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Abstract. A novel speed tracking control scheme of induction motor (IM) is presented
based on the state error Port-Controlled Hamiltonian (PCH) system and L2 disturbance
attenuation theory. Firstly, a PCH system model of IM is established. Secondly, using
interconnection and damping assignment, the desired state error PCH structure is as-
signed to the closed-loop IM control system by the energy-shaping (ES) principle when
the load torque is known. Thirdly, following the idea of rotor field orientation, the de-
sired equilibrium of IM system is obtained. The equilibrium stability of the closed-loop
system is verified. Moreover, the L2 gain load torque disturbance attenuation technology
is applied to the PCH control of IM system. At last, proportional integral (PI) control is
used to eliminate the steady state error brought by the load disturbance. The comparative
studies and simulation results show that the proposed scheme has a good performance
and application prospects.
Keywords: Induction motor, Speed control, Hamiltonian systems, L2 gain, Energy-
shaping

1. Introduction. Induction motor (IM) drives are widely used in industry for variable-
speed applications due to its reliability, ruggedness and low cost. These applications
include fans and pumps, textile and paper mills, subway and locomotive propulsions,
machine tools and robotics, etc. However, the control problem of IM is rather complicated
by the fact that motor model is nonlinear, the motor parameters are time-varying and the
load torque disturbances are uncertain during operation. Therefore, the existing scalar
control, vector (field-oriented) control and direct torque control methods still have many
shortcomings [1].

In order to solve above problems, several globally stable speed controllers for IM have
been reported in the control literature. These controllers can be designed using, such
as adaptive control [2], sliding model variable structure control [3], intelligent control
[4], feedback linearization [5], differential-algebraic nonlinear control [6], backstepping
principles [7], passivity-based control (PBC) [8] and L2 disturbance attenuation control
[9]. The above methods have been used in many fields and a series of research results
has been acquired. Recently, the energy-shaping (ES) and Port-Controlled Hamiltonian
(PCH) systems theory have attracted a lot of attention [10-18]. The PCH system with
dissipation has become an important tool in nonlinear control system research. The ES
consists in shaping the energy function of the system in order to obtain a new closed-loop
energy function that has a minimum point at the desired equilibrium point, preserving the
original interconnection and dissipation structure. Thus, the closed-loop system preserves
the PCH form with a stable equilibrium point at the state of minimum energy.
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A class of electromechanical systems, such as induction motor can be viewed as mul-
tiport (electrical port and mechanical port) energy-transformation device. The action
of a controller may also be interpreted in energy terms as another dynamical system-
interconnected with the electromechanical system to modify its behaviour. The control
problem can then be described as finding a dynamical system and an interconnection
pattern such that the overall energy function takes the desired form. This energy-shaping
approach is used to electromechanical control system. Attention of the new methodology
is now focused on the interconnection and damping structures of the system. Energy is
injected into the electrical port for determining the full system’s behaviour. Many the-
oretical extensions and practical applications of ES and PCH control theory have been
reported in the literature [11-18].
In practical motor control system, disturbance attenuation and parametric uncertainty

are also important issues. The PBC design method has been extended by many researchers
to achieve γ-dissipativity [8, 9] that not only guarantees asymptotic stability but also
renders the L2-gain from disturbance to a penalty signal less than a given level γ > 0.
As PBC design, a key to solve the disturbance attenuation problem along this line is
to construct a proper storage function that ensures the γ-dissipativity. Several effective
methods have been reported by [8, 9].
In this paper, a novel speed tracking control scheme of IM is presented based on the

ES and L2 disturbance attenuation principle. The main feature of the method is that the
closed-loop system has state error PCH structure. The scheme has the advantage that
the closed-loop energy function can be used as Lyapunov (or storage) function rendering
the stability analysis more transparent and controller design simpler. Further, the L2

disturbance attenuation control of the IM system is proposed based on the state error
PCH system theory. The L2-gain from the load torque disturbance to a penalty signal
may be reduced to any given level if the penalty signal is defined properly. In order
to track the changes of the load torque and eliminate speed steady state error of the
IM, the proportional integral (PI) control action of speed error is also added to the
system. Applying space vector pulse-width modulation (SVPWM) signal transformation
technology, speed regulation of IM system is implemented by controlling the state of each
switch in the inverter. Compared with the conventional vector control, the proposed
control algorithm has good control performance. The simulation results illustrate the
effectiveness of the developed controller.
The remainder of the paper is organized as follows. In Section 2, the state error PCH

control principle of IM is presented. Based on the state error PCH control of IM, load
disturbance attenuation control is developed according to L2 gain and PI control principle
in Section 3. In Section 4, the theoretical analysis is verified to be right by the comparative
studies and simulation results. Finally, some conclusions are presented in Section 5.

2. The State Error PCH Control of IM.

2.1. Control principle of the state error PCH system. Consider an affine nonlinear
system {

ẋ = f(x) + g(x)u,

y = h(x).
(1)

The system (1) is passive if it is possible to find a non-negative function V (x) such that
V (0) = 0 and

V (x(t))− V (x(0)) ≤
∫ t

0

yT (τ)u(τ)dτ. (2)
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The PCH systems can be described as follows [8, 10]:

ẋ = [J(x)−R(x)]
∂H(x)

∂x
+ g(x)u

y = gT (x)
∂H(x)

∂x
(3)

where x ∈ <n is the state vector, u, y ∈ <m representing the input and output vector
respectively, are conjugated variables whose product has units of power, R(x) = RT (x) ≥
0 represents the dissipation, the interconnection structure is captured in matrix g(x) and
the skew-symmetric matrix J(x) = −JT (x), H(x) is the Hamiltonian function of the
system.

The most important feature of PCH systems is its input-output passivity and stability
properties. Given a dynamical system (3), the variation of internal energy equals the
dissipated power plus the power provided to the system by the environment. The energy
balance equation for system (3) is given by

dH(x)

dt
=

[
∂H(x)

∂x

]T
ẋ = yTu−

[
∂H(x)

∂x

]T
R(x)

∂H(x)

∂x
≤ yTu (4)

then, integrating (4) over an time-interval [0, t] results in the following well-known dissi-
pative inequality below,which ascertains the passivity properties of PCH systems

H(x(t))−H(x(0)) ≤
∫ t

0

yT (τ)u(τ)dτ

which is the same as (2).
If disturbance input is added to system (3), then PCH systems with disturbance input

are given by

ẋ = [J(x)−R(x)]
∂H(x)

∂x
+ g(x)u+ gw(x)w (5)

y = gT (x)
∂H(x)

∂x

where w is the disturbance input, gw(x) is the disturbance input matrix.
The feedback control principle of state error PCH system is given as follows.

Proposition 2.1. Consider the PCH system (3), let x0 be a desired equilibrium and
x̃ = x− x0 be the state error. Given H(x), J(x), R(x), g(x) and

H(x) =
1

2
xTD−1x (6)

J(x̃+ x0) = J(x̃) + J(x0) (7)

If we can find α(x), Hd(x̃), Ja and Ra, satisfying

u = α(x) (8)

Hd(x̃) =
1

2
x̃TD−1x̃ (9)

Jd(x̃) = J(x̃) + Ja = −JT
d (x̃), Rd(x̃) = R(x̃) +Ra = RT

d (x̃) > 0 (10)

g(x)α(x) = [Ja −Ra − J(x0)]D
−1x̃− J(x̃)D−1x0 + g(x0)u0 (11)

Then, the closed-loop PCH system (3) with u = α(x) takes a the state error PCH form

·
x̃= [Jd(x̃)−Rd(x̃)]

∂Hd(x̃)

∂x̃
(12)
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Furthermore, x̃ = 0 is globally asymptotically stable equilibrium point of the closed-loop
system (12), and the state x does converge to the desired equilibrium x0.

Proof: Define x̃ = x− x0. Then x = x̃+ x0, substituting into (3), we get

·
x̃= [J(x̃+ x0)−R]D−1(x̃+ x0) + g(x̃+ x0)α(x)− ẋ0 (13)

where ∂H(x)
∂x

= D−1x and ∂Hd(x̃)
∂x̃

= D−1x̃.
From (3), we have

ẋ0 = [J(x0)−R]D−1x0 + g(x0)u0 (14)

Substitution of above formula and (7) into (13) gives that the state error system model
is

·
x̃= [J(x̃)−R]D−1x̃+ J(x0)D

−1x̃+ J(x̃)D−1x̃0 + g(x̃+ x0)α(x)− g(x0)u0. (15)

Let

Ψ = −[Ja −Ra − J(x0)]D
−1x+ J(x)D−1x0 + g(x)α(x)− g(x0)u0, (16)

then, according to (10) and (16), Equation (15) can be written as

·
x̃= [Jd(x̃)−Rd]

∂Hd(x̃)

∂x̃
+Ψ. (17)

Obviously, Equation (11) ensures that Ψ = 0. Thus Equation (12) holds.
Since Jd(x̃) is skew-symmetric matrix, thus[

∂Hd(x̃)

∂x̃

]T
Jd(x̃)

∂Hd(x̃)

∂x̃
= 0. (18)

As Rd(x̃) is positive definite symmetric matrix, therefore, along the trajectories of the
system (12), we have

dHd(x̃)

dt
=

[
∂Hd(x̃)

∂x̃

]T
·
x̃=

[
∂Hd(x̃)

∂x̃

]T
Rd(x̃)

∂Hd(x̃)

∂x̃
< 0 (19)

Moreover, the function Hd(x̃) is radically unbounded, since it tends to infinity as ‖x‖ →
∞. Applying Lyapunov’s stability theorem, the system (12) is globally asymptotically
stable at equilibrium point x̃ = 0, then x̃ tends to zero as t tends to infinity. Thus, the
state x does converge to the desired equilibrium x0.

Remark 2.1. Proposition 2.1 shows that the system (3) can be expressed as the form of
system (12) by u = α(x). Moreover, feedback control law u = α(x) can be solved from
(11).

Remark 2.2. For Proposition 2.1, if the second formula of Equations (10) becomes
Rd(x̃) = R(x̃)+Ra = RT

d (x̃) ≥ 0, then, the closed-loop system (12) will be globally asymp-
totically stable if, in addition, the largest invariant set under the closed-loop dynamics

contained in

{
x̃ ∈ Rn

∣∣∣ [∂Hd(x̃)
∂x̃

]T
Rd(x̃)

∂Hd(x̃)
∂x̃

= 0

}
equals {x0}. The globally asymptotic

stability follows immediately invoking La Salle’s invariance principle.
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2.2. PCH controller design of IM. The model of the induction motor can be described
in a synchronously rotating d−q reference frame, and then we get the electrical subsystem

λ̇s = −Rsis − ωsJ2λs + us (20)

λ̇r = −Rrir − (ωs − npω)J2λr

and the mechanical subsystem

Jmω̇ = τ − τL −Rmω = npλ
T
r J2ir − τL −Rmω (21)

where

τ = npλ
T
r J2ir = np

Lm

Lr

iTs J2λr (22)

λ = Li (23)

L =

[
LsI2 LmI2
LmI2 LrI2

]
, I2 =

[
1 0
0 1

]
, J2 = −JT

2 =

[
0 −1
1 0

]
(24)

and

λ = [ λT
s λT

r ]T =
[
λsd λsq λrd λrq

]T
,

i = [ iTs iTr ]T =
[
isd isq ird irq

]T
, us = [ usd usq ]T (25)

τ and τL are electromagnetic and load torque respectively, the subscripts s and r indicate
the variables for the stator and the rotor respectively, Jm is the moment of inertia, Ls, Lr,
Lm are the stator, rotor, mutual inductances respectively, Rs and Rr are the resistances
for the stator and the rotor respectively, np is the number of pole pairs, ωs is electrical
angular speed of the stator (the rotating speed of the synchronously d−q reference frame),
ω is mechanical angular speed of the rotor, ωr is electrical angular speed of the rotor, Rm

is the friction coefficient of the rotor, and

ωr = npω. (26)

We define the mechanical momentum, state vector and input vector as follows respectively

p = Jmω, x =
[
λT
s λT

r p
]T

, u =
[
uT
s ωs −τL

]T
(27)

Using (21) and (27) yields

ṗ = Jmω̇ = npλ
T
r J2ir −Rmω − τL. (28)

The Hamiltonian (storage) function of the IM system is written as

H(x) =
1

2
xTD−1x =

1

2
λTL−1λ+

1

2

p2

Jm
(29)

D =

[
L 0
0 Jm

]
. (30)

(20) and (28) can be rewritten in (5), then the PCH model of IM is given by

ẋ =

 0 0 0
0 0 npJ2λr

0 npλ
T
r J2 0

−

 RsI2 0 0
0 RrI2 0
0 0 Rm

 ∂H(x)

∂x

+

 I2 −J2λs 0
0 −J2λr 0
0 0 1

u+ gw(x)w (31)

where
·

w = τ̃L= τL − τL0, gw(x) = [ 0 0 0 0 −1 ]T (32)
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τL0 is the known and constant load torque.

∂H(x)

∂x
= D−1x =

 is
ir
ω

 , J(x) =

 0 0 0
0 0 npJ2λr

0 npλ
T
r J2 0


R(x) =

 RsI2 0 0
0 RrI2 0
0 0 Rm

 , g(x) =

 I2 −J2λs 0
0 −J2λr 0
0 0 1

 . (33)

When load torque is known and constant, w = 0 (that is τL = τL0). At equilibrium x0,
ω = ω0. Following the idea of the IM rotor field orientation, given λr0, we have chosen
the desired rotor vector to be aligned with the d-axis of the d − q reference frame, then
the desired equilibrium is

x0 =

 x10

x20

x30

 =

 λs0

λr0

Jmω0

 , λs0 =

[
λsd0

λsq0

]
, λr0 =

[
µ
0

]
. (34)

According to the principle of vector control, we have

τ0 = τL +Rmω0, isd0 =
µ

Lm

, isq0 =
Lrτ0

Lmnpµ
, ird0 = 0. (35)

irq0 = −Lm

Lr

isq0 = − τ0
npµ

.

ωs0 = npω0 +
Rrτ0
npµ2

, λsd0 = Lsisd0, λsq0 = Lsisq0 + Lmirq0.

From (11) we get us − ωsJ2λs

−ωsJ2λr

−τL

 = [Ja −Ra − J(x0)]

 ı̃s
ı̃r
ω̃

−

 0

npJ2λ̃rω0

npλ̃
T
r J2ir0

+

 us0 − ωs0J2λs0

−ωs0J2λr0

−τL

 .

(36)
Supposing

Ja(x) =

 0 0 J13
0 0 J23
−JT

13 −JT
23 0

 , Ra =

 rsI2 0 0
0 0 0
0 0 0

 (37)

where rs is damping parameter, J13 and J23 are respectively assigned as

J13 = −npLmJ2ir0, J23 = npLmJ2is0.

From (36) we get the controller α(x) =
[
usα ωsα −τLα

]T
as follows:

usα = Rsis0 − rs(is − is0)− npLmJ2ir0(ω − ω0) + ωsJ2

[(
Ls −

L2
m

Lr

)
is +

Lm

Lr

λr

]
ωsα = npω0 +

λrd

||λr||2
Rrτ0
npµ

+
npLr(ω − ω0)λrqirq0

||λr||2

−τLα = −τL0 (38)

Rotor flux λr in (38) is not directly measurable, so an observer is needed to estimate it.
In order to get rid of rotor resistance changes, we use an open-loop rotor flux observer.
From (20) and (23) we get the observer

λ̇s = us −Rsis − ωsJ2λs (39)
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λr =
Lr

Lm

λs +

(
Lm − LsLr

Lm

)
is. (40)

3. The L2 Gain Disturbance Attenuation of IM.

3.1. The L2 gain disturbance attenuation for PCH system. Considering system
(5), there exists a load disturbance τ̃L (that is τL 6= τL0) when w 6= 0, the form of controller
is

u = α(x) + β(x) (41)

Meantime, the closed-loop system (12) turns to be

·
x̃= [Jd(x̃)−Rd(x̃)]

∂Hd(x̃)

∂x̃
+ g(x)β(x) + gw(x)w (42)

Penalty signal is defined by

z = h(x)gT (x)

[
∂Hd(x̃)

∂x̃

]T
(43)

where h(x) is a weight matrix.
For system (42), the L2 gain disturbance attenuation objective can be described as

follows: given positive γ, penalty signal z, positive definite storage function Hd(x̃) and
desired equilibrium point x0, our aim is to find the state feedback control law

u
′
= β(x) (44)

such that the γ-dissipative inequality

.

Hd (x̃) +Q(x) ≤ 1

2

(
γ2 ‖w‖2 − ‖z‖2

)
, ∀w (45)

holds along the trajectories of the closed-loop system (42), where Q(x) is a given non-
negative definite function.

The L2 gain disturbance attenuation control principle of PCH system is given as follows
[8, 9].

Proposition 3.1. Consider system (42) and penalty signal (43). For any given positive
γ, the L2 disturbance attenuation objective is achieved by the state feedback

β(x) = −1

2

[
1

γ2
I5 + hT (x)h(x)

]
gT (x)

∂Hd(x̃)

∂x̃
(46)

and

Rd +
1

2γ2
g(x)gT (x)− 1

2γ2
gw(x)g

T
w(x) ≥ 0 (47)

Proof: Let

Q(x) =
∂THd(x̃)

∂x̃

[
Rd +

1

2γ2
g(x)gT (x)− 1

2γ2
gw(x)g

T
w(x)

]
∂Hd(x̃)

∂x̃
(48)

It is easy to know from (47) and (48) that

Ḣd(x̃) =
∂THd(x̃)

∂x̃

·
x̃ = −∂THd(x̃)

∂x̃
Rd

∂Hd(x̃)

∂x̃
+

∂THd(x̃)

∂x̃
[g(x)β(x) + gw(x)w]

= −∂THd(x̃)

∂x̃
Rd

∂Hd(x̃)

∂x̃
+

∂THd(x̃)

∂x̃
gw(x)w

−1

2

∂THd(x̃)

∂x̃
g(x)

[
1

γ2
I5 + hT (x)h(x)

]
gT (x)

∂Hd(x̃)

∂x̃
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= −∂THd(x̃)

∂x̃

[
Rd +

1

2γ2
g(x)gT (x)− 1

2γ2
gw(x)g

T
w(x)

]
∂Hd(x̃)

∂x̃

+
1

2

(
γ2 ‖w‖2 − ‖z‖2

)
− 1

2

∥∥∥∥γw − 1

γ
gTw(x)

∂Hd(x̃)

∂x̃

∥∥∥∥2

we have

.

Hd (x̃) +Q(x) =
1

2

(
γ2 ‖w‖2 − ‖z‖2

)
− 1

2

∥∥∥∥γw − 1

γ
gTw(x)

∂Hd(x̃)

∂x̃

∥∥∥∥2

, (49)

i.e., (45) holds.

Remark 3.1. Proposition 3.1 indicates that if the additional damping

Rd → Rd +
1

2γ2
g(x)gT (x)− 1

2γ2
gw(x)g

T
w(x) (50)

which provided by additional feedback β(x) is injected to the closed-loop system (42), then
finite L2 disturbance attenuation can be achieved for closed-loop systems.

3.2. The L2 gain controller design. For the case h(x) = I5, according to (43),

z = h(x)gT (x)

[
∂Hd(x̃)

∂x̃

]T
=

 is − is0
λT
s J2(is − is0) + λT

r J2(ir − ir0)
ω − ω0

 (51)

From (46), we can get controller

β(x) =

 usβ

ωsβ

τLβ

 =


−1

2

(
1
γ2 + 1

)
(is − is0)

−1
2

(
1
γ2 + 1

) [
λT
s J2(is − is0) + λT

r J2(ir − ir0)
]

−1
2

(
1
γ2 + 1

)
[ω − ω0]

 (52)

Moreover, from (41), we obtain

us = usα + usβ

ωs = ωsα + ωsβ

τL = τLα + τLβ

(53)

When disturbance is added to the system, τL of (35) can be replaced by (τLα + τLβ).
Then the new desired equilibrium becomes

∧
x0=

[
∧
x10

∧
x20

∧
x30

]T
=

[
∧
λs0

∧
λr0 Jmω0

]T
(54)

Consequently, the entire system controller turns to be

us =Rsîs0 − rs(is − ˆis0)− npLmJ2 ˆir0(ω − ω0)

+ ωsJ2

[(
Ls −

L2
m

Lr

)
is +

Lm

Lr

λr

]
− 1

2

(
1

γ2
+ 1

)
(is − îs0).

(55)

ωs =npω0 +
λrd

||λr||2
Rrτ0
npβ

+
npLr(ω − ω0)λrq

ˆirq0

||λr||2

− 1

2

(
1

γ2
+ 1

)[
λT
s J2(is − îs0) + λT

r J2(ir − ˆir0)
] (56)

τL = τL0 −
1

2

(
1

γ2
+ 1

)
[ω − ω0] (57)
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3.3. Application of PI control. In order to track the changes of the load torque and
eliminate speed steady error of IM drives, the PI control of speed error is added to the
system. The integral separation principle is used to avoid integral saturation. The load
torque estimator is designed as follows.

4τ̂L =

{
−kp (ω − ω0) , |ω − ω0| > ρ,

−kp (ω − ω0)− ki
∫ t

t0
(ω − ω0) dt, |ω − ω0| ≤ ρ,

(58)

where ρ is integral separation threshold value. Then, the expression (57) becomes

τL = τL0 −
1

2

(
1

γ2
+ 1

)
[ω − ω0] +4τ̂L (59)

Thus, τL of (35) can be replaced by τL above, and new equilibrium can be obtained.

4. The Comparative Studies and Simulation Results. The state error PCH control
of IM is shown in Figure 1. The IM is connected to the a three-phase DC/AC voltage-
source inverter. The outputs of the inverter are connected to the three-phase stator
windings of IM which are Wye-connected. Feedback speed and currents are considered
as the inputs of the PCH controller. Then, applying SVPWM signal transformation
principle, we can get six pulses which are used to control the inverter to provide the desired
three-phase voltages. As a result, the speed tracking control of IM can be implemented.

Figure 1. The state error PCH control of the IM

The IM parameters are Rs = 0.687Ω, Rr = 0.642Ω, np = 2, Ls = 0.084H, Lr = 0.0852H,
Lm = 0.0813H, Jm = 0.3kg·m2, Rm = 0.001kg·m2/s.

At startup, the load torque τL is set to 3Nm. The desired speed ω0 is 60 rad/s.
UDC = 300V, λrd0 = µ = 1Wb, ρ = 2. From (35) and (36), we get the equilibriums
as follows: isd0 = 12.3001A, isq0 = 1.572A, ird0 = 0A, irq0 = −1.5A.

Figures 2-4 show the performance of the controller (38). Figure 2 gives the speed
responses of different damping parameters (rs = 5, rs = 10 and rs = 20) when load
torque is constant and known. We can see that speed response is the fastest and no
steady state error when rs is 5. Figure 3 shows the rotor flux response. It seems that the
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IM rotor flux tracks given value very well. Figure 4 shows the speed curve when a load
torque disturbance (3Nm) is added to the system at t = 1s. It can be seen that rotor
speed becomes slow and the system appears steady state error.
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Figure 2. Rotor speed curve
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Figure 3. Rotor flux curve
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out L2 control
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Figure 5. Speed curve with
L2 control
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Figure 6. Local enlarged
curve of Figure 5
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L2 and PI

Figures 5 and 6 present the speed curves with L2 disturbance attenuation (load torque
disturbance 3Nm is added to the system at t = 1s) when γ = 0.1, 0.5, 1 respectively.
From the simulation results, we can see that L2 gain control has good attenuation effect
to external disturbance.
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Although the Figures 5 and 6 show that the effect of disturbances attenuation is very
good, but speed steady state error still exists. Thus, the PI control is added to the motor
system. Figures 7-11 present the simulation results of the controllers (55, 56 and 59).
Figures 7 and 8 show the speed curves with L2 disturbance attenuation (γ = 0.6) and PI
control. The estimator parameters are kp = 0.1 and ki = 90. The simulation results show
that speed steady state error is almost eliminated. Figures 9-11 show the A-phase current
response, A-phase voltage response and electromagnetic torque response respectively.
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Figure 8. Local enlarged
curve of Figure 7
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Figure 9. A-phase current
with L2 and PI
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with L2 and PI
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and PI

In order to compare the proposed control algorithm and the existing vector control
(VC) [1], the vector control simulation experiments have been carried out. The vector
control of IM is shown in Figure 12. The IM parameters are the same as Figure 1. The
G1, G2, G3 and G4 are PI regulators, and parameters are kp1 = 2, ki1 = 50; kp2 = 5,
ki2 = 2; kp3 = 1, ki3 = 2; kp4 = 2, ki4 = 10.

Figures 13-17 give the simulation results of the vector control. The dynamic perfor-
mances of state error PCH control with L2 and PI regulation are better than ones of the
vector control. Figures 13 and 14 show that the speed fluctuation of the vector control
is bigger in the presence of load torque disturbance. From Figures 15 and 16, we can see
that the A-phase current and voltage become larger for the vector control when the load
torque disturbance is added to the system at t = 1s. Figure 17 shows that the dynamic
performance of starting electromagnetic torque deteriorates for the vector control.
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Figure 12. The vector control of the IM
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the VC control
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curve of Figure 13
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of the VC control
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5. Conclusions. In this paper, the speed tracking control and disturbance attenuation
of IM are presented based on the state error PCH systems method and L2 gain technique.
Using the interconnection and damping assignment and ES, the desired state error PCH
structure is assigned to the closed-loop IM drive system. The equilibrium stability of the
closed-loop system is also verified according to the Lyapunov’s stability theorem. The L2
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Figure 17. Te curve of the VC control

gain control problem is discussed for the state error PCH system. The L2 gain from load
torque disturbance to a penalty signal can be reduced to any level by injection of addi-
tional damping, if the penalty signal is defined properly. Moreover, the PI control is added
to the system, so as to track the changes of the load torque and eliminate the speed steady
error of IM system. Compared with the classical vector control, the proposed scheme has
good control performance. The simulation results illustrate the effectiveness of the devel-
oped controller. The deficiency of the research results is that the load torque disturbance
attenuation is developed only in this paper. Moreover, induction motor parameters dis-
turbances, such as the stator resistance, rotor resistance and inductance disturbances can
be considered for the future research.
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