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Abstract. Mining data streams has recently been the subject of extensive research
efforts. However, most of the works conducted in this field assume a balanced class dis-
tribution underlying data streams. In this paper, therefore, we propose a new method for
learning from imbalanced data streams. To deal with the problem of class imbalance, we
select and reuse past data to improve the representation of the minority class. Different
from previous methods, our method has the ability to automatically adapt data selection
for concept drift. A data stream may experience a complicated concept drift, making data
selection more difficult. Therefore, we consider several different candidate solutions of
data selection, each of which is possibly more appropriate for certain data streaming con-
ditions. In other words, no one of them is the best at all times. We make comparisons
and identify the best candidate solution by cross-validation on the most recent training
data. By experimental evaluations on simulated and real-world data streams, we show
that our method achieves better performance than previous methods, especially when con-
cept drift occurs.
Keywords: Adaptive data reuse, Data selection, Class imbalance, Concept drift, Data
stream, Ensemble learning

1. Introduction. Mining data streams has recently been the subject of extensive re-
search efforts [1]. Some examples include detection of fraudulent credit card transactions
[2] and web filtering [3]. Basically, there are two approaches to learning from data streams.
The first is incremental learning in which a single model is built from an initial training
set, and then is continuously updated with new training instances upon their arrival [4].
The second is ensemble learning in which a series of base models is trained on consecutive
chunks of a training data stream, and forms an ensemble to classify previously unseen
instances [5].

One of the biggest challenges facing data stream learning is to deal with “concept
drift”, i.e., the concept to learn is changing over time. For example, in a task of online
news filtering, some user might expand his/her reading interests with a new topic such as
“nuclear safety” after the Fukushima nuclear accident occurred in Japan. In this example,
the concept to learn (or target concept) is the reading interests of a specific user. Concept
drift could cause a classification model to perform poorly if this model is not updated
appropriately to reflect changing data distributions. To deal with concept drift, one
solution is to regularly retrain the classification model on a sliding window covering only
the most recent training instances [6]. Another solution is to use ensemble learning in
which the base models are weighted using their classification accuracy on the newest

4995



4996 H. M. NGUYEN, E. W. COOPER AND K. KAMEI

training data chunk [2]. Both of these solutions are based on an implicit assumption that
new data best reflects the distribution of forthcoming unseen instances.
While most of the works conducted in data stream learning assume a balanced class

distribution underlying data streams, many real-world applications deal with the problem
of class imbalance, in which one class (minority class) is heavily outnumbered by another
(majority class). For example, in the task of online news filtering, those articles interesting
a specific user usually account for a very small portion of the total articles arriving online.
Another example is the detection and removal of undesirable posts from a stream of online
discussions in social networks. In many cases, those undesirable posts, including off-topic
posts, personal insults, and rude language, are very much fewer than normal ones. The
problem of class imbalance could result in degradation of conventional learning methods
in classifying the minority class, which is usually of more interest. The reason is that the
minority class, with a small size, has a less significant impact on overall accuracy of a
learned model, and therefore, this class may largely be ignored during a learning process.
To deal with the problem of class imbalance in data streams, we can consider reuse

of past data to improve the representation of the minority class. As reflected by its
name, the instances of the minority class may occur very sparsely in a data stream. To
collect a certain amount of past data of this class, we may have to accept some data
that is very old, and with a high possibility of concept drift. Therefore, data reuse could
be more challenging in imbalanced data streams. However, existing methods have no
effective mechanism to counter concept drift in performing data selection. For example,
one method makes reuse of all past data available, while another uses a user-defined
class imbalance ratio as an input to decide how many past instances should be selected.
Clearly, such methods are not capable of adapting to concept drift. They could only
improve performance in cases where the data stream is not significantly concept-drifting.
In this paper, we propose a new method for classifying imbalanced data streams by

selecting past data consistent with a drifting target concept, in an effort to reduce the
problem of class imbalance. The main advantage of our method is its ability to automati-
cally adapt data selection for concept drift, while previous methods do not. A data stream
may experience a complicated concept drift, making data selection more difficult. There-
fore, we consider several different candidate solutions of data selection, each of which is
possibly more appropriate for certain data streaming conditions. In other words, no one
of them is the best at all times. We make comparisons and identify the best candidate
solution by cross-validation on the most recent training data. By experimental evalua-
tions on simulated and real-world data streams, we show that our method achieves better
performance than previous methods, especially when concept drift occurs.
Because real-world data streams are possibly arriving at high speed and in large quan-

tities, data stream learning imposes high requirements of reducing consumption of system
resources, such as time and memory. To improve efficiency in learning and make our
method more practical for applications, we simplify aspects of our method, such as keep-
ing of only a limited quantity of past training instances in memory, and use of modest
settings for various parameters.
The rest of the paper is organized as follows. Section 2 reviews related work. In

Section 3, we first introduce some assumptions of concept drift imposed to develop our
method. Then, we analyze different candidate solutions of data reuse for improving the
representation of the minority class. We summarize our proposed method at the end of
this section. The description of experiments and results are presented in Sections 4 and 5,
respectively. Section 6 concludes the paper.
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2. Related Work. The problem of class imbalance has been solved with two main ap-
proaches. First, existing learning algorithms can be revised to learn the minority class
instances more accurately. One way is to assign a higher cost to the minority class in-
stances so that it is more difficult for the learning algorithm to ignore them when making a
decision [7]. Second, sampling techniques can be applied to balance the training set [8, 9].
This approach is perhaps the most popular solution for dealing with class imbalance.
Indeed, we also focus on sampling methods in this paper.

There so far has been very little work conducted on data streams with imbalanced class
distributions. Some studies approach the problem of class imbalance for each data chunk
isolatedly. In other words, each data chunk of a stream is treated as a conventional imbal-
anced data set, and thus can be handled by an existing technique, such as over-sampling
by generating synthetic minority class instances [10] or under-sampling by clustering the
majority class [11]. One drawback of such methods is that past data is not taken into
account for improving the representation of the minority class.

Other methods have been proposed to exploit past data. Gao et al. [12] proposed a
method in which all minority class instances from previous data chunks are incorporated
into the current data chunk. This method is problematic because past data may become
out-of-date due to concept drift. Spyromitros et al. [13] used two separate sliding windows,
one for the minority class and the other for the majority class. The window sizes are
determined so as to obtain a certain class distribution ratio, such as 40:60. This approach
is essentially similar to Gao’s method.

Another method, proposed in [14], selects a number of past minority class instances
which are top-ranked, based on the number of minority class nearest neighbors in the
current data chunk. We make two remarks on this method. First, because the current
chunk is imbalanced, most nearest neighbors would possibly come from the majority class,
and fewer from the minority class. In other words, past instances would share a small
pool of rankings, which may make ranking of them ineffective. Second, the number of
past instances selected depends on a desired degree of class imbalance given by a user,
but not the concept drift in the data stream. Therefore, this method should not be seen
as an adaptive method for concept-drifting data streams.

3. Proposed Method for Imbalanced and Concept-Drifting Data Streams. The
proposed method builds and retrains a classification model for every time a new train-
ing chunk is received from the data stream. To deal with class imbalance, we consider
reuse of past data for improving the representation of the minority class. Different from
previous methods, our method has the ability to automatically adapt data selection for
concept drift. Basically, we achieve this ability by approximating the target concept with
a “balanced” model on the current chunk, which is trained after an under-sampling to
balance the training set. This model, therefore, allows us to more reliably select past data
which is consistent with the target concept. We rely on the classification of that model to
decide which past instances are to be selected, instead of an input given by a user, such
as a desired class imbalance ratio, which is itself not related to concept drift. To further
improve performance of our method, we also consider additional solutions of data reuse
for cases where the data stream is relatively stable or unstable.

In the following subsections, we first introduce some reasonable assumptions of concept
drift under which the proposed method is developed. Then, we analyze problems of data
reuse in the presence of concept drift, through which we give a specific design of our
method for imbalanced and concept-drifting data streams.
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3.1. Assumptions of concept drift. Concept drift is a phenomenon in which the con-
cept to learn, or the data distribution which generates a data stream, is changing over time.
If this change is progressing arbitrarily, we may not be able to design a good algorithm
for learning data streams. Therefore, we should impose some reasonable assumptions of
concept drift under which effective stream learning methods can be developed.
A data distribution can be represented by a joint probability, P (x, y) = P (x)P (y|x),

where x is an instance and y is the corresponding class label. Three different types of
concept drift can be drawn from this expression [15]: (1) feature drift, i.e., the change of
the probability P (x) to observe an instance with feature vector x, (2) label drift, i.e., the
change of the conditional probability P (y|x) to assign class label y to instance x, and
(3) dual drift, including both feature drift and label drift. The second type of concept
drift is more difficult to learn than the first because the class label of instances may
change to another, resulting in noise in training data. In reality, we usually cannot collect
sufficient training data and the distribution of the sampled training set may differ from
the underlying true distribution. Therefore, the feature drift seems to occur all the time,
even when there is no actual change in P (x). Consequently, it is more often to encounter
data streams with concept drift of the first and third types.
A reasonable assumption of concept drift, as suggested in [15], is that the change of

data distribution should be progressing to the extent that a model built on the training
set makes sense, i.e., it has higher performance on forthcoming unknown data than ran-
dom guess of class labels. This assumption can be understood as asserting that concept
drift should be gradual rather than sudden. A further assumption is that the most recent
training data best reflects the distribution of forthcoming unseen instances. This assump-
tion is also reasonable because those data collected in periods close together seem to have
more similar distribution.

3.2. Concept drift and data reuse. We consider three candidate solutions of data
reuse, each of which is more appropriate for a certain situation of concept drift in data
streams. The purpose of data reuse is to improve the representation of the minority class
in an imbalanced training set. The best candidate solution, which changes from time to
time, is identified by application of the k-fold cross-validation on the current (newest)
data chunk.

3.2.1. First candidate solution of data reuse: Train an ensemble model on the current
data chunk, then use it to select past data. We want to select some past data which
is still consistent with the target concept. However, the target concept is unknown, and
therefore, we attempt to build a “good” model from the current data chunk only in order to
approximate this concept. Past instances of the minority class that are correctly classified
by this model will be selected. Other instances can be considered no longer consistent
with the target concept due to concept drift, and will be kept out of the training set. Note
that we do not reuse past instances of the majority class because this class is much larger
and is better represented than the minority class. Furthermore, the addition of data to
the majority class increases the class imbalance, making learning more difficult. Here we
suppose the training data of the majority class is already sufficient.
For now, we need to train a “good” model on the current data chunk to approximate

the target concept. The current chunk D can be considered a conventional imbalanced
data set. Therefore, random under-sampling can be applied to the majority class of this
set to create a balanced training subset. However, under-sampling may lead to loss of
useful information. To allow use of more data of the majority class, and thus reducing
information loss, we randomly draw without replacement m subsets Si from the majority
class N , which have the same size as the minority class P , i.e., |Si| = |P |. As a result,
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Table 1. Ensemble training procedure for an imbalanced training set

Function: TrainEnsemble(D)
Input : Imbalanced training set D = P ∪N , where P is the minority class, and

N is the majority class
Output : Ensemble E = {fi|i = 1, . . . ,m}, where fi are base models
begin

E ← ∅
for i← 1 to m do

Si ← DrawSubset(N , |P |) /* draw |P | instances from N */
Ti ← P ∪ Si

fi ← TrainBaseModel(Ti)
E ← E ∪ {fi}

end for
return E

end

there are m balanced training subsets, Ti = P ∪ Si, from which m base models fi are
built. All these base models are combined to form an ensemble E that classifies unknown
instances by averaging component outputs, as in Equation (1):

E(x) =
1

m

m∑
i=1

fi(x) (1)

In the literature of imbalanced data learning, random under-sampling has been shown
to be a simple but effective method for dealing with class imbalance [16]. An ensemble
learning approach combining multiple under-samplings was also investigated by Liu et
al. [17]. Table 1 presents our implementation of an ensemble training procedure on an
imbalanced training set. Note that if the majority class is not greater than m times the
minority class, the actual number of majority class subsets Si, and thus base models fi,
is less than m. However, this case is not explicitly shown in Table 1 for brevity.

Up to this point, one may wonder if data reuse in the first candidate solution always
helps improve performance. The answer is “it depends”. The ensemble E built on the
current chunk to approximate the target concept may be reasonably good but not perfect
for certain, and in fact, we are trying to improve it. Therefore, among those past instances
selected by this model, some are consistent with the target concept, while others are
not. Suppose consistent instances help increase performance by an amount δcon, while
inconsistent ones decrease performance by an amount δinc. We expect in most cases
that δcon > δinc, and therefore, data reuse helps improve performance. However, under
disadvantageous conditions that may happen (such as stronger concept drift, higher class
imbalance and overlap, and largely insufficient training data), the ensemble E may be not
sufficiently accurate for data selection, in which case it may happen that δcon < δinc, i.e.,
data reuse does not help.

3.2.2. Second candidate solution of data reuse: Reuse all past data kept in a pool. This
solution may provide better results in periods when the data stream is stable without or
with insignificant concept drift. It allows reuse of more past data that may be ignored by
an “imperfect” ensemble model E in the first candidate solution.

3.2.3. Third candidate solution of data reuse: Reuse no past data. This solution may be
good if the data stream is undergoing a period of stronger concept drift, which makes
past data have a high risk of inconsistency with the target concept. Not reusing past data
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may also be the solution for the situations in which the ensemble model E in the first
candidate solution is not sufficiently accurate for data selection.

3.2.4. Cross-validation for finding the best candidate solution of data reuse. We have so
far presented three candidate solutions of data reuse for improving the representation of
the minority class. The best candidate solution of data reuse depends on the degree of
concept drift as well as other data properties in different periods. We use the k-fold cross-
validation to find out which candidate solution is the best. Specifically, the current data
chunk D is randomly split into k equal-size subsets S1, S2, . . . , Sk. The cross-validation
includes k iterations, each of which takes a different subset Si as a validation set, Vi = Si,
and combines all remaining ones into a training set, Ti =

∪
j|j 6=i Sj. For the j-th candidate

solution (j = 1, 2, 3), we combine the corresponding set Zj of past minority class instances
selected with Ti to form a new training set, Tij = Ti ∪ Zj, which should have a better
representation of the minority class. Remind that Z1 includes past minority class instances
that are correctly classified by an ensemble model built on the current chunk D only, Z2

includes all past minority class instances kept in a pool, and Z3 is an empty set. Next,
we train an ensemble model, as in Table 1, on each of three sets Tij (j = 1, 2, 3), and
then use it to classify the validation set Vi. After all iterations of the cross-validation
finish, we compute overall classification performances for the three candidate solutions of
data reuse. Finally, we select the candidate solution which has the highest cross-validated
performance.

3.3. Proposed method. Table 2 presents our proposed method for learning from im-
balanced and concept-drifting data streams. In Steps 1-3, we consider three candidate
solutions of data reuse, as analyzed in Section 3.2, for improving the representation of

Table 2. Proposed method for imbalanced and concept-drifting data streams

Function: TrainAdaptiveEnsemble(D, Q)
Input : Current chunk D = P ∪N , and pool Q containing past minority class instances
Output : Ensemble Eadapt = {fi|i = 1, . . . ,m}, where fi are base models
begin

Step 1 : First candidate solution of data reuse
E ← TrainEnsemble(D)
Z1 ← Classify(E, Q)

Step 2 : Second candidate solution reuses all past data kept in the pool
Z2 ← Q

Step 3 : Third candidate solution does not reuse past data
Z3 ← ∅

Step 4 : Find the optimal solution by cross-validation on the current chunk
Zopt ← DoCrossValidation(D, Z1, Z2, Z3)

Step 5 : Add past instances selected to the current chunk, then train an ensemble
T ← D ∪ Zopt

Eadapt ← TrainEnsemble(T )

Step 6 : Update the pool of past minority class instances
Q← Zopt ∪ P
CheckPoolSize(Q)

return Eadapt

end
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the minority class in the current data chunk. Here Classify(E,Q) means that we use the
ensemble E to classify the pool Q of minority class instances, and then return a set of past
minority class instances correctly classified. In Step 4, Zopt ∈ {Z1, Z2, Z3} is the past data
set selected by the best candidate solution. Although the reuse of past data helps increase
the minority class, the class imbalance may still exist in highly imbalanced training sets.
Therefore, in Step 5, we continue training of an ensemble model, in which the majority
class is under-sampled to create balanced training subsets (See Table 1). This ensemble
model is then used to classify unknown instances, which will be arriving in the future. In
Step 6, we update the pool Q of minority class instances, by first removing all instances
except those selected by the best candidate solution (i.e., those in Zopt), and then adding
the minority class instances of the current chunk.

To make our method more efficient in computation as well as reducing storage space,
we do not keep all past instances of the minority class in the pool Q. Instead, we set
the maximum size of this pool to |N | − |P |, where N is the majority class and P is the
minority class of the current data chunk. That is, we keep an amount of past data just
enough to balance the training set. When the pool is already full, the oldest instances
are removed to make room for new ones. CheckPoolSize(Q) in Step 6 exactly performs
this task.

4. Experiments.

4.1. Evaluation measure. For evaluation of learning methods on imbalanced data,
overall accuracy is not a suitable measure because it is dominated by the majority class.
For example, if 99% of the data is from the majority class, but only 1% from the minority
class, a classifier can classify every data as majority, and thus achieves 99% accuracy at
the cost of no minority class instances correctly classified. Therefore, instead of the overall
accuracy, we use G-mean [18], which is a more suitable evaluation measure, and defined
by

G-mean =
√
Acc+ × Acc−

where Acc+ and Acc− are the classification accuracies on the minority and majority
classes, respectively. The G-mean balances accuracies between the two classes with-
out depending on the size of each class. For the example above, we have G-mean =√
Acc+ × Acc− =

√
0%× 100% = 0%. Therefore, a certain learning algorithm that largely

ignores the minority class would receive a low G-mean.
Note that for all mentions of classification performance in Section 3, which describes

our proposed method, we use the G-mean measure.

4.2. Data sets. This section describes data sets for experimental study. We used some
UCI data sets to simulate data streams in a predefined scenario of concept drift. We
also conducted experiments on the Slashdot data set, which represents a real-world data
stream. There may exist a certain concept drift in the Slashdot, but we do not know how
concept drift is progressing in reality.

4.2.1. UCI data sets. We used the following six UCI data sets [19] for simulation of data
streams:

• Abalone: Predict the age of an abalone based on physical measures. We replaced the
first feature, which is categorized with three different values (male, female, infant),
by three binary features representing presence or absence of each categorical value.
• Chess : Predict the outcome of a chess board state. There are six features indicating
column and row positions of three chess pieces on the board. We replaced each
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Table 3. Imbalanced three-class UCI data sets

Data set Features Two classes Class I Class II Class III Class I+II+III Imbalance ratio

Abalone1 10 6, 7 259 391 3,527 4,177 1:9.7 ∼ 1:15.1
Abalone2 10 6, 12 259 267 3,651 4,177 1:14.6 ∼ 1:15.1
Abalone3 10 7, 12 391 267 3,519 4,177 1:9.7 ∼ 1:14.6
Chess1 48 5, 6 471 592 26,993 28,056 1:46.4 ∼ 1:58.6
Chess2 48 5, 16 471 390 27,195 28,056 1:58.6 ∼ 1:70.9
Chess3 48 6, 16 592 390 27,074 28,056 1:46.4 ∼ 1:70.9
Covtype1 54 5, 6 2,396 2,160 15,444 20,000 1:7.3 ∼ 1:8.3
Covtype2 54 5, 7 2,396 2,160 15,444 20,000 1:7.3 ∼ 1:8.3
Covtype3 54 6, 7 2,160 2,160 15,680 20,000 1:8.3 ∼ 1:8.3
Letter1 16 1, 2 789 766 18,445 20,000 1:24.3 ∼ 1:25.1
Letter2 16 1, 3 789 736 18,475 20,000 1:24.3 ∼ 1:26.2
Letter3 16 2, 3 766 736 18,498 20,000 1:25.1 ∼ 1:26.2
Wall 24 2, 4 826 328 4,302 5,456 1:5.6 ∼ 1:15.6
Wine 11 4, 8 216 193 6,088 6,497 1:29.1 ∼ 1:32.7

of those features by eight binary features corresponding to eight columns or rows,
leading to the total 48 binary features.
• Covtype: Predict forest cover types based on cartographic measures. The original
Covtype data set has 581,012 instances. However, we used only the first 20,000
instances in our experiments.
• Letter : Identify upper-case letters from pixel images distorted in different fonts.
• Wall : Predict the action of a robot when navigating around a wall, based on signals
received from 24 ultrasound sensors on the robot.
• Wine: Predict wine quality from different measures. We combined separate data
sets for red and white wines to create a larger data set.

For each UCI data set, we created several imbalanced versions, each of which includes
two small classes (Class I and Class II) and one large class (Class III). The usage of such
imbalanced three-class data sets for simulation of data streams will be explained shortly.
We give an example with the Abalone data set, which has 28 different classes. We selected
two small classes, 6 and 7, as Class I and Class II respectively, and then combined all
the remaining 26 classes into Class III. We name this new imbalanced data set Abalone1.
Table 3 shows some information of Abalone1, such as the number of features, two classes
selected as Class I and Class II, the size of Classes I, II, and III, and the size of the whole
data set. Similarly, we also created imbalanced data sets from other UCI data sets. In
total, we have 14 imbalanced data sets, as described in Table 3.
We simulated concept-drifting data streams based on a scenario of online news filter-

ing [6] in which the reading interest of a user is gradually changing from one topic to
another. We illustrate this scenario in Figure 1, in which an imbalanced three-class data
set in Table 3 is randomly split into 20 equal-size data chunks, and the target concept
is gradually changing from Class I to Class II. In this scenario, instances from Classes I
and II can belong to the minority or majority class, but those from Class III always
belong to the majority class. For example, in Figure 1, the relevant level of Class I at
Chunk 9 is 0.8, indicating that 80% of Class I in this chunk have the label of “minority”
while the remaining 20% have the label of “majority”. Formally, we use the notation
X ≡ α%×Class I+ β%×Class II+ γ%×Class III to indicate that set X is made of α%
of Class I, β% of Class II, and γ% of Class III. Then, a data chunk Di (i = 1, 2, . . . , 20)
is made of the minority class Pi ≡ αi% × Class I + βi% × Class II, and the majority
class Ni ≡ (1 − αi%) × Class I + (1 − βi%) × Class II + 100% × Class III. In Figure 1,
relevant level αi% of Class I is gradually decreasing from 1 down to 0, while relevant level
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Figure 1. Scenario of a gradually concept-drifting data stream

βi% of Class II is gradually increasing from 0 up to 1. At Chunk 13, the target concept
completely changes from Class I to Class II.

We can see that the streaming scenario in Figure 1 includes the first and third types
of concept drift, as given in Section 3.1. In the periods of Chunks 1-8 and Chunks 14-20,
there is only feature drift. However, in the period of Chunks 9-13, there is dual concept
drift which includes both feature drift and label drift.

A final remark in this section is that the last column in Table 3 provides a reference
to the degree of class imbalance in simulated data streams. For example, a string of
“1:9.7 ∼ 1:15.1” means that the imbalance ratio of the minority to majority classes varies
from 1:9.7 to 1:15.1.

4.2.2. Slashdot data set. The Slashdot data set1 includes about 140,000 user posts com-
menting on news articles dealing with politics. These posts had been collected for one
year, from 28 August 2005 to 30 August 2006. The average length of posts is 99 words.
We sorted these posts by the date and time at which they were published. Therefore, the
Slashdot represents a real-world data stream in which posts are arriving sequentially. The
learning task here is to detect undesirable posts, such as off-topic posts, personal insults,
and rude language. In the Slashdot data set, each post was given an evaluation score
in {−1, 0, 1, 2, 3, 4, 5} by a meta-moderation system. We selected posts with the score of
–1 as undesirable, while those with the score of 0 to 5 as normal. As a result, we have
an imbalanced Slashdot data set in which the minority class includes 2,466 undesirable
posts and the majority class includes 138,311 normal posts. The class imbalance ratio is
2, 466 : 138, 311 ≈ 1 : 56.

One remarkable point in the Slashdot data set is that posts belong to different threads,
each of which starts with a post of a news article conveying the topic of discussion. For
those undesirable posts marked with “off-topic”, they should be considered in relation to
the first post of the same thread. Therefore, we made each instance in the Slashdot data
stream by appending one post to the corresponding first post, which indicates its context.

For text preprocessing, we split posts into words based on whitespace characters and
punctuation marks. We also removed stop words (such as “a”, “an” and “the”) which
convey little information, as well as stemming words using the Porter stemming algorithm
(e.g., the two words “computation” and “computing” have the same stem “comput”). The
total number of distinct words remaining is 88,098. Next, we performed feature selection
based on document frequency, i.e., the number of posts in which a word appears. This
feature selection technique is the simplest and fast to run, but still competitive with
more complex other techniques [20]. We experimented with different numbers of features,
including 500, 1000, 2000, . . . , 6000 features with the highest document frequencies. In
this experiment, we used the Support Vector Machine learning algorithm as the base
learner. However, the results show insignificant difference between those numbers of

1Slashdot data set can be downloaded at http://caw2.barcelonamedia.org.
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features. It is possible that many additional features are redundant. Therefore, for all
experiments following, we used only 500 features. We represented each instance by a
binary vector of 500 dimensions, each of which indicates if the corresponding feature
appears in this instance. It was shown in [21] that this binary representation can provide
high accuracy in text categorization despite its simplicity.

4.3. Compared methods and experimental settings. We compared our method
with several previous methods, as listed below:

• Single model : Train a single model on the current chunk of a data stream. We
ran this method to show that the performance of a conventional learning algorithm
would possibly be very poor on imbalanced data streams if the training data is left
as it is, without any preprocessing to balance it.
• Full data: Incorporate all past data of the minority class into the current chunk, and
then train an ensemble model, as in Table 1. This approach of reusing all past data
was proposed in [12].
• Ranking : Rank past data based on the number of minority class nearest neighbors in
the current chunk, then select a number of top-ranked instances, and finally train an
ensemble model, as in Table 1. This approach of ranking past data was proposed in
[14]. We set parameters as in the original paper. Specifically, the number of nearest
neighbors was set to ten, and past training instances were selected with a quantity
so as to obtain a class imbalance ratio of up to 1:2.
• Adaptive: This is our proposed method, which allows an adaptive data reuse in the
presence of concept drift. This method is presented in Table 2.

We used two base learning algorithms, Support Vector Machines (SVM) [22] and Naive
Bayes (NB) [23], for training classification models in the compared methods. For training
of SVM classifiers, we ran the LIBSVM software [24] with the Gaussian RBF kernel,
K(xi,xj) = exp(−γ ‖xi − xj‖2), on the UCI data sets, and the linear kernel, K(xi,xj) =
xixj, for text categorization on the Slashdot data set. Because the selection of optimal
parameters is quite expensive for data stream learning, we simply set the parameters to a
reasonable value. Specifically, the trade-off parameter C of the SVM learning algorithm
was set to 100, and the width γ of the RBF kernel was set to 1. For the NB learning
algorithm, we assumed a normal distribution for continuous features in data.
Some other experimental settings were also made with modest options. The k in the

k-fold cross-validation used in our method (See Section 3.2.4.) was set to three. The
number of base models m in the ensemble training procedure in Table 1 was set to ten.
We evaluated the compared methods by alternating the training of a model Mi on a

data chunk Di with the classification of the next data chunk Di+1. In other words, at
time step i, Di is the training set, while Di+1 is the test set. When training model Mi on
data chunk Di, we only know the label of instances in Di, but know nothing about Di+1,
which is future data and may have a different distribution due to concept drift. However,
at time step i+ 1, Di+1 becomes a new training set, while Di+2 is used as a new test set.
This process continues until the end of the data stream. Note that the last chunk is only
used for testing. This evaluation approach allows us to trace the performance of learning
methods along the data stream.

5. Results.

5.1. Results on UCI data sets. There are some factors that may influence the relative
performances of the compared methods, such as the instance order in a data stream and
random sampling of data in some learning methods. Therefore, instead of a single run,
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Figure 2. G-mean performance on UCI data sets using Support Vector
Machines (continued in Figure 3)

we repeated experiments ten times for each imbalanced UCI data set in Table 3, and then
computed the average results.

Figures 2 and 3 show the results in the G-mean measure when using SVM as the base
learner. In this case, the first compared method (i.e., “single model”) simply trains a
standard SVM classifier on each data chunk, and thus is referred to as “SVM” in the
figures. The data streaming scenario includes an actual concept drift, which progresses
from Chunk 9 to Chunk 13. Therefore, the performance of the methods starts decreasing
at Chunk 8 (the model on Chunk 8 is evaluated on Chunk 9), but recovers at Chunk 13
(the model on Chunk 13 is evaluated on Chunk 14). Some remarkable points that can be
drawn from the results are as follows:

• The SVMmethod is always the worst, with a 0% performance at many times, because
SVM alone cannot deal with the problem of class imbalance.
• In the first period when the data stream is stable (before Chunk 9), the three meth-
ods of data reuse (including “full data”, “ranking” and “adaptive”) have similar
performance. The reason is that all past data is consistent with the target concept.
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Figure 3. G-mean performance on UCI data sets using Support Vector
Machines (continued from Figure 2)

• In the remaining period with concept drift (from Chunk 9), an amount of past data
becomes out-of-date, leading to the degradation of the data reuse methods. However,
they gradually recover when the data stream gets stable again. In addition, the
adaptive method is faster to recover, and remains a higher performance than the
other methods.

The results when using NB as the base learner are shown in Figures 4 and 5. These
results in general are consistent with those in the case of using SVM. It can be seen that
the adaptive method with use of NB improves performance even more. For the Covtype1
and Covtype2 data sets, the adaptive method performs better than the other methods
for all data chunks of the data stream.
In summary, the results on the UCI data sets, with use of SVM and NB as the base

learners, show that the proposed adaptive method is overall better than the other com-
pared methods, especially since concept drift occurs. As described in Section 3, the
proposed adaptive method makes use of three candidate solutions of data reuse. At each
time step, corresponding to a data chunk, the best candidate solution identified by the
k-fold cross-validation is used to select past data. To see the contribution of candidate
solutions, Table 4 shows the rate [%] of times in which each of them is the best.

5.2. Results on Slashdot data set. We split the Slashdot data stream into consecutive
data chunks, each of which has the same size and contains a varying number of minority
class instances. In this split, we ignored some instances remaining at the end of the
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Figure 4. G-mean performance on UCI data sets using Naive Bayes (con-
tinued in Figure 5)

data stream, which are insufficient to form a data chunk. Table 5 shows the split of the
Slashdot data stream with different chunk sizes.

We ran experiments five times, and report, in Figure 6, overall G-mean performance on
the entire Slashdot data stream when varying chunk size. The left plot is for the case of
using SVM as the base learner, while the right is for the case of using NB. The adaptive
method performs best among the compared methods. The other two methods of data
reuse, “full data” and “ranking”, are inferior to our method and have a quite similar
performance.

We also report the detailed results for the case where the Slashdot data stream is split
into data chunks of 5000 instances, as shown in Figure 7. In general, the adaptive method
is better than the others, especially when we use SVM as the base learner.

6. Conclusions. In this paper, we proposed an effective method for learning from im-
balanced and concept-drifting data streams. We select and reuse past data to improve the
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Figure 5. G-mean performance on UCI data sets using Naive Bayes (con-
tinued from Figure 4)

Table 4. The rate [%] of times in which each candidate solution of data
reuse in the proposed adaptive method is the best (Note that there are total
18 times, corresponding to Chunks 2-19, in which data reuse solutions are
considered)

Data set
Support Vector Machines Naive Bayes

Solution 1 Solution 2 Solution 3 Solution 1 Solution 2 Solution 3

Abalone1 38.9 40.6 20.6 43.9 31.7 24.4
Abalone2 34.4 46.1 19.4 46.7 27.2 26.1
Abalone3 26.7 45.6 27.8 38.9 36.1 25.0
Chess1 0.6 97.8 1.7 31.7 57.8 10.6
Chess2 3.3 88.9 7.8 52.8 37.8 9.4
Chess3 0.6 91.1 8.3 45.6 44.4 10.0
Covtype1 16.1 76.1 7.8 20.0 22.8 57.2
Covtype2 11.1 81.1 7.8 19.4 29.4 51.1
Covtype3 14.4 79.4 6.1 23.3 29.4 47.2
Letter1 41.1 56.7 2.2 24.4 42.2 33.3
Letter2 35.6 63.9 0.6 29.4 37.8 32.8
Letter3 41.7 56.7 1.7 19.4 43.3 37.2
Wall 29.4 61.7 8.9 35.0 33.3 31.7
Wine 34.4 47.2 18.3 29.4 43.3 27.2
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Table 5. Split of Slashdot data stream with different chunk sizes

Split no. Chunk size Number of chunks
Size of minority class in a chunk

from to

1 2000 70 16 60
2 3000 46 27 83
3 4000 35 46 94
4 5000 28 65 115
5 6000 23 76 137
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Figure 6. OverallG-mean performance on the entire Slashdot data stream
when varying chunk size
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Figure 7. G-mean performance on Slashdot data stream with chunk size
of 5000 instances

representation of the minority class. Different from previous methods, our method has the
ability to automatically adapt data selection for concept drift. Basically, we achieve this
ability by approximating the target concept with a “balanced” model on the current data
chunk, which is trained after an under-sampling to balance the training set. This model,
therefore, allows us to more reliably select past data which is consistent with the target
concept. To further improve performance of our method, we also consider additional so-
lutions of data reuse for cases where the data stream is relatively stable or unstable. The
experimental results on simulated and real-world data streams showed that our method
achieves better performance than previous methods, especially when concept drift occurs.
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