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Abstract. The Hidden Markov Model (HMM) is widely used in pattern recognition
areas such as speech and speaker recognition, handwritten recognition, gesture recogni-
tion. In this paper, we present a reliability-weighted HMM (RW-HMM) approach con-
sidering inexact observation. We introduce a weighting factor – confidence measures of
observations – in HMM target function and we derive a training algorithm based on the
traditional EM algorithm for optimizing a modified HMM target function. To verify the
effectiveness of our proposed method, we performed speaker identification (SI) experi-
ments using the ETRI and YOHO databases. The experimental results show that our
proposed approach significantly outperforms the conventional approaches particularly to
deal with the noisy environments.
Keywords: Observation reliability, Hidden Markov model, EM algorithm, Speaker iden-
tification

1. Introduction. Signal observation with high precision is very important in signal pro-
cessing and pattern recognition. In real applications, however, it is inevitable to expe-
rience corrupted signals. In general, signals are distorted by additive noises, channel
characteristics or audio and video codecs. Thus, distorted signal observations degrade
the recognizer’s performance. There have been a number of approaches to cope with the
problem of corrupted observations. Nevertheless, devising a solution to such an issue still
remains an open research area.

The conventional approaches, specially applied in the pattern recognition field, can
be grouped into three main categories: robust feature extraction (RFE) [1-9], model
adaptation (MA) [10-16] and missing feature approach (MFA) [17-21]. In speech signal
processing, cepstral mean subtraction (CMS) [1,3] and RASTA filtering [4] are the rep-
resentative methods of RFE. Further, MA methods, known as speaker adaptation, are
successfully applied in the speech recognition area [11,15]. MFAs are basically based on
partial spectrographic information, where the two basic approaches termed as feature-
vector imputation and marginalization are adopted in literature. The later approaches
have achieved remarkable performance enhancements; nonetheless, the state-of-the-art
approaches still have some limitations for application in mobile environment.
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First, the previous approaches focus or deal with the problem of corrupted signals
in the recognition phase under the assumption that the training signals are free from
any signal distortions. Nevertheless, due to the flood of mobile devices in our society,
the recognition developers currently face the abundance of distorted signals. Thus, it is
necessary to develop training tools to treat the distorted signals in the training stage.
Second, even though RFE, MA and MFA are applied, there are still uncertainties

about the features and recognition process. That is, speech features obtained via the
CMS process are still affected by environmental noises.
Third, according to [21], MFA achieved the best performance enhancement. In spite

of the successful results, MFA is hard to be adopted, as the implementation process is
comparatively complex.
Thus, we need a novel and simple algorithm, which could cope with the corrupted signal

problem in training and service phases. Recently, a promising modified algorithm based
on observation confidence has been developed in GMM training and applied to speaker
identification [22], which leads to a new dimension in research to conquer the mismatch
condition problem in pattern recognition.
On the other hand, for modeling time series data, the Hidden Markov Model (HMM)

[23-26] is an ever-present tool, which is broadly used in speech signal processing, computa-
tional molecular biology and other areas of artificial intelligence and pattern recognition.
There are different research approaches that have focused on the structure of HMM for
enhancing classification performance [23,24]. In the traditional HMM training, the ob-
servation vectors are treated evenly considering that the observations are free from any
kind of uncertainty or inexactness due to signal distortion. In state-of-the-art research,
some approaches have been focused on the uncertainty of observation in HMM aspect for
robust pattern recognition [28-31]. Nevertheless, dealing with the uncertain observation
is still a key area of research, particularly in HMM based pattern recognition domain.
Specifically, during the likelihood calculation in HMM training, the uncertain observation
should be considered based on the degree of uncertainty.
In this paper, we propose a reliability-weighted HMM as an extension of the commonly

used classical HMM by introducing a weighting factor in the HMM target function. The
weighting factors could be interpreted as the reliability values of the features obtained
from distorted observations. We define a modified HMM object function and derive a
training algorithm based on EM algorithm, and consequently the decoding algorithm
is modified based on the reliability. Our proposed method does not change the basic
structure of HMM, but it enhances performance by suppressing the contributions of ob-
servations with a comparatively high degree of corruption in probability calculation. To
verify the performance of our proposal, the modified approach, RW-HMM, is applied to
the subject of both text-dependent and text-independent speaker identification with the
observation confidence, defined as a function of signal-to-noise ratio (SNR). We evaluate
the proposed method using the ETRI and YOHO databases constructed for testing SI
systems.

2. The Reliability-Weighted Hidden Markov Model (RW-HMM).

2.1. Motivation and definition of a modified object function. Generally, signals
are corrupted by noises in signal capture environments and distorted while being trans-
mitted through channels. So, a captured signal X(t) at time t can be expressed as
X(t) = h(t) ∗ u(t) + η(t), where u(t) is a pure input signal, h(t) is the channel or convo-
lutional noise and η(t) is the additive noise signal at time t, respectively. The additive
noises could be of different types and different magnitudes at the respective environment
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such as the environment with babble noises (BN) or factory noises (FN). In a pattern
recognition domain, it is typically assumed that the training database is a set of clean
signals. Undoubtedly, we can get a clean database in many applications. However, with
the advent of mobile and internet applications, the need for processing corrupted database
as a training DB increases. Thus, it is required to train pattern recognition systems with
corrupted data.

Let us assume that we have a function for measuring the uncertainty or inexactness
of observed signals. The output of measure’s function is termed as the reliability of the
observed signals. Let us define ρt as the reliability of the tth observation. The reliability
ρt can be regarded as a fuzzy membership function of the observation, which satisfies
the condition that 0 ≤ ρt ≤ 1. Then each observation should be controlled to have con-
tribution depending on the corresponding reliability value in training (or modeling) and
recognition processes. Now let us consider the simple problem of weighted sample mean
and variance with a data set [x1, x2, · · ·, xn] and non-negative weights [w1, w2, · · ·, wn]. The
weighted mean x̄ and variance σ̄ are calculated as follows [35]:

x̄ =
w1x1 + w2x2 + · · ·+ wnxn

w1 + w2 + · · ·+ wn

σ̄ =
w1(x1 − x̄)2 + w2(x2 − x̄)2 + · · ·+ wn(xn − x̄)2

w1 + w2 + · · ·+ wn

Therefore, the data elements with a high weight contribute more to the weighted mean
comparing the data elements with a low weight imposing a constraint that the weights
cannot be negative. In pattern recognition domain, the weight can be considered as the
degree of data importance or each item’s population. The weighted mean is used, for
example, to aggregate a set of scores (e.g., examination scores on different subjects) to
a single resultant score. In our approach the observation reliability is considered as the
degree of data importance. Typically, the observations with high reliability values have
high weight values. Considering our reliability condition we can interpret the reliability
values as the weights without any modification.

By the way we can obtain the equations of the weighted sample mean and variance for
the random variable with Gaussian probability density function by a simple modification
of maximum likelihood estimation (MLE). For Gaussian case the following theorem is
satisfied.

Theorem 2.1. Let {Xt} = [X1, X2, · · ·, XT ] be T observations, coming from Gaussian
distribution, and {ρt} = [ρ1, ρ2, · · ·, ρT ], be corresponding weights (or reliability values).
Then the weighted observation mean µ̄X and variance σ̄X are obtained by maximizing the
modified conditional probability, i.e.,

maxθ P̃ (X|µ̄X , σ̄X) = maxθ ΠtP
ρt
t (Xt|µ̄X , σ̄X),

where P (Xt) =
1

σX

√
2π

e
− 1

2

(
Xt−µ̄X

σ

)2

. The process is ML estimation for mean and vari-

ance.

Proof: The likelihood function of the parameters are given by

L(x1, x2, · · ·, xT |µ̄X , σ̄X) = ΠtP
ρt
t (Xt|µ̄X , σ̄X) = Πt

[(
1

σX

√
2π

e
− 1

2

(
Xt−µ̄X

σ̄X

)2
)ρt]

.

By applying log to the likelihood we obtain the log-likelihood function of

λ = ln(L) = −T

2

∑T

t=1
ρtln(2π)− Tρt ln σ̄X − 1

2

∑T

t=1

(
Xt − µ̄X

σ̄X

)2

ρt.
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The log-likelihood function is maximized with the parameters of µ̄X and σ̄X as follows.

d(λ)

dµ̄X

=
1

σ̄2
X

∑T

t=1
(Xt − µ̄X)ρt = 0,

and
d(λ)

dσ̄X

= − T

σ̄X

∑T

t=1
ρt +

1

σ̄3
X

∑T

t=1
(Xt − µ̄X)

2ρt = 0.

Solving the above equations, we get the following expression for mean µ̄X and variance
σ̄X

µ̄X =

∑T
t=1 ρtXt∑T
t=1 ρt

,

and

σ̄X =

√∑T
t=1(Xt − µ̄X)2ρt

T
∑T

t=1 ρt
.

In Theorem 2.1, the maximization is done for the cost function of ΠtP
ρt
t (Xt|µ, σ) instead

of ΠtPt(Xt|µ, σ). That is, the observation probability of Pt is modified into P ρt
t . Thus we

can conclude that the contribution of the tth observation with the reliability ρt could be
controlled by introducing weighted probability of P ρt

t and thus statistically for modified
MLE it is seen that the observations with low reliability values have low influences in the
maximization process.
Now, let us consider the problem of applying the reliability function to HMM training.

Before deriving the proposed algorithm, we define some notations for the HMM and RW-
HMM as shown in Table 1.
HMM is defined as λ = (A,B, π), where A = [aij] is the state transition matrix, π = [πj]

is the vector of initial probabilities, and B = [bjm] = [µjm,
∑

jm, cjm] is the emission matrix

or the set of NS output distribution mixtures [26]. The probability density function of
continuous observation is a mixture of the form bj(ot) as described in Equation (1).

bj(ot) =
∑M

m=1
gjmφ

(
ot;µjm,

∑
jm

)
, 1 ≤ j ≤ N (1)

In Equation (1), the standard stochastic restraints are applied, such that the conditions
in the set of Equation (2) are fulfilled.

gjm ≥ 0, 1 ≤ j ≤ S, 1 ≤ m ≤ M ;
∑M

m=1
gjm = 1, 1 ≤ j ≤ N (2)

In general, the kernel function φ is a Gaussian density. For an observation sequence
with a length of T , the object function for calculating the probability of the observations
is represented as in Equation (3).

Lλ(O) =
∑

s
aq0Π

T
t=1aqt−1qta{bqt(ot)} (3)

The object function in Equation (3) tells us that each observation is treated equally
without any consideration of its reliability. It is because, in the classical HMM training,
the observation vectors are considered to be clean or free of distortion. Now, let us
assume that each observation has a different reliability value. Then, we can introduce
the reliability for calculating Equation (3) as explained above. The object function in
Equation (3) is thus modified as in Equation (4).

L̃λ(O) =
∑

s
aq0Π

T
t=1aqt−1qta{bqt(ot)}ρt (4)
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Table 1. Notations for HMM and RW-HMM

S = {s1, s2, · · ·.sN}. Set of states of a hidden Markov model.
N . Number of states.
M . Number of clusters within a state.
O = (o1, o2, · · ·, oT ). A sequence of external observations.
ot. A variable representing the external observations at time t.
T . The number of time steps in the sequence.
q = (q1, q2, · · ·, qT ). A sequence of internal states.
qt. A variable representing the internal state at time t.
λ = (A,B, π). A hidden Markov model as defined by its A, B and π matrices.
aij. State transition probability from i to j state for a model λ.
A = {aij}. The N ×N matrix of transition probabilities.
bj(ot) = Pλ(ot|qt = j).
πi = Pλ(q1 = i). Initial state probability for model λ.
π = {πi}. The vector of initial state probabilities.
mt. Variable identifying the cluster index of the cluster that occurred at time t.
m = (m1,m2, · · ·,mt). A sequence of cluster indexes, one per time step.
gjk = Pλ(mt = k|qt = j). Emission probability (gain) of kth cluster by state sj.
φ(.). A kernel function (e.g., Gaussian) to model the probability density of a cluster.
µik. The centroids or prototype of the kth cluster of ith state.∑

ik. The covariance matrix of the kth cluster of ith state.
αt(i) = Pλ(o1, o2, · · ·, oT |qt = i). The forward variable for the sequence o at time t for
state i.
βt(i) = Pλ(ot+1, · · ·, oT |qt = i). The backward variable for the sequence o at time t for
state i.
∼. Indicates that a factor with the tilde (∼) is modified so that the observation
reliability is considered.
ρ = (ρ1, ρ2, · · ·, ρT ). A sequence of observation reliability values.
ρt. The observation reliability of tth observation.

In Equation (4), the probabilities are weighted by the corresponding reliability values.
So, we can term the HMM model of Equation (4) as the reliability-weighted HMM. Equa-
tion (4) could be interpreted as a soft or partial marginalization of observation probability
in the aspect of missing feature theory. Also, we can consider Equation (4) as a hybrid
likelihood formulation with fuzzy-membership-based weighting. Therefore, the RW-HMM
model presented has the same structure as the conventional HMM, λ = (A,B, π). How-
ever, at the training stage of HMM, we need two input features, i.e., (O, ρ). With the
definition of the RW-HMM object function, we need to modify the HMM training proce-
dure to optimize Equation (4). We will describe the proposed overall training procedure
in the next Subsection 2.2.

2.2. The training algorithm for RW-HMM. First, let us calculate the modified
posterior likelihood L̃λ(O) of Equation (4) with the consideration of the observation con-
fidence ρt. The next goal is to maximize L̃λ(O) over all the parameters of HMM, λ. In
the following, we briefly describe the procedure to inductively re-estimate the parameters
so that a monotonic increase in the likelihood is achieved.

To implement the re-estimation equations, we need to evaluate L̃λ(O) as well as the
posterior probabilities, based on the current model parameters of λ, each of the states
j = 1, . . ., N at each time t = 1, . . ., T . The re-estimation method was developed by means
of simple forward and backward induction. This inductive calculation was discussed in the
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contexts of [25] and [26]. The same inductive calculation is used for driving the modified
training method.

2.2.1. Inductive calculation of posterior probabilities. Let’s begin by decomposing L̃λ(O)
by states at an arbitrary time t, i.e.,

L̃λ(O) =
∑N

j=1
L̃λ(O, qt = j),

identically in t. Then, the summand can be written as

L̃λ(O, qt = j) = L̃λ(o1, · · ·, ot, qt = j).L̃λ(ot+1, · · ·, oT |o1, · · ·, ot, qt = j).

The conditional likelihood of ot+1, · · ·, oT given that qt = j is independent of o1, · · ·, ot.
So, we have

L̃λ(O, qt = j) = α̃t(j)β̃t(j),

where α̃t(j) = L̃λ(o1, · · ·, ot, qt = j) and β̃t(j) = L̃λ(ot+1, · · ·, oT |qt = j). Moreover,

α̃t(j) =
∑N

i=1 L̃λ(o1, · · ·, ot, qt = j, qt−1 = i), and

L̃λ(o1, · · ·, ot, qt = j, qt−1 = i) = α̃t−1(i){bj(ot)}ρ
t

aij.

Therefore,

α̃t(j) =
∑N

i=1
α̃t−1(i)aij{bj(ot)}ρ

t

(5)

and

β̃t(j) =
∑N

k=1
β̃t+1(k)ajk{bk(ot+1)}ρt , with β̃T (j) , 1, j = 1, · · ·, N (6)

Based on these functions in Equations (5) and (6), the re-estimation will be performed.

2.2.2. The training algorithm based on EM algorithm. In an EM algorithm, the auxiliary
function Q̃(λ, λ̄) of current parameters of λ and new parameters of λ̄ is defined by

Q̃(λ, λ̄) =
∑

q

∑
m
P̃λ(qm|O) log P̃λ̄(qmO),

where the summand is the overall possible q-m sequences of high level and low level hidden
states. Also, q and m are the state and mixture indices, respectively. Since we have

P̃λ̄(qmO) = π̄q1

(
ḡq1m1φ

(
o1, µ̄q1m1 ,

∑
q1m1

))ρ1
, · · ·,

aqT−1qT

(
ḡqTmT

φ
(
oT , µ̄qTmT

,
∑

qTmT

))ρT
,

The following Equation (7) is obtained.

Q̃(λ, λ̄) =
∑

q

∑
m P̃λ(qm|O) log π̄q1

+
∑T−1

t=1

∑
q

∑
m

P̃λ(qm|O) log āqtqt+1

+
∑T

t=1

∑
q

∑
m ρtP̃λ(qm|O) log ḡqtmt

+
∑T

t=1

∑
q

∑
m P̃λ(qm|O)ρt log φ(ot, µ̄qtmt ,

∑
qtmt

)

(7)

In the above expression, the first two terms are independent of m and are simplified as
follows: ∑

q

∑
m
P̃λ(qm|O) log π̄q1 =

∑
q
P̃λ(q|O) log π̄q1 (8)∑T−1

t=1

∑
q

∑
m
P̃λ(qm|O) log āqtqt+1 =

∑T−1

t=1

∑
q
P̃λ(q|O) log āqtqt+1 (9)
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The part of Q̃(.), depending on cluster gains, can be transformed as∑T
t=1

∑
q

∑
m ρtP̃λ(qm|O) log ḡqtmt

=
∑T

t=1

∑S
i=1

∑M
k=1

∑
q

∑
m ρtP̃λ(qm|O) log ḡqtmtδ(i, qt)δ(j,mt)

=
∑T

t=1

∑S
i=1

∑M
k=1 ρtP̃λ(qt = i,mt = k|O) log ḡqtmt

(10)

Thus, the part of Q̃(.) that depends on ḡqtmt is of the form of wj log xj with xj = ḡik
and with

∑
xj = 1 and xj ≥ 0, with a maximum achieved for

xj =
wj∑
wj

(11)

Thus,

ḡik =

∑T
t=1 ρtP̃λ(qt = i,mt = k|O)∑T

t=1

∑M
k=1 ρtP̃λ(qt = i,mt = k|O)

=

∑T
t=1 ρtP̃λ(qt = i,mt = k|O)∑T

t=1 ρtP̃λ(qt = i|O)
(12)

Also, the term of Q̃(.), depending on the cluster centroids and variances, can be re-
written as∑T

t=1

∑
q

∑
m P̃λ(qm|O)ρt log φ

(
ot, µ̄qtmt ,

∑
qtmt

)
=

∑T
t=1

∑N
i=1

∑M
k=1

∑
q

∑
m P̃λ(qm|O)ρt log φ

(
ot, µ̄qtmt ,

∑
qtmt

)
δ(i, qt)δ(j,mt)

=
∑T

t=1

∑N
i=1

∑M
k=1

∑
m P̃λ(qt = i,mt = k|O)ρt log φ

(
ot, µ̄qtmt ,

∑
qtmt

) (13)

In the M-step, the parameters of π̄i, āij, µ̄ikn and σ̄2
ikn are obtained by setting the

derivatives of the auxiliary function Q̃(λ, λ̄) about π̄i, āij, µ̄ikn and σ̄2
ikn, to zero.

∂Q̃(λ, λ̄)

∂π̄i

= 0,
∂Q̃(λ, λ̄)

∂āij
= 0,

∂Q̃(λ, λ̄)

∂µ̄ikn

= 0, and
∂Q̃(λ, λ̄)

∂
∑2

ikn

= 0

A derivative process similar to the one done in the original HMM is needed, so we
can skip the process [25]. Summarizing the E-M optimization rules for the case of RW-
HMM with Gaussian densities having diagonal covariance matrices, we get the following
equations:

π̄i = P̃λ(q1 = j|O) (14)

āij =

∑T−1
t=1 P̃λ(qt = i, qt+1 = j|O)∑T−1

t=1 P̃λ(qt = i|O)
(15)

ḡik =

∑T
t=1 P̃λ(qt = i,mt = k|O)∑T

t=1 P̃λ(qt = i|O)
(16)

µ̄ikn =

∑T
t=1 P̃λ(qt = i,mt = k|O)ρtot∑T
t=1 P̃λ(qt = i,mt = k|O)ρt

(17)

σ̄2
ikn =

∑T
t=1 P̃λ(qt = i,mt = k|O)ρt(otn − µ̄ikn)

2∑T
t=1 P̃λ(qt = i,mt = k|O)ρt

(18)

where t = 1, . . ., T indices the time within a training sequence, i = 1, . . ., N and j =
1, . . ., N indices the hidden state, k = 1, . . .,M indices the cluster embedded within a
state, and n = 1, . . ., P indices the dimension of the continuous vector of observations.
The three terms of P̃λ(qt = i,mt = k|O), P̃λ(qt = j|O) and P̃λ(qt = i, qt+1 = j|O) are
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obtained from the forward-backward algorithm in accordance with the following equations:

P̃λ(qt = i,mt = k|O) = P̃λ(qt = j|O)
ḡikφ(ot, µik,

∑
ik)

bj(ot)
(19)

P̃λ(qt = j|O) =
α̃t(j)β̃t(j)∑
i α̃t(i)β̃t(i)

(20)

P̃λ(qt = i, qt+1 = j|O) = α̃t(i)aijβ̃t+1(j)[bj(ot)]
ρt (21)

Thus, during the HMM model creation through EM optimization, the contribution of
highly uncertain observation gets suppressed depending on its reliability value.

2.3. The RW-HMM decoder. Now, we will calculate the probability P (O|λ) with
the inclusion of the proposed reliability weighing to observation. We know already that
q = [q1, q2, · · ·, qt, · · ·, qT ] represents any general state sequence. The forward variable α̃t(j)
is defined as:

α̃t(j) = P (o1, o2, · · ·, ot, qt = j|λ), (22)

which is the probability of the partial observation sequence from time 1 to time t and
state qj at time t, given the model λ, respectively. The following recursive routine is used
to give a solution for αt(i):

a) Initialization of α1(j) for each of the N states, which is the joint probability of the
observation o1 and the model being in the state j at time t = 1:

α1(j) = πjbj(o1)
ρ1 , 1 ≤ j ≤ N (23)

b) The recursive step:

αt+1(j) =
(∑N

i=1
αt(i)aij

)
{bj(ot+1)}ρt+1 , 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (24)

c) The termination step finds the probability P (O|λ), which can be achieved by calculat-
ing the termination forward variables:

αT (j) = P (o1, o2, · · ·, ot, · · ·, oT , qt = j|λ) (25)

d) and summing up these over the S possible termination states, gives:

P (O|λ) =
∑N

j=1
αT (j) (26)

3. Validation of RW-HMM in Speaker Identification Domain. To validate the
effectiveness of RW-HMM, we apply this proposed method to the text-dependent and
text-independent SI. In this section, we describe the implemented SI system and the
experimental results.

3.1. Overview of the speaker identification system. The schematic diagram of the
entire speaker identification process is shown in Figure 1. In the diagram, the solid line
indicates the baseline speaker identification of a classical HMM algorithm, while including
the dotted line represents the modified speaker identification process adopting RW-HMM.
The training and testing procedures are as follows:

I. Pre-processing: We have applied a simple energy-based VAD [31] in our system. As
a result, only those speech parts are taken for feature extraction, the energy of which
is higher than the average energy of five segments at the initial silent region.
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II. Feature extraction: Mel-cepstrum analysis is performed and cepstral mean subtrac-
tion (CMS) is applied to mimic the channel noise to obtain robust features. For all of
the experiments, we have taken seventeen mel-cepstrum features and also included
the zero’s order cepstral co-efficient and log-energy per frame, and thus obtained the
audio features vector of dimension nineteen.

III. Reliability calculation: First, the segmental SNR is calculated, and it is then trans-
formed into the observation reliability value using the designated sigmoid function.

IV. HMM model training: Using the RW-HMM training algorithm, the HMM models
are trained for each speaker.

V. SI testing: Using the trained RW-HMM based speaker models and RW-HMM de-
coder, the probability calculation is performed. The speaker identity (ID) having
the maximum probability is, hence, selected as the identified speaker.

Figure 1. Schematic diagram of the RW-HMM based speaker identifica-
tion system

Figure 2. Observation reliability based on sigmoid function (a = 0.35, b = 8.5)

In our experiments, as shown in Figure 1, the reliability ρt is calculated from the signal-
to-noise ratio (SNR). That means, ρt = f(SNR). The function f(.) must satisfy the fuzzy
membership conditions. We apply a simple sigmoid function as the transformation from
SNR to reliability as follows:

ρt =
1

1 + e−a(SNRt−b)
(27)
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where a is the scaling parameter, b is the shift parameter in dB, and SNRt is the estimated
SNR of tth observation. Figure 2 shows an example of f(.) with the parameters a = 0.35
and b = 8.5.
First, we need to calculate the segmental SNR from the noisy speech and thereafter,

using Equation (27), the value of observation reliability is calculated with the predefined
values of parameters a and b. However, the predefined values of a and b might not be
picked to maximize the performance of SI.
To optimize the parameters of a and b, we set an object function using the identification

rate as in Equation (28).

IR(a, b) =

∑K
k=1

∑Lk

l=1 δ (argMaxm(Pm(Okl)), k)∑K
k=1 Lk

(28)

where IR means identification rate, δ(i, j) is the delta function, Okl is the lth speech
feature vector of the kth speaker, and Pm is the observation probability of the given
feature sequence for the mth speaker. The parameter argMaxmPm is the index of the
speaker with the maximum probability and Pm is defined by Equation (26). Optimizing
Equation (28) is not a linear problem. Thus, the particle swarm optimization (PSO)
approach is adopted [32]. It is expected that the optimized parameter obtained by PSO
will enhance the performance of speaker identification.

3.2. The experiments and results. To evaluate the proposed method based-SI-system
shown in Figure 1, we have used ETRI and YOHO database. The ETRI speech database
was constructed by ETRI (Electronics and Telecommunication Research Institute, South
Korea) for SI system evaluation. The ETRI DB was developed for text dependent speaker
recognition in mobile environments. The DB contains the speeches of 49 speakers and
20 utterances per speech. The speech DB has the quality of 8 bit µ-law PCM and 8
kHz sampling. Further, the utterances were recorded in noise free environments. Each
speaker’s utterances are partitioned into three data sets (DS): G1 (1-10) for training, G2
(11-15) for membership function training and G3 (16-20) for testing the SI performances.
For text independent speaker identification, we have used the publicly available YOHO
database. The utterances (1-10) denoted by S1 from session 1 are used for training stage,
whereas utterances (1-5) termed as S4 from session 4 are employed in the test stage.
There are different kinds of noises such as white, car, factory noise (FN) and babble

noise (BN). As we have previously mentioned, the purpose of the SI experiments is to
show the effectiveness of the proposed RW-HMM. For convenience sake, we test the RW-
HMM approach with white noises at first with ETRI DB. To do so, white Gaussian noises
are added to the training and testing utterances as follows:

X(t) = u(t) + αη(t), (29)

where X(t) is the digitized noisy speech signal sample at time t, u(t) is the clean speech
signal sample and η(t) is the noise signal at the respective time t. α is a gain controlling
parameter of the depending on the degree of signal-to-noise ratio.
In addition, to validate our RW-HMM in real environment conditions, we have merged

the real noises, i.e., NOISEX-92 [36] with the YOHO clean speech database. In our
NOISEX-92 based experiments, we projected different values of α to give different degree
of signal-to-noise ratios in dB. We have randomly chosen the initial frame of the real
noises as of limited duration of each of the real noises in comparison with the YOHO
speech database.
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The estimated segmental SNR is simply calculated by Equation (30).

SNR(t) = 10 log
σ̂2
X(t)− σ̂2

η

σ̂2
η

, (30)

where σ̂2
X(t) is the noisy speech signal power over time frame t and σ̂2

η is the noise power
obtained from a silence region, i.e., the average noise power of initial five segments [29].

In applying RW-HMM to the SI domain, we can consider two different noise environ-
ments as follows:

Case I: Training and testing environments have the same degrees of signal-to-noise
ratios. That is, the noise level at the training stage is equal to that at the testing stage. In
this case, all the added noises are white Gaussian noises while the ETRI DB is involved.

Case II: Training and testing environments are different from each other. Also, in
training DB, the utterances have variable SNRs. For this case, we have chosen both the
white Gaussian noises and real noises (NOISEX-92) with the ETRI DB and YOHO DB
respectively. In the experiments with the YOHO DB, we compare the proposed approach
with the conventional HMM and frame-selection approach [33,34]. The frame selection
approach is one of the noise-robust recognition methods, which are based on the binary
decision of input observations. The FS approach can be considered as a marginalization
method applied to whole feature vectors.

3.2.1. Case I. For Case I, we have performed the experiments with respective SNRs of 30,
20 and 10 dB. Table 2 and Table 3 show the performances of the classical HMM termed
as baseline HMM (BHMM) and the proposed RW-HMM, respectively.

As observed in Table 2, the identification performances are not severely degraded when
the noise environments of training and testing stages are the same. According to Table
3, RW-HMM has enhanced the identification performance by 2 ∼ 4%.

To make a rule for the values of the parameters ‘a’ and ‘b’, we performed more exper-
iments for various SNR cases. From the experiments, we get the curves of a and b with
the average SNRs. Figure 3 and Figure 4 show the values of the parameters ‘a’ and ‘b’. In
the following identification experiments, we estimate the values of ‘a’ and ‘b’ using Figure
3 and Figure 4.

Table 2. ETRI DB based SI performances with BHMM

Average SNR of DS for BHMM Average SNR of
Test DS SI rate (%)

Training DS (dB) training Test DS
30 G1 30 G3 93.88
20 G1 20 G3 93.84
10 G1 10 G3 91.84

Table 3. ETRI DB based SI performances with RW-HMM

Training Optimized

Testing DS SI rate (%)
Average SNR for DS for DS for parameters of
training and RW-HMM membership membership

testing DS (dB) training function function
optimization a2 b2

30 G1 G2 0.83 19.4 G3 97.96
20 G1 G2 0.81 13.5 G3 95.92
10 G1 G2 0.55 1.3 G3 93.88
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Figure 3. Graphical views of the values of ‘a’ of the sigmoid function
w.r.t. average SNR

Figure 4. Graphical views of the values of ‘b’ of the sigmoid function w.r.t.
average SNR

3.2.2. Case II. In Case II, the training utterances have various SNRs from 12dB to 30dB
and the testing utterances have 4dB of average SNR. Table 4 shows the SI performances
of the baseline HMM (BHMM) for Case II.

Table 4. ETRI DB based experimental results with BHMM training

Average SNR for Dataset for the Train DS for SNR for
Test DS SI rate (%)

Training DS (dB) added SNR BHMM training Test DS (dB)
30 1-3

G1 04 G3 46.94
20 4-6
16 7-8
12 9-10

As shown in Table 4, the testing environments are quite different from the training
environments, and the training environments are very dynamic due to the different noise
levels. Adopting the BHMM, the identification rate is significantly reduced to 46.94%
with because of the mismatch of training and testing environments. Table 5 shows the
experimental results based on the proposed method, RW-HMM.
Comparing the SI rate of Table 5 with that of Table 4, we observe that the RW-

HMM performance was greatly enhanced from 46.94% to 81.63% by introducing an SNR
estimation method, despite of the observation uncertainty.
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Table 5. ETRI DB based experimental results of RW-HMM for the mis-
match condition

Average SNR for Dataset for Train DS for average SNR to
Test DS SI rate (%)

training DS (dB) the added SNRBHMM training test DS (dB)
30 1-3

G1 04 G3 81.63
20 4-6
16 7-8
12 9-10

The following Tables 6 and 7, show the performance comparisons of Baseline HMM
(BHMM), frame selection based BHMM (BHMM + FS) [33,34] and RW-HMM with
YOHO database. In the experiments, the same type of noise environment and different
types of noise environments are merged with the YOHO clean speech, respectively. In the
experiments, the parameters values of the membership function are taken with approx-
imation fit from Figure 4 and Figure 5 as of the respective degree of average SNR. We
have simply selected the reliable frame based on the degree of segmental reliability, i.e.,
the segmental SNR value in dB. In frame selection approach, we have adopted the overall
average SNR as the threshold value to accept or reject the segment of speech features. In
the reliable frame selection method, only those segments are accepted as a reliable frame,
which has higher SNR than the threshold SNR in dB. In this process, on average, about
25% to 35% frames are treated as unreliable segments in respect to different degrees of
threshold SNR.

Table 6. YOHO DB based experimental results of BHMM, BHMM + FS
and RW-HMM with the same real noise type in the train and test stages
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S1 Factory2 11.72 – S4 Factory2 4.72 – BHMM 40.57
S1 Factory2 11.72 11.72 S4 Factory2 4.72 4.72 BHMM + FS 50.72
S1 Factory2 11.72 – S4 Factory2 4.72 – RW-HMM 73.18
S1 Babble 13.26 – S4 Babble 6.14 – BHMM 34.78
S1 Babble 13.26 13.26 S4 Babble 6.14 6.14 BHMM + FS 41.30
S1 Babble 13.26 – S4 Babble 6.14 – RW-HMM 65.94

From Table 6 to Table 7, it is seen that the speaker identification performances in
percentage of the classical HMM (BHMM) and classical HMMwith reliable frame selection
approach (BHMM + FS) are respectively, 40.57, 34.78, 38.41, and 19.59; 50.72, 41.30,
40.58, and 42.75, whereas in respect to those environmental conditions, the RW-HMM
performances are 73.18, 65.94, 64.49, and 59.42, respectively. Eventually, Figure 5 shows
the performance comparisons of the different approaches graphically based on YOHO DB.
From the experimental result, it can be concluded that the proposed approach outperforms
the conventional HMM and FS-based HMM under real environment and thus validate the
RW-HMM.
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Table 7. YOHO DB based experimental results of BHMM, BHMM + FS
and RW-HMM experimental results of RW-HMM with different real noise
type in the train and test stages
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S1 Factory2 11.72 – S4 Babble 6.14 – BHMM 38.41
S1 Factory2 11.72 11.72 S4 Babble 6.14 6.14 BHMM + FS 40.57
S1 Factory2 11.72 – S4 Babble 6.14 – RW-HMM 64.49
S1 Babble 13.26 – S4 Factory2 4.72 – BHMM 19.59
S1 Babble 13.26 13.26 S4 Factory2 4.72 4.72 BHMM + FS 42.75
S1 Babble 13.26 – S4 Factory2 4.72 – RW-HMM 59.42

(a) (b)

Figure 5. Speaker identification performances using YOHO DB: (a) with
same real noises in the train and test stages, (b) with different real noises
in the train and test stages

3.3. Discussion. From Table 2 through 5 and Table 6 through 7, it is evident that RW-
HMM enhances the performance of the SI system regardless of the consistency of training
and testing environments. As a result, we can conclude that RW-HMM is a very useful
modification or an extension of the classical HMM, even though the validation domain is
very specific. However, to adopt the RW-HMM in diverse pattern recognition problems,
a proper reliability function should be defined so that the reliability can be calculated
from observations. In this paper, we have used the SNR-derived reliability function and
adopted a sigmoid function as the transformation because SNR is one of the appropriate
information for measuring the degree of noise distortion. Fitting or making universality of
the OMF parameters in the sigmoid function in signal-to-noise ratio and defining reliability
functions, however, remain to be an open research problem. Especially, in the pattern
recognition problems defined on image or video information, the main source of quality
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degradation is illumination changes. Therefore, to apply RW-HMM to image processing,
a reliability measure adequate to an application domain should be defined. All in all,
through the SI experimental results, we can confirm that the proposed RW-HMM has
been successfully working in the pattern recognition field.

4. Conclusion. In this study, we proposed the reliability-weighted HMM considering
inexact observation. We defined a modified object function by introducing the factor of
observation confidence. For the proposed RW-HMM modeling, we suggested the training
algorithm based on an EM approach. The effectiveness of the proposed scheme was
confirmed in the speaker identification task domain. The experimental results showed
that the designed RW-HMM could be one of the most promising solution approaches
to the diverse field of pattern recognition problem with inexact observation, where the
classical HMM currently plays an important role. The current developed approach has
two limitations: defining a proper reliability function to deal with the diverse pattern
recognition problems and making universality of the OMF parameters in the sigmoid
function. In future work, we intend to implement the RW-HMM in speech processing
domains including speech recognition, multi-modal speaker recognition and lip reading. In
particular, we need to devise adequate reliability functions to specific application domains
and to develop universal OMF parameters in the sigmoid function.
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