adaptive
control given by (11)-(12) is able to synchronize the hyperchaotic slave system (3) with
the hyperchaotic master system (2). Moreover, the figures indicate that the estimates a, l;,
¢, d and 7 converge to constant values. Note that these constant values are different from
the true values of the parameters. Also, note that even though the number of controllers
has changed from four to three, the performance of the controlled system hardly changed.
Hence, it can be concluded that the adaptive controller (11)-(12) is more useful than the
controller (5)-(6).

7. A Secure Communication Scheme Based on the Hyperchaotic Chen System.
In this section, we introduce a secure communication scheme based on the hyperchaotic
Chen system using an adaptive synchronization controller. This secure communication
scheme is used to send text messages and to encrypt images.

Recall that the hyperchaotic Chen system is defined as follows:

1.‘1 = a(y1 — 1‘1) + w1
1 =dry — 221 + iy
Z1 =11y — bz

u')1 = Y121 + rw;.

(17)



ADAPTIVE SYNCHRONIZATION 1137

25

20

15 [ -

10

15|

—20 L L

25 T

20 H

15 -

10

—-10- / |

—20 |-

—25 L L L

40 T

35| ) )
30 H i

25

|
|
I
20 A
I
|
is |

! np i
10 \ ) |

150

100

50

—50

—100

—150

—200 L L L L L L L L L

FIGURE 9. The states of the master and slave systems versus time when
the second control law is used



1138

N. SMAOUI, A. KAROUMA AND M. ZRIBI

12

14

16

18

20

12

14

16

18

20

FIGURE 11. The estimate b versus time when the second control law is used

400

350

300

250

200

150

100

50

12

14

16

18

20

FIGURE 12. The estimate ¢ versus time when the second control law is used



ADAPTIVE SYNCHRONIZATION 1139

350 - A

300 - *

250 - *

200 - *

150 *

100 *

Is) ! ! ! ! ! ! ! ! !
(o] 2 4 6 8 10 12 14 16 18 20
t

FIGURE 13. The estimate d versus time when the second control law is used

9000

8000 [~ -

7000 - -

6000 - -

5000 - -

4000 -

3000 - -

2000 - -

1000 —

FIGURE 14. The estimate 7 versus time when the second control law is used

Figure 15 depicts the block diagram of a secure communication scheme based on the
hyperchaotic Chen system using an adaptive synchronization control method. The mes-
sage Am(t), where § is a scaling factor, is sent by inserting it to the y;(¢) o.d.e. of the
hyperchaotic master Chen system denoted as system (A). The states x1(t), yi(t), z1(t)
and wy (t) are sent through a public channel. At the receiver side, we use an adaptive
synchronization controller to synchronize the master and the slave system and then re-
cover the message. In the following scheme analysis, we consider a noise-free channel, i.e.,
Ty =T1, i = Y1, 21 = 21 and W = wy.

7.1. Scheme analysis. In this section, we will show that the signal sent from the trans-
mitter and the signal received by the receiver will be synchronized. Therefore, the master
hyperchaotic Chen system (A) will be synchronized with the slave hyperchaotic Chen
system (B) by using the designed adaptive control laws.
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The hyperchaotic Chen system (A) is defined as follows:

.',i,’l = CL(yl — fIIl) + w1

1 =dxy —x121 +cyr — D
Z1 = mz1y1 — bz

Wy = Y121 + rws,

(18)

where x1, y1, 21 and w; are the state variables of the hyperchaotic Chen system (A) with
the parameters a, b, ¢, d and r. The message D = fm/(t) is considered to be an external
disturbance and f is a scaling factor used to reduce signal to noise ration (SNR). Similarly,
the hyperchaotic Chen system (B) at the receiver side is defined as follows:

Ty = a(y2 — x2) + wa + uy
Yo = dxy — Tozo + CY2 + U

. 19
Z9 = I2Yo — bZQ + us ( )
Wy = Yoo + TWo + U,
where U = [u; uy w3 uy] is the controller.
Define the error system by subtracting system (18) from system (19). We obtain
éy = ale, —eg) + e +uy
€y = dey — e, — Tae, + eze, +cey + D+ us (20)

€, = Taey + Yoy — €yey — be, + us
Cw = 226y + Y€, — €yey + Tey + Uy,

where e, = 29 — 21, €y = Y2 — Y1, €, = 22 — 21 and e,, = Wy — Wy.
The hyperchaotic Chen system (A) will be synchronized with the hyperchaotic Chen
system (B) if the zero fixed point of the error system (20) is globally asymptotically stable.
An adaptive control law which is motivated by the control scheme presented in Theorem
5.1 is used to synchronize the two hyperchaotic Chen systems for secure communication
purposes.

Theorem 7.1. Let the control laws be such that:
u = (0 — Ki)ey — eye, — yoe, — €, — aey
uy = —(¢+ Ky)e, — de, + eye, + 206,
uz = —Kse,
g = — (7 + Ky)ey, — eye, — y1e, — 216y,

(21)

where a, l;, c, cz, 7 are the estimates of the parameters a, b, ¢, d and r, respectively, and
which are updated according to the following rules:

(da

at = ew(ey — €z)
db
~—0
dt
dc 9
dd
a = €€y
dr 9
\ % = Cw

with K; (i = 1,4) being positive gain parameters. Then, the slave hyperchaotic Chen
system (19) will be synchronized with the master hyperchaotic Chen system (18) for any
initial conditions.
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Proof: (Similar to the proof of Theorem 5.1).

Remark 7.1. It should be noted that the controllers used in (22) reduce to the one in
(11) when K3 = 0.

Since we are using adaptive synchronization, the designed controllers can overcome the
external disturbance D = fm(t) and synchronize the two hyperchaotic systems. Then, a
noisy version of the message can be recovered from the error system e, = yo — y;. Using
a filter and a threshold detector, the transmitted message can be completely retrieved.

7.2. Numerical results. The above mentioned secure communication scheme is used to
transmit an encrypted image. Let the message to be transmitted be an image of the Eiffel
tower as shown in Figure 16. Black and white images are n X m matrices of binary bits

1
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FiGure 15. The block diagram of a secure communication scheme based
on the hyperchaotic Chen system and the adaptive synchronization control
method
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and colored images are three dimensional arrays [28]. Hence, to send a black and white
image using the proposed transmission scheme, we need to re-dimension the image to
become a binary sequence and re-scale the binary sequence to become pulses with period
T = 1. Hence,

th lse — 1 if the bit is 1Vt € [ty, to + T
eputse =199 if the bit is 0 V¢ € [to, to + T

Next, the binary sequence is transmitted by considering it as a disturbance acting on
the second o.d.e. of the hyperchaotic master Chen system (18). Figure 17 depicts the
encrypted image where the state y;(¢) is taken from the output of the public channel and
re-dimensioned to be an n x m array. Figure 17 clearly shows that the image has been
completely hidden by the encryption process.

At the receiver side, we can recover the message by using the adaptive synchronization
control scheme (21)-(22). Then, we retrieve the image by re-dimensioning the recovered
binary sequence back to become an n x m matrix. Figure 18 shows the retrieved Eiffel
image.

Figures 19-21 present another image transmitted and retrieved using the proposed
scheme. Therefore, it can be concluded that the proposed synchronization scheme works
well as it is successfully used to securely transmit and retrieve different images.

8. Conclusions. The adaptive synchronization of two hyperchaotic master and slave
Chen systems is tackled in this paper. Two adaptive control schemes are proposed. Using
these control schemes, it is shown that the errors between the states of the master and the
slave systems asymptotically converge to zero. Simulation results are presented to illus-
trate and reinforce the ability of the adaptive controller to synchronize the hyperchaotic
systems. In addition, the proposed control scheme is applied to securely transmit images
where computer simulation results were provided to show the efficiency of the proposed
controller.

Future research will address the problem of using other control techniques to synchro-
nize hyperchaotic systems.
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