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Abstract. In this paper, we investigate the utility of correlation and eigenanalysis mod-
els for analyzing the performance of frequency modulation (FM) system formed by com-
bining phase-locked loop (PLL) and amplitude-locked loop (ALL) models using the Least-
Mean-Square (LMS) algorithm in the presence of co-channel interferences (CCI) and
additive white Gaussian noise (AWGN). The ALL system demonstrates various inter-
ferences to carrier ratio (ICR) characteristics using the power spectral density (PSD)
and can be used as a digital receiver for monitoring systems and signal intercepted ap-
plications. These numerically evaluated statistical performances of the cross-correlation
algorithm are proposed to characterize the properties and variations of correlation. The
results are based on explicit closed-form expressions, which we derive for the eigenvalues
distribution of autocorrelated matrices. Finally, we present simulation results to demon-
strate separation of the original signals using a good match eigenvalue spread. The sys-
tem provides a form of secure communication in unfavorable conditions, such as when
the transmitted signal is not easily detected or discriminated by unnecessary listeners of
the system. The system is also strictly associated with digital communication security
technology and improved channel capacity of multiple access (MA) systems.
Keywords: ALL, PLL, LMS, CCI, PSD, Correlation, Eigenanalysis, MA

1. Introduction. In mobile communication systems, CCI is a major interference, be-
cause reusing frequencies can increase system capacity. As a method of efficiently sup-
pressing in-band interference, a novel separation algorithm is proposed for canceling CCI
in communication systems using an ALL system. Unfortunately, we found that the dom-
inat signal cannot be perfectly separated using the demodulator of a traditional low-pass
filter (LPF) when the signals are transmitted with low signal-to-noise ratio (SNR) in the
ALL system.

A new co-channel separation algorithm, utilizing digital signal processing (DSP) tech-
niques incorporating PLL and ALL algorithms, has been developed for FM system in order
to improve the SNR of the FM demodulator. Here, the ALL algorithm is used to separate
the dominant and subdominant signals from each other. This combined algorithm allows
us to suppress multi-channel with reduced computational complexity. However, the ALL
system was used in environments dominant by additive noise. In this study, we combined
the ALL system with an adaptive LMS algorithm to demonstrate successful separation of
signals with AWGN. Adaptive filters are widely used in a variety of applications, includ-
ing noise cancellation, spectral estimation, and linear prediction filtering. It is generally
implemented in the time domain in a tapped-delay-line (TDL) form. The optimal solution
is to recursively calculate using the Windrow-Hoff adaptive LMS algorithm [1]. However,
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conventional adaptive control theory can only deal with systems with known dynamic
structures but not for unknown (constant or slowly-varying) parameters [2].
One important parameter of a multiple-input–multiple-output (MIMO) channel model

is the correlation between the channels, which can result from factors such as spatial or
polarization properties [3]. The influence of these parameters on MIMO capacity (or bit
error rate) was studied using the correlation characteristics of a channel matrix, position
of a mobile terminal, reciprocal coupling between transmitter or receiver antennas, mean
effective gains (MEGs) of single antenna elements, and radiation efficiency of an antenna
structure [4]. Aside from using well-known cross-correlation-based criteria, such as the
multi-channel cross-correlation (MCCC), this synchrony can also be surveyed using the
averaged magnitude difference function (AMDF) and averaged magnitude sum function
(AMSF), which reflect the lowest calculated cost [5].
A simple and realistic autocorrelation model, based on experimental data, was proposed

by Gudmundson, in which the spatial correlation of the shadowing effects is exponentially
decayed with an increase in separation distance between any two positions. The variation
in shadowing effects is generally modeled as a Gaussian-Markov stochastic process [6].
Using this model, the correlated channel matrix of the point-to-point MIMO channel can
be conveyed in terms of the separable variance profile, which relies on the eigenvalues of
the correlation matrices [7]. The LMS algorithm used for updating parameters is strongly
determined by the eigenvalue spread of the correlation matrix. It has been argued that in
order to improve the convergence, a new parameterization has to be used such that the
corresponding correlation matrix has better conditioned and well decoupled properties
[8]. We also observed that the correlation and eigenanalysis models provided the general
solutions for the FM system formed with the combined PLL and ALL models using the
LMS algorithm identification application.
In this context, the main contributions of this paper can be summarized as follows:

1) The LMS algorithm, combined with the PLL and ALL systems, can be used to sepa-
rate two FM signals with the same carrier frequency and suppress the distortion caused
by AWGN channel interference; 2) In this paper, we use DSP analysis to simulate and
analyze the performance of the separation system. The adaptive finite-impulse response
(FIR) filter and LMS algorithm can be used to suppress the environmental interference
and obtain better performance than tradition filters, such as the Butterworth filter or
the Chebyshev filter; 3) Based on a recent correlation result, the error value calculation
problem is transformed into a non-linear programming problem, which can be used to
efficiently calculate the minimum mean square error (MMSE) for finite DSP systems; 4)
Furthermore, the eigenanalysis of the autocorrelation matrix of this channel model is an-
alyzed based on a direct-detected nonzero mean signal. We discuss how the properties of
this signal affect the eigenvalues of the signal when compared with the zero mean additive
noise input common in communications applications.
Figure 1 illustrates discrete PLL and ALL separation systems analyzed using correlation

results and eigenanalysis of the autocorrelation matrix. Figure 1 shows two signals input
into the FM system in CCI with AWGN, which are subsequently separated with the PLL
and ALL system using the LMS algorithm. The dominant and subdominant signals from
the receiver are recovered by the combined ALL system, and the distortion terms are
removed by the LMS filter. We adopt the steepest descent theory to find the optimal
weight coefficients of the adaptive FIR filter system for the MMSE value. In the MMSE
criterion, the minimum MSE value can be found using an iteration procedure. First,
we use eigenanalysis to analyze and classify the cross-correlation techniques. However,
the numerical and simulation results show that two signals can adequately characterize
the spatial correlation properties of the total CCI. In communication systems, however,
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two signal transmission formats are seldom used. Therefore, the transmitted signal has
non-zero mean, and square-law devices at the receiver introduces non-central and signal-
dependent noise into the received signal at the input of the equalizer. In this paper,
we provide eigenanalysis of the input autocorrelation matrix when the input is a direct-
detected nonzero mean signal. We also consider how the characteristics of the signal would
influence the eigenanalysis of the autocorrelation matrix of this channel model. This study
is focused on eigenanalysis of the channel matrix, which resolves the MMSE. Finally, we
present results which demonstrate that the original signals have been separated using a
good match eigenvalue spread. Additionally, the proposed system also has the advantage
of being a secure communication system.

Figure 1. The discrete separation system analyzed using correlation re-
sults and eigenanalysis of the autocorrelation matrix

The remainder of this paper is structured as follows. Section 2 describes the mathemat-
ical theory of the adaptive filter model, correlation techniques obtained using time delay
estimation, and the autocorrelation coefficient. Section 3 reviews the novel separation
system for simulating FM signal separation in an AWGN channel. Section 4 presents an
eigenanalysis for the autocorrelation matrix of an input with signal-dependent noise as a
function of the eigenvalues of a noiseless input autocorrelation matrix. Section 5 evalu-
ates the performance of the proposed methods with numerical examples and simulations.
Section 6 concludes the paper.

2. Related Work. The correlation figures for the transmitter and receiver took into
account the combined effects of spatial correlation and low-SNR. The empirical eigenvalue
distribution for the channel covariance matrix is derived and used to calculate the MMSE
filtering capacity [9]. In this paper, it is shown that the performance of environmental
interference suppression is greatly compromised by correlation.

2.1. LMS algorithm. In this section, we develop the theory of a widely used algorithm
which is called the LMS algorithm. The LMS algorithm is an important member of the
family of stochastic gradient algorithms. The LMS filter block is estimated using filter
weights, or coefficients, needed to convert an input signal into a desired signal. Moreover,
the algorithm does not require measurements of the pertinent correlation functions, nor
does it require matrix inversion. Indeed, it is the simplicity of the LMS algorithm that has
made it the standard against which other adaptive filter algorithms are benchmarked. The
LMS algorithm is a stochastic adaptive filter algorithm, and it seeks to find the minimum
point of the error surface by following a zig-zag path to find the MMSE and improve
the system performance [10]. FIR digital filter synthesis can be established by employing
adaptive modeling techniques [11]. This algorithm is a linear adaptive filtering algorithm
that consists of filtering, and adaptive two basic processes. The two combined processes
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work together to create a feedback loop around the LMS algorithm. If a suitable step-size
parameter µ is chosen, then the tap-weight vector computed using the steepest-descent
algorithm would converge to the optimum Wiener solution [12]:

y(n) = ŴH(n)x(n) (1)

e(n) = d(n)− y(n) (2)

Ŵ (n+ 1) = Ŵ (n) + µx(n)e∗(n) (3)

where y(n) is the output of the ALL system, and Ŵ (n) is the current estimate of the
tap-weight vector. The desired response d(n) is supplied for processing, alongside the
tap-input vector x(n). Equation (1) and Equation (2) are defined as the estimation error
e(n). µ is the step size, which governs the rate of convergence and ensures stability of the
adaptive process. The value of µ can be constrained to satisfy the condition

0 < µ <
1

λmax

(4)

where λmax is the maximum eigenvalue of R = E
[
x(n)xT (n)

]
. Nest, the estimate of the

gradient vector ∇J(n) can be computed as:

∇J(n) = −2p(n) + 2RŴ (n) (5)

where p(n) is the cross-correlation vector.

2.2. Cross-correlation functions. Let us consider two stationary, zero mean signals,
d0(n) and d1(n), with a time duration T . The cross-correlation functions of these signals
are

R01(τ) =
1

T

T∫
0

d0(n)d1(n+ τ)dn (6)

R10(τ) =
1

T

T∫
0

d1(n)d0(n+ τ)dn (7)

The normalized version is defined as

ρ01 =
R01(τ)√

R00(0)R11(0)
(8)

where R00(τ) and R11(τ) are autocorrelation functions of d0(n) and d1(n), respectively.
For any τ , the relationship −1 ≤ ρ01(τ) ≤ +1 is satisfied. For this study, we use the
discrete definition of this function:

ρ01(τ) =

N−1∑
i=1

d0(r + i)d1(r + i+ τ)√
N−1∑
j=0

[d0(r + j)]2
N−1∑
k=0

[d1(r + k + τ)]2

(9)

whereN is the window length over which the correlation is calculated. If random processes
d0(n) and d1(n) are each stationary and jointly stationary, then the correlation matrix
can be written as

R(τ) =

[
R00(τ) R01(τ)
R10(τ) R11(τ)

]
(10)

In this system, correlations obey the following symmetry relationship:

R01(τ) = R10(−τ) (11)
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2.3. Autocorrelation matrix. The main objective is to calculate the error between the
desired responses, d0(n) and d1(n), and the filter estimation outputs, y0(n) and y1(n),
respectively. From Equation (24), we can assume that S0(n) = cosω0n, S1(n) = cosω1n,
cosωdn, and cosωnn are uncorrelated with each other. The total expectations values of
E [cos 2ω0n] and E [cos 2ω1n] are assumed to be zero. The corresponding parameters for
the dominant signal can be written as follows:

E[d20(n)] = E[cos2(ω0n)] =
1

2
(12)

The autocorrelation matrix can be written as

R0 =
[
d0(n) dH0 (n)

]
=

 1 +m4

2
0

0
1 +m4

2

 (13)

Assuming that the directional components and ambient noise are uncorrelated, R0 can be
written as

R0 = A0P0A
H
0 +K0 (14)

In this equation, P0 is the cross-spectrum matrix and A0 denotes the gain. The matrix
K0 is the spatial correlation matrix of the ambient noise, which is defined as K0 =
E
[
n0(n)n

H
0 (n)

]
. The cross-correlation matrix can be shown as

P0 =

 −1

2

−E [cos (ω0n) cos (ω0(n− 1))]

 (15)

The derivation of the optimal tap-weight vector can be obtained by solving the Wiener-
Hopf equation. The optimal weight is given by

Wo0 = R−1
0 P0 =


1

1 +m4

2E [cos (ω0n) cos (ω0(n− 1))]

1 +m4

 (16)

Using Equation (12), Equation (13), Equation (15), and Equation (16), we can derive
the minimum mean square error value is calculated as follows

ξmin 0 = E
[
d20(n)

]
− PH

0 R−1
0 P0 =

1

2
− 1 + 4E {[cos (ω0n) cos (ω0(n− 1))]}2

2(1 +m4)
(17)

Secondly, subdominant signal separation in an AWGN channel can also be derived, and
has a minimum mean square error value of

ξmin 1 = E[d21(n)]− PH
1 R−1

1 P1 = −2 {E [cos (ω1n) cos (ω1(n− 1))]}2 (18)

3. Main Results. A new separation algorithm utilizing a DSP technique using PLL and
ALL algorithms in FM system has been developed in order to improve the SNR of FM
demodulators. The ALL algorithm can be used to separate dominant and subdominant
signals from each other. Furthermore, we can reduce the computational complexity and
suppress AWGN interference using this algorithm. In order to decrease the effects of
AWGN channel interference, we use an adaptive filter to track time-varying range signals.
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3.1. The model of signal/noise. In radio communication systems, CCI occurs when
two or more FM signals strike a radio antenna with nearly the same carrier amplitude and
mutually overlapping frequencies [13]. Briefly, CCI occurs when there are two or more
simultaneous transmissions on a single channel. If the transmitted FM signals operate at
the same carrier frequency, CCI occurs in the transmission channel. For convenience, we
adopt to analyze the FM separation system using the following FM scheme:

y(t) = y0(t) +my1(t)

= Ac cos [2πfct+ θ0(t)] +mAc cos [2πfct+ θ1(t)]

= l(t) cosφ(t)

(19)

where

θi(t) = 2πkf

∫ t

0

mi(τ)dτ i = 0, 1 (20)

Parameters Ac, fc, m, kf , and m(τ) are the amplitude of the carrier signal, carrier fre-
quency, interference to carrier ratio, frequency deviation constant, and modulation signal,
respectively. This composite signal passes through an ideal band-pass filter (BPF) and
wideband noise naturally becomes the narrow band noise. Band-limited noise can be
calculated in terms of the in-phase and quadrature components and represented as

n(t) = nI(t) cos(2πfct)− nQ(t) sin(2πfct) (21)

where nI(t) and nQ(t) are the in-phase and quadrature noise components of n(t), respec-
tively. Equivalently, we can express n(t) in terms of its envelope and phase as

n(t) = nn(t) cos [2πfct+ ϕ(t)] (22)

where nn(t) =
√
n2
I(t) + n2

Q(t) and φn(t) = tan−1 nQ(t)

nI(t)
.

The mathematical representation of two modulated co-channel FM signals under an
AWGN channel can be described as

yn(t) = l(t) cosφ(t) + nn(t) cos [2πfct+ ϕn(t)]

= Y (t) cosφ2(t)
(23)

In this paper, the signals are mixed with the co-channel transmitter, and we considered
the co-channel as the one with AWGN interference. To recover the original signals, the
PLL system can be used to demodulate the transmission signals. Figure 2 shows the
modulator and demodulator for FM signals formed with the combined PLL and ALL
models using the LMS algorithm.

3.2. PLL model. The PLL is a negative feedback system, the operation of which is
closely linked to FM system. The method can track the differential phase between the
transmission signals, and the value of the phase error is notably small. Therefore, we use
the PLL model to demodulate mixed signals, where the output of the PLL can be written
as:

fPLL(t) =
1 +m cosωdt

1 + 2m cosωdt+m2
S0(t) +

m2 +m cosωdt

1 + 2m cosωdt+m2
S1(t) (24)

ωdt = Θ1(t)−Θ0(t) (25)

Si(t) = kf · si(t), i = 0, 1 (26)

S0(t) is the dominant signal, S1(t) is the subdominant signal, kf is the frequency deviation

constant, Si(t) is the ith modulating signal, Θi(t) = 2πkf
∫ t

0
mi(τ)dτ i = 0, 1 and m is

the interference to carrier ratio.
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Figure 2. The discrete time separation model with AWGN

We suppose that the transmission signals are transmitted with AWGN interference.
Such phenomena as the Rician spikes, cross modulation distortion, and high noise inter-
ference can be found in the receiver. An ALL system can be used to eliminate channel
interference in order to separate the CCI signals from the PLL system.

3.3. ALL models. The ALL is a system of high gain, high bandwidth servo-loops. When
this output is multiplied by the PLL output, the ALL can be achieve a perfect dominant
signal. The resulting system can be used to demodulate the dominant signal and suppress
the subdominant signal. The ALL functions are defined as

fALL (t) =
1−m′2

1 +m′ cosωdt
(27)

fALL−1 (t) =
−m′2 −m′ cosωdt

1 +m′ cosωdt
(28)

fALL−2 (t) =
−1− 2m′ cosωdt−m′2

1 +m′ cosωdt
(29)

The relationship between nonlinear parameter m′ and linear parameter m in practical
ALL circuit is defined as:

m′ =
2m

1 +m2
(30)

The simulated PLL output was found to contain Rician spikes. Although the proposed
ALL algorithm can be used to cancel these spikes in the receiver, in an AWGN channel,
the signal separation performance will be affected. An adaptive filter is provided to track
the time-varying interference signal and compare the estimated signal with the desired
signal. The PLL output is multiplied by a DC shift of the ALL function, which can be
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written as:

fPLL(t)× fALL−2(t) = − 1 + α(t) cosωnt

1 + 2α(t) cosωnt+ α2(t)
S0(t)

+
1 + α(t) cosωnt

1 + 2α(t) cosωnt+ α2(t)
fALL−1(t)S1(t)

(31)

The subdominant signal is derived as follows:

fPLL(t)× f−(ALL−1)(t) = − 1 + α(t) cosωnt

1 + 2α(t) cosωnt+ α2(t)

fALL−1(t)

fALL−2(t)
S0(t)

+
1 + α(t) cosωnt

1 + 2α(t) cosωnt+ α2(t)

f−(ALL−1)(t)fALL−1(t)

fALL−2(t)
S1(t)

(32)

To simply the analysis and simulation, we use a DSP model to transform the contin-
uous time signal into a discrete signal. The mathematical theory of the DSP separation
algorithm is described in this section. A FIR adaptive filter is proposed for detecting vari-
ations in dominant and subdominant signals. Numerical analysis can be calculated either
in the continuous or discrete time domain. It is assumed that the dominant and subdomi-
nant signals pass through an analogue/digital (A/D) converter [14,15]. The discrete time
mathematical representation of the PLL output is defined as follows:

fPLL(n) = [1− α(n) cosωnn] fPLL1(n) + [1− α(n) cosωnn] fPLL2(n) (33)

fPLL1(n) = [1−m cos (ωnn)]S0(n) (34)

fPLL2(n) = [m cos (ωnn)]S1(n) (35)

ωn: The instantaneous frequency of the noise phase and transmission phase. An algorithm
is proposed that can be used to separate the mixed signals and eliminated the channel
interference effects. Using DSP analysis, we can apply a z-transform to analyze Equation
(33), which can be rewritten as

fPLL(z) =
∞∑
n=0

[
1 +m cos($dn)

1 + 2m cos($dn) +m2
β$0 cos($0n)

+
m2 +m cos($dn)

1 + 2m cos($dn) +m2
β$1 cos($1n)

]
· z−n

(36)

fPLL(z) =
∞∑
k=0

{
β$0(−m)k

2

[
1− cos($0 − k$d)z

−1

1− 2 cos($0 − k$d)z−1 + z−2

+
1− cos($0 + k$d)z

−1

1− 2 cos($0 + k$d)z−1 + z−2

]}
+

∞∑
i=1

{
(−1)i+1β$1m

i

2

[
1− cos($1 − i$d)z

−1

1− 2 cos($1 − i$d)z−1 + z−2

+
1− cos($1 + i$d)z

−1

1− 2 cos($1 + i$d)z−1 + z−2

]}
(37)
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In the ALL algorithm, these aforementioned equations can be rewritten as

fALL−1(m
′) = −

[
m′2 + (1−m′2)

∞∑
n=1

(−1)n+1m′n cosn θ

]
(38)

f−(ALL−1)(m
′) =

[
m′2 + (1−m′2)

∞∑
n=1

(−1)n+1m′n cosn θ

]
(39)

fALL−2(m
′) = −1−m cos θ −

∞∑
n=2

m′n cosn−2 θ(1− cos2 θ) (40)

Using DSP analysis, we can apply a z-transform to analyze Equations (39) and (40),
which can be rewritten as

f−(ALL−1)(z) =

{
m′2

1− z−1
+ (1−m′2)

[
m′(1− cosωdz

−1)

1− 2 cos$dz−1 + z−2

− m′2

2

(
1

1− z−1
+

1− cos$dz
−1

1− 2 cos$dz−1 + z−2

)
+

m′3

4

[
3(1− cosωdz

−1)

1− 2 cosωdz−1 + z−2
+

1− cos 3ωdz
−1

1− 2 cos 3ωdz−1 + z−2

]]
· · ·

} (41)

and

fALL−2(z) =
−1

1− z−1
−m′ 1− cosωdz

−1

1− 2 cosωdz−1 + z−2

− 1

2
·
[

1

(1− z−1)
− 1− cos 2ωdz

−1

1− 2 cosωdz−1 + z−2

]
·
[

m′2

1− z−1
+

m′3(1− cosωdz
−1)

1− 2 cosωdz−1 + z−2

+
m′4

2

(
1

1 + z−1
+

1− cosωdz
−1

1− 2 cosωdz−1 + z−2

)
· · ·

]
(42)

A DSP infinite-impulse response (IIR) filter can be designed using the coefficients of
this equation. However, the separated signals at the ALL output exhibit noise distortion.
In order to remove this noise, we adopt the LMS filter algorithm to search for the optimal
and most stable value of the system [16].

4. Eigenanalysis of Autocorrelation Matrix. The autocorrelation matrix of the in-
put characterizes the behavior of the MMSE in terms of their misadjustment and con-
vergence characteristics when gradient optimization is used. In this analysis, we are
concerned with the performance deviation of the adaptive algorithm in the presence of
noise, as well as signal. The notation used in the analysis is discrete because, despite using
a digital filter, both its tapped delay line implementation structure and the sampling rate
determine the behavior of the adaptive algorithm used.

4.1. Autocorrelation matrix in the presence of signal dependence noise. It has
been shown that signal-dependent noise interference cancellation corresponds to autocor-
relation matrix methods for solving a set of nonlinear equations [17]. Based on aforemen-
tioned system model, the set of equations to be solved can be written as

u(n) = d(n) + n(n) + v(n) (43)
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where d(n) is the noiseless input, n(n) is the additive noise component, and v(n) is the
signal dependent noise component. v(n) is defined as g(d(n))h(n(n)), where g(·) and h(·)
indicate two functions.
The two autocorrelation matrices R̃ = E

{
u(n)u(n)T

}
and R̃0 = E

{
D(n)D(n)T

}
are

noisy and noiseless input vectors. The sample vectors are defined such that they include
the last M samples, e.g., D(n) = [d(n), d(n− 1), · · · , d(n−M + 1)]T

R̃ = γR̃0 + αI + βZZT (44)

where Z is an M × 1 vector of all Zs, and γ, α, and β are coefficients dependent on
the signal and noise components. We assume that n(n) is independent and identically
distributed (i.i.d.). Three cases that can be delineated using Equation (44) are defined as
follows:
The noiseless signal d(n) is i.i.d. In this case, R̃0 is a diagonal matrix, and g(d(n)) and

h(n(n)) can be of any form. The coefficients in Equation (44) for this case are

γ = 1

α = σ2
n + 2µh(γdg − µdµg) + 2µg(γnh − µnµh) + µ2

hσ
2
g + µ2

gσ
2
h + σ2

gσ
2
h

β = µ2
n + 2µdµn + 2µhµdµg + 2µgµnµh + µ2

hµ
2
g

(45)

where µd, µn, µg, µh, γdg, and γnh are the expectation values of d(n), n(n), g(d(n)),
h(n(n)), d(n)g(d(n)), and n(n)h(n(n)), respectively, and σ2

d, σ
2
n, σ

2
g , and σ2

h are variances
of d(n), n(n), g(d(n)), and h(n(n)), respectively.

4.2. Approximation of eigenvalues. The generalized eigenvalue decomposition [17]
can be applied to Rk as

RkE = KkEΛ0 (46)

In this equation, eigenvector matrix E consists of eigenvectors {em} as E = [e1, · · · , eM ],
and Kk denotes the spatial correlation matrix of nk (noise vector). The eigenvalue matrix
has diagonal eigenvalues, Λ0 = diag(λ1

0, · · · , λ0
M), for real eigenvalues λ1

0 < λ0
2 < · · · < λ0

M ,
and X is an orthogonal matrix with columns that correspond to eigenvectors. The matrix
A is defined as

A ≡ XT R̃X = γΛ0 + αI + βXTZZTX ≡ Λ + βxxT (47)

where the diagonal entries of Λ are given by ci = γλ0
i + α. x ≡ XTZ = [x1, x2, · · · , xM ]T ,

where xi is the sum of the entries of the ith eigenvector. Note that A and R̃ are similar
matrices and must have the same eigenvalues. The proximity of zero crossings to the
poles in f(λ) will provide a useful approximation. To obtain an approximation for the
maximum eigenvalue, f(λ) can be written as

f(λ) = 1 + β

M∑
i=2

x2
i

ci − λ
+

βx2
1

c1 − λ
(48)

Because f(λ) has a pole at x1, the last term dominates the behavior of f(λ) for λ ∼= c1.
The second term, which is the sum of terms associated with the other eigenvalues, is
almost constant in the region around λmax. Thus, we can write

f(λmax) ≈ 1 + β

M∑
i=2

x2
i

ci − c1
+

βc21
c1 − λmax

(49)
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The solution of f(λmax = 0) yields

λmax = γλ0
max + α+

βx2
1

1 + β
∑M

i=2
x2
i

(ci−c1)

(50)

We have replaced c1 in the last term in Equation (47) with its definition, which is given
in Equation (43). Note that λ̄max < λmax, where λmax is the true maximum eigenvalue of
R̃.

Thus, the maximum eigenvalue can be further approximated as

λmax ≈ γλ0
max + α + βx2

1 (51)

This finding suggests the use of similar arguments to approximate the other eigenvalues
of the correlation matrix R̃. For example, the approximate minimum eigenvalue of R̃ can
be written as

λmin = γλ0
min + α +

βx2
M

1 + β
∑M−1

i=1
x2
i

(ci−λmin)

≈ γλ0
min + α (52)

The eigenvalue spread χ(R) of the equalizer input signal covariance matrix is given by

χ(R) =
λmax

λmin

(53)

where λmax and λmin denote the maximum and minimum eigenvalues of the input auto-
correlation matrix R = E

[
rfullband[n] rHfullband[n]

]
. Thus, χ(R) can be approximated by

the ratio of the maximum and minimum of the equalizer input PSD, γmax and γmin, as
[18]

χ(R) ∼=
γmax

γmin

(54)

5. Numerical Example and Simulation. We use the concept of majorization as a
mathematical tool to characterize different spatial correlation environments. Using ma-
jorization theory, an analytical framework was established to assess the performance of
separation systems with different profiles. In particular, suppression theorems were de-
rived for various performances parameters, such as output SNR.

The advantage of the ALL is that it is a system that does not require coding, has
high gain and high bandwidth servo-loop operation, and is in the amplitude, rather than
frequency, domain. The ALL system can prove to be an effective improvement in com-
munication systems for filtering out signal distortion and AWGN interference.

The following simulation demonstrates the performance of the proposed signal sepa-
ration model for AWGN channels based on the LMS algorithm. The MMSE criteria of
the step size and optimal weight coefficient values can be defined using the Wiener-Hopf
Equation (16) with a steepest descent algorithm. The filter output response can be used to
approximate the desired response. Impairment of the channel noise will affect the MMSE
value. The PSD performances of separated signals with SNR of −5 dB are illustrated in
Figure 3 for m located at 0.9999 and 1.0001. Figure 4 shows the 100 Hz component of
the dominant signal and 500 Hz component of the subdominant signal for an m value of
“10” and −5 dB SNR [22].

The simulation results show successful separation of FM signals by the PLL and ALL
algorithms. In an AWGN channel, we propose the LMS algorithm for accelerating the
convergence rate and obtaining the MMSE value [19]. Figures 5 and 6 show the simula-
tion results of the dominant and subdominant signals, respectively. Figure 5 shows the
dominant separated signal with minimal SNR values between −20 dB and 0 dB, which
improved by 2.79 dB and 2.8 dB for m values of 0.9 and 0.1, respectively. By the same
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Figure 3. The separated signals for an m of 0.9999 and 1.0001

Figure 4. The PSD output signals with m = 10 and −5 dB SNR

method, the subdominant separation signal SNR values varies between −20 dB and 0 dB,
and improved by 1.8 dB and 3.3 dB for m values of 0.9 and 0.1, respectively. The MSE
values can be found using these figures, and the adaptive filter algorithm is introduced to
solve this problem.
The correlation function versus total channel SNR for the dominant signal, S0, and

subdominant signal, S1, is shown in Figure 7. The correlation functions for SNR between
0 dB and 20 dB shows a dominant signal S0 correlation coefficient of close to 1. The blue
curve depicts the ideal channel simulator with numerical variations of the CCI. Figure 8
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shows the eigenvalues of the autocorrelation matrix versus received SNR for the dominant
signal, S0, and subdominant signal, S1, under two transmit correlation scenarios, as given
by

H0 = 1.203UminU
H
min + 0.7187UmaxU

H
max

H1 =

[
1 1− λmax

1− λmin 1

]
or H1 =

[
1 1− λmin

1− λmax 1

] (55)

where Umax and Umin are the eigenvectors corresponding to the minimum and maximum
eigenvalue of the matrix A, which is given in Equation (47).

Figure 5. The MSE and
SNRc for the dominant signal
S0

Figure 6. The MSE and
SNRc for the subdominant
signal S1

Figure 7. The correlation
function versus total received
SNR for the dominant signal
S0, and the subdominant S1

Figure 8. The eigenvalues
of the autocorrelation matrix
versus received SNR for the
dominant signal S0, and the
subdominant S1

H0 and H1 have the same set of eigenvalues {1.9298, 0.0702} when the ICR m is equaled
to 0.9 and the SNR is −20 dB. Using [20], when µ is equal to 0.002, the eigenvalue
spread for our system (m is equaled to 0.1 and SNR is 0 dB) and the Volterra model
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are found to be 116.6 and 81.343 (compared with the experimental value), respectively.
Comparing our system to the Volterra model, the eigenvalue spread of our system is
reduced approximately 1.43-fold. There are many algorithms that successfully compensate
for the eigenvalue spread and have low computational complexities that enhance the
performance of adaptive filters. For example, our proposed algorithm is more efficient
than the normalized LMS (NLMS) algorithm in cases in which the eigenvalue spread is
large [21].

6. Conclusions. We propose a signal separation system with an adaptive FIR filter
based on LMS theory for AWGN channels. The proposed technique can effectively sepa-
rate the desired signals in the presence of interference noise. The adaptive filter was found
to have better tracking ability, and all of the weights are updated using an iterative pro-
cedure. The algorithm proposed in this paper is suited for high performance separation
in both low-SNR and high-ICR conditions.
The ALL system was used in combination with a PLL and additional circuitry to achieve

a major improvement in frequency modulation technology. The ALL system is used to
filter out signal distortion, CCI, and AWGN interference, and should be a significant
improvement in communication systems. According to Figure 4, this paper adjust the ICR
(i.e., m value), which can exchanges the dominant and subdominant signals. In the future,
the ALL system can be applied to a monitored system and signal intercepted applications.
Moreover, the all-digital phase-locked loop (ADPLL) and all-digital amplitude-locked loop
(ADALL) system structures [23] can be applied for binary frequency-shift keying (BFSK)
modulation of signals for a co-channel transmission separation system.
In this paper, we proposed two signals for characterizes the correlation properties and

variations of the SNR for communication systems. The numerical and simulation results
show that these two signals can characterize the correlation properties of SNR notably
well. We utilize the eigenvalues distribution of autocorrelated matrix in the form of
determinants with special functions. The polynomial expression was used to simplify
mathematical operations. Before transmitting the original signal, we used a good match
eigenvalue spread because our system provides a form of secure communication in un-
friendly surroundings such that the transmitted signal is not easily detected or discrimi-
nated by unwanted listeners and visibly separated the original signal. The advantages of
our system are that it doubles the useful range of the FM spectrum and can easily in-
crease the channel capacity of an MA system or any other existing schemes. Additionally,
the suggested system also creates a secure communication system, which can potentially
supersede or displace encryption (or decryption) systems.
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