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Abstract. The stabilization of continuous-time Takagi-Sugeno systems is studied and
solved by using a non-PDC controller. First, stability conditions are derived in terms of
Linear Matrix Inequalities, using a multiple Lyapunov function; then, algorithms to cal-
culate controllers that ensure closed-loop stability are derived. To show the applicability
of the proposed approach, some examples are also provided.
Keywords: Takagi-Sugeno systems, State-feedback controller, Multiple Lyapunov func-
tion

1. Introduction. It is well known that many continuous-time nonlinear systems can be
represented by equivalent Takagi-Sugeno (T-S) models [1, 2], which simplifies developing
nonlinear controllers that guarantee stability. This representation as T-S systems is pre-
cise when the so-called nonlinearity sector approach is used [3]. Nonetheless, controller
design for this kind of systems is frequently carried out after transformation to discrete-
time, as stability analysis of T-S models is easier in discrete-time, by using Lyapunov
functions. Some recent works are [4, 5, 6, 7, 8, 9], which provide sufficient conditions in
terms of Linear Matrices Inequalities (LMIs), by using a multiple Lyapunov function in
discrete-time. For continuous-time T-S systems, we can just cite [10, 11, 12, 13, 14]. This
lack of results is caused by the difficulty of using a multiple Lyapunov function in the
continuous-time case, as time-derivatives of the membership functions (MFs) appear in
the evaluation of the derivative of the Lyapunov function. This makes it very difficult to
obtain easily checkable conditions for its decrease. Some published works are limited to
stability analysis study [15, 16]. For example, in [15] the authors proposed an approach
based on reducing the global stability goals to an estimation of the region of attraction
(using local asymptotic conditions), by solving a set of LMIs. While a new class of fuzzy
Lyapunov functions, that depend not only on the fuzzy weighting functions of the TS
fuzzy systems but also on their first order time derivatives, is proposed by [16]. Other
works have been proposed to find stabilizing controllers for continuous-time T-S systems
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by using a multiple Lyapunov function [12, 14, 17]. To avoid the apparition of the time-
derivatives of the MFs, [12] proposed a new type of Lyapunov function, expressed as the
path integral of certain state function. An algorithm was given to find the corresponding
feedback gain matrices. Unfortunately, this approach can give conservative results, due
to the prescribed structure of the proposed Lyapunov function: the off-diagonal elements
are common for all Lyapunov matrices. In [14], information on the MFs has been used
to reduce conservatism in controller design. Recently, [18] has proposed to use a homo-
geneous polynomial matrix function to the nonquadratic Lyapunov functions, to derive
more relaxed conditions; Unfortunately, this methodology is limited to discrete-time case
and due to the derivative on time of MFs, so, as already pointed out in [18], it is difficult
to extend their methodology to the continuous-time case. Finally, we can cite [11], where
the authors proposed the upper bounds of the time-derivative of the MFs. Thus, to over-
come the problem of selecting those upper bounds, the authors suggested a control law
that depends on the time-derivative of MFS scheme. As a consequence, the methodology
of [11] is limited to the case where the time derivatives of MFs depend only on the states.
To solve these difficulties, in this work, inspired by [11], an approach that considers

the upper bounds of the time-derivative of the Lyapunov function as decision variables is
proposed for both stability analysis and controller design, of continuous-time T-S models.
The advantages of the proposed methodology are as follows. First, unlike [11, 19], which
assume that each time-derivative of MF is bounded, the proposed approach considers
the bounds of the Lyapunov matrices interpolated via the time-derivative of MFs, which
leads to less conservative results, as it provides additional degrees of freedom. Second,
it is not necessary to define a priori the bounds, as they are considered variables within
an optimization problem. Third, the proposed methodology is not limited for stability
analysis: as it is shown later, it can be extended to controller design.
This paper is organized as follows. Section 2 gives LMI-based stability conditions for

autonomous T-S systems, using a cone complementary formulation. These conditions are
applied for controller design in Section 3, where an example is also provided. Finally,
Section 4 gives some conclusions.

2. Stability Conditions for Autonomous T-S Fuzzy Models. This section develops
the proposed stability analysis methodology for continuous-time T-S fuzzy systems, by
using a multiple Lyapunov function.
A continuous-time T-S model [3] is described as a set of r rules, where each rule i uses

l fuzzy sets M i
1, . . . ,M

i
l and fuzzy variables z1(t), . . . , zl(t), as follows:

Rule i : IF z1(t) is M
i
1 AND . . . AND zl(t) is M

i
l THEN ẋ(t) = Aix(t) +Biu(t).

The global T-S model is then structured as follows [3]:

ẋ(t) =
r∑

i=1

hi(z(t))(Aix(t) + Biu(t)), (1)

where Ai and Bi are constant matrices, x(t) ∈ <n is the state, u(t) ∈ <m is the control
and hi(z(t))’s are the MFs of the ith rule (also denoted hi(z)), obtained from the M i

l .

The convex sum property
r∑

i=1

hi(z) = 1 holds and 0 ≤ hi(z) ≤ 1. Moreover, it is

assumed that the hi(z) are C1 functions (continuous and derivable).
Consider the autonomous T-S system, corresponding to (1) when u(t) = 0:

ẋ(t) =
r∑

i=1

hi(z)Aix(t). (2)
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Stability conditions for the T-S system (2) are now given.

Theorem 2.1. Let Υk
ij =

[
−1

r

(
AT

j Pi + PiAj

)
φkI

φkI Qk

]
. If there exist scalars φ1 ≥ 0, . . . ,

φr ≥ 0 and symmetric matrices P1 > 0, . . . , Pr > 0, Q1 > 0, . . . , Qr > 0, feasible solution
of the following Optimization Problem

(OP1)


maximize

φi,Pi,Qi

r∑
i=1

φi subject to

Υk
ii > 0, 1 ≤ i, k ≤ r,

Υk
ij +Υk

ji ≥ 0, 1 ≤ k ≤ r, 1 ≤ i < j ≤ r,
PiQi = I, 1 ≤ i ≤ r,

(3)

such that
r∑

i=1

∣∣∣ḣi(z)
∣∣∣Pi ≤

r∑
i=1

φ2
iPi, ∀t, then the T-S system (2) is asymptotically stable.

Proof: For stability analysis, we propose to use the following multiple Lyapunov func-
tion:

V (x(t)) = xT (t)
r∑

i=1

hi(z)Pix(t). (4)

Then, evaluating the rate of V along the trajectory gives:

V̇ (x(t)) = xT (t)
r∑

k=1

ḣk(z)Pkx(t) + ẋT (t)
r∑

i=1

hi(z)Pix(t) + xT (t)
r∑

i=1

hi(z)Piẋ(t)

=xT (t)
r∑

i=k

ḣk(z)Pkx(t) + xT (t)

[
r∑

i,j=1

hi(z)hj(z)(PiAj + AT
j Pi)

]
x(t).

(5)

One drawback of using directly the last equality in (5) is the apparition of the time-

derivative of MFs ḣk(z). To solve this problem, we assume that the first term is bounded
as follows:

r∑
k=1

∣∣∣ḣk(z)
∣∣∣Pk ≤

r∑
k=1

φ2
kPk,∀t,

P1 = P T
1 > 0, P2 = P T

2 > 0, . . . , Pr = P T
r > 0 and φ1 ≥ 0, φ2 ≥ 0 . . . , φr ≥ 0,

(6)

where φk are decision variables to be computed, as well as the matrices Pi. As a conse-
quence, V̇ (x(t)) can be bounded as follows:

V̇ (x(t)) ≤ xT (t)

(
r∑

k=1

φ2
kPk +

r∑
i,j=1

hi(z)hj(z)
(
PiAj + AT

j Pi

))
x(t).

Hence, the stability of the system (2) is guaranteed by the following condition

r∑
k=1

φ2
kPk +

r∑
i,j=1

hi(z)hj(z)
(
PiAj + AT

j Pi

)
< 0. (7)
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Now, using the convex sum property
r∑

i=1

hi(z) =
r∑

j=1

hj(z) = 1, (7) can also be written as

follows:
r∑

k=1

φ2
kPk +

r∑
i=1

hi(z))
(
PiAi + AT

i Pi

)
+
∑
i<j≤r

hi(z)hj(z)
(
PiAj + AT

j Pi + PjAi + AT
i Pj

)
< 0, (8)

it is easy to check that the stability condition (8) is guaranteed by the following inequal-
ities.

φ2
kPk +

1
r

(
AT

i Pi + PiAi

)
< 0, 1 ≤ i, k ≤ r.

2φ2
kPk +

1
r

(
AT

j Pi + PiAj + AT
i Pj + PjAi

)
≤ 0, 1 ≤ i < j ≤ r, 1 ≤ k ≤ r.

(9)

One of the objectives of this paper is to provide a methodology that makes possible
the computation of the bounds φk, since it has been shown in the literature [11, 19]
that the selection of those bounds is very difficult, especially when the MFs depend on
nonmeasurable state variables. However, regarding conditions (9), the mixed products
φ2
kPk of unknown variables make hard the direct solution of (9). In this work, we suggest

moving the nonlinearities in conditions (9) to equality conditions. To do this, let Pk = Q−1
k

in (9) and take its Schur complement, to get (3).

Remark 2.1. It should be noted that, compared with previous works in the literature
that also consider upper bounds on the time derivative of the MFs [11, 19], the proposed
assumption (6) has some clear advantages:

1. In this work the φk in (6) are decision variables, that can be calculated as part of the
proposed algorithm, so they do not need to be known a priori.

2. Assumption (6) considers only the upper bound of a sum of products, which leads to
less conservative results, as there are more degrees of freedom.

3. If S is the set of φ1, . . . , φr that fulfill (9), note that a larger size of S implies smaller
conservatism of condition (9). Henceforth, conservatism can be significantly reduced
by using the available degrees of freedom, enlarging S, by maximizing its perimeter,

i.e., by maximizing
r∑

i=1

φi, as is proposed in Theorem 2.1.

4. The number of conditions to be satisfied in the optimization problem (OP1) is equal
to r2(r + 1)/2 + r.

5. Comparing with the discrete-time case, the number of stability condition is increased
by r.

To handle the nonconvex constraint PiQi = I in (3), we propose to use the cone
complementarity formulation given by the following lemma [8].

Lemma 2.1. The equality constraint PiQi = I holds for i = 1, . . . , r, if and only if there
exist symmetric matrices P1 > 0, . . . , Pr > 0, Q1 > 0, . . . , Qr > 0 such that the optimum
of the following optimization problem (OP2) is achievable and equal to n× r:

(OP2)


minimize

Pi,Qi

r∑
i=1

Tr(PiQi) subject to[
Pi I
I Qi

]
> 0, 1 ≤ i ≤ r.

(10)
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Remark 2.2. The main idea of the transformation in Lemma 2.1 is to move the nonlin-
earity from the constraints PiQi = I to an objective function subject to LMIs, as given by
(10).

Taking into account the previous considerations, one has a multi-objective or multi-
criterion optimization problem ((OP1) and (OP2)), where the objective is to minimize

at the same time −
r∑

i=1

φi and
r∑

i=1

Tr(PiQi). The most used approach for solving this

multiobjective optimization problem is to combine the objective functions into a single
objective, called the Aggregate Objective Function (AOF). A well-known combination
is the weighting method, in which one specifies scalar weights for each objective to be
optimized, and then combines them into a single function to be minimized. This can be
done by fixing 0 < β < 1 and then solving the following optimization problem, which can
substitute (OP1) in Theorem 2.1.

(OP3)



minimize
φi,Pi,Qi

β

r∑
i=1

Tr(PiQi)− (1− β)
r∑

i=1

φi subject to

Υk
ii > 0, 1 ≤ i, k ≤ r,

Υk
ij +Υk

ji ≥ 0, 1 ≤ k ≤ r, 1 ≤ i < j ≤ r, 1 ≤ k ≤ r,[
Pi I
I Qi

]
> 0, 1 ≤ i ≤ r.

(11)

Note that, the number of stability conditions in (OP3) is still the same as in (OP1). It

can be seen that the objective function
r∑

i=1

Tr(PiQi) is nonconvex, so it is proposed to

use the following linearization algorithm for solving (OP3).

Algorithm 1. Fix a tolerance ε (for example, ε = 10−6) and 0 < β < 1, and execute the
following:

• Step 1: Set P 0
i = I and Q0

i = I, for i = 1, . . . , r.
• Step 2: Solve the LMI optimization:

minimize
Pi,Qi,φi

β
r∑

i=1

Tr(P l
iQi +Ql

iPi)− (1− β)
r∑

i=1

φi subject to the constraints (11).

• Step 3: Let P ∗
i , Q

∗
i , i = 1, . . . , r be the optimal solution: if

∣∣∣∣∣
r∑

i=1

Tr(P ∗
i Q

∗
i )− n× r

∣∣∣∣∣ ≤
ε, then stop, otherwise set P l+1

i ←− P ∗
i , Q

l+1
i ←− Q∗

i , and repeat from Step 2.

Remark 2.3. In Algorithm 1, the weight β can be tuned to enlarge the perimeter
r∑

i=1

φi.

3. Control Synthesis. In this section, we extend the methodology of the previous sec-
tion to propose a control scheme based on a non classical PDC control law.

Thus, we consider stabilization using the following control law, previously used by [4]:

u(t) =

(
r∑

i=1

hi(z)Ki

)(
r∑

j=1

hj(z)Pj

)−1

x(t). (12)

The following result solves the stabilization problem for continuous-time T-S systems.
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Theorem 3.1. Let Υk
ij ≡

[
−1

r

(
AiPj +BiKj + (AiPj +BiKj)

T
)

φkI
φkI Qk

]
. If there exist

scalars φ1 ≥ 0, . . . , φr ≥ 0, symmetric matrices P1 > 0, . . . , Pr > 0, Q1 > 0, . . . , Qr > 0
and controller gains K1, . . . , Kr, feasible solution of the following optimization problem:

(OP4)


maximize
φi,Pi,Qi,Ki

r∑
i=1

φi subject to

Υk
ii > 0, 1 ≤ i, k ≤ r,

Υk
ij +Υk

ji ≥ 0, 1 ≤ i < j ≤ r, 1 ≤ k ≤ r,
PiQi = I, 1 ≤ i ≤ r,

(13)

such that
r∑

i=1

∣∣∣ḣi(z)
∣∣∣Pi ≤

r∑
i=1

φ2
iPi, ∀t, then the T-S system (1) with the control law (12)

is asymptotically stable.

Proof: First, substituting (12) into (1), the closed-loop system can be written as
follows:

ẋ(t) = (Az +BzKzP
−1
z )x(t), (14)

where, by notation,

Az ≡
r∑

i=1

hi(z)Ai, Bz ≡
r∑

i=1

hi(z)Bi, Pz ≡
r∑

i=1

hi(z)Pi, Kz ≡
r∑

i=1

hi(z)Ki. (15)

For this system (14), consider the following Lyapunov function

V (x(t)) = xT (t)P−1
z x(t), (16)

and evaluate the rate of V along the trajectory of the closed-loop system (14):

V̇ (x(t)) = xT (t) ˙P−1
z x(t) + ẋT (t)P−1

z x(t) + xT (t)P−1
z ẋ(t).

By using the identity PzP
−1
z = I, we obtain ˙P−1

z = −P−1
z ṖzP

−1
z , where Ṗz =

r∑
i=1

ḣi(z)Pi.

Thus, the rate of V is given by

V̇ (x(t)) = xT (t)
{
−P−1

z ṖzP
−1
z + (Az +BzKzP

−1
z )TP−1

z + P−1
z (Az +BzKzP

−1
z )
}
x(t).

According to Assumption (6) one has −Ṗz ≤
r∑

k=1

φ2
kPk, and by consequence we obtain

V̇ (x(t)) ≤ xT (t)

{
P−1
z

(
r∑

k=1

φ2
kPk

)
P−1
z

+ (Az +BzKzP
−1
z )TP−1

z + P−1
z (Az +BzKzP

−1
z )

}
x(t).

Hence, the stability of the closed-loop system is guaranteed by the following condition

P−1
z

(
r∑

k=1

φ2
kPk

)
P−1
z + (Az +BzKzP

−1
z )TP−1

z + P−1
z (Az +BzKzP

−1
z ) < 0, (17)
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which is equivalent to the following one (obtained by post- and pre-multiplying (17) by
Pz

r∑
k=1

φ2
kPk + (AzPz +BzKz)

T + (AzPz +BzKz) < 0 (18)

(18) holds if

φ2
kPk +

1

r

(
(AzPz +BzKz)

T + (AzPz +BzKz)
)
< 0 (19)

holds. By consequence, using the schur complement on (19) we obtain[
−1

r

(
AzPz +BzKz + (AzPz +BzKz)

T
)

φkI
φkI Qk

]
=

[
r∑

i=1

hi(z)
2Υk

ii +
∑
i<j=r

hi(z)hj(z)(Υ
k
ij +Υk

ji)

]
> 0,

(20)

which completes the proof.
As before, we define S to be the set of all φ1, . . . , φr such that the stability conditions

(13) are satisfied. Thus, we must maximize the size of the set S as given in Theorem 3.1.
Using Lemma 2.1, we need to look for a solution to the following optimization problem
(OP5), which substitutes (OP4) in Theorem 3.1, by selecting the tuning parameter 0 <
β < 1.

(OP5)



minimize
φi,Pi,Qi

(
β

r∑
i=1

Tr(PiQi)− (1− β)
r∑

i=1

φi

)
subject to

Υk
ii > 0, 1 ≤ i, k ≤ r,

Υk
ij +Υk

ji ≥ 0, 1 ≤ i < j ≤ r, 1 ≤ k ≤ r,[
Pi I
I Qi

]
> 0, 1 ≤ i ≤ r,

(21)

where Υk
ij ≡

[
−1

r

(
AiPj +BiKj + (AiPj +BiKj)

T
)

φkI
φkI Qk

]
.

Remark 3.1. It is worth noting that all constraints in (21) are linear in Pi, Qi, Ki and
φi. Further, gains Ki are directly computed.

Remark 3.2. The number of LMIs to be satisfy in (OP5) is the same as for uncontrolled
system, which can be consider as one of the advantage of the proposed approach.

Finally, the following linearization algorithm is proposed to solve (OP5).

Algorithm 2. Fix a tolerance ε (for example, ε = 10−6) and 0 < β < 1, and execute the
following:

• Step 1: Set Q0
i = I and P 0

i = I, for i = 1, . . . , r.
• Step 2: Solve the LMI optimization:

minimize
Pi,Qi,φi

β

r∑
i=1

Tr(P l
iQi +Ql

iPi)− (1− β)
r∑

i=1

φi subject to the constraints (21).

• Step 3: Let P ∗
i , Q

∗
i , i = 1, . . . , r be the optimal solution, if

∣∣∣∣∣
r∑

i=1

Tr(P ∗
i Q

∗
i )− n× r

∣∣∣∣∣ ≤
ε then stop, otherwise set Ql+1

i ←− Q∗
i , P

l+1
i ←− P ∗

i , and repeat from Step 2.
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Remark 3.3. Again, the weight β can be tuned to enlarge the perimeter
r∑

i=1

φi.

3.1. First example. To show the applicability of the proposed approach, the same model
already studied by [11, 12, 15] is used:

Rule 1 : IF x1(t) is h1(x1(t)) THEN ẋ(t) = A1x(t),
Rule 2 : IF x1(t) is h2(x1(t)) THEN ẋ(t) = A2x(t),

(22)

where

A1 =

[
−5 −4
−1 −2

]
, A2 =

[
−2 −4
20 −2

]
, (23)

and the membership functions h1 and h2 are defined as follows:

h1 = (1− sin(x1))/2, h2 = 1− h1 (24)

3.1.1. Stability analysis. It is assumed that the model is valid in the region R = {x : |xi| ≤
π/2}. As shown by [11], quadratic stability, that consists in finding a common Lyapunov
matrix for the all subsystems, fails for the TS model (30). Solving the optimization
problem given in Algorithm 1, the following solution is obtained with β = 0.29, after only
3 iterations:

P1 =

[
0.7708 1.2083
1.2083 2.9780

]
, P2 =

[
1.0506 1.6464
1.6464 3.7071

]
,

Q1 =

[
3.5647 −1.4463
−1.4463 0.9226

]
, Q2 =

[
3.1305 −1.3903
−1.3903 0.8872

]
.

(25)

Figure 1 depicts the trajectory of (30) from various initial points in R, using the proposed
controller. For the sake of comparison, Figure 2 also presents the regions of attraction
R0 and Ω, estimated using the methodologies given by [15, 20], respectively. It is clearly
shown that, using the proposed methodology, the stability region of (30) is significantly
larger and reaches R.

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

Figure 1. System trajectories using the proposed approach
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Figure 2. Estimated regions of attraction using [15] (R0), [20] (Ω) and
the proposed methodology (R)

3.1.2. Controller design. For the same system, assume that

B1 =

[
1
10

]
, B2 =

[
1
3

]
. (26)

It should be noted that the methodology proposed by [11] cannot solve this control prob-
lem, since the time derivative of hi(x1(t)) cannot be calculated from only the states. In
contrast, using Algorithm 2 stabilizing controller gains for the system (30) can be obtained
as follows:

K1 = [−0.6090 − 2007.6], K2 = [−8.9432 − 3227.9]. (27)

Thus, a stabilizing control law is given by

u(t) = (h1K1 + h2K2)(h1P1 + h2P2)
−1x(t). (28)

Figure 3 shows the evolution of the state variables from several initial conditions using
the control law (28). It can be seen that asymptotically stability for the closed-loop
system is guaranteed by the proposed approach.

3.2. Second example. Consider an inverted pendulum on a cart which is described as
below. This model was also considered by [21]

ẋ1(t) = x2(t),

ẋ2(t) =
g sin(x1(t))− amlx2

2(t) sin(2x1(t)/2− a cos(x1(t))u(t)

4l/3− aml cos2(x1(t))
,

(29)

where x1(t) denotes the angle (in radians) of the pendulum from the vertical, x2(t) is the
angular velocity, g = 9.8m/s2 is the gravity constant, m is the mass of the pendulum, M
is the mass of the cart, 2l is the length of the pendulum, u is the force applied to the cart
(in newtons) and a = 1/m+M .

We can describe this nonlinear system as a T-S system composed of two subsystems,
related through two rules: the first rule corresponds to the operation point about x1 = 0,
whereas the second one corresponds to x1 around ±pi/2. Thus, similar to [21] one can
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−1.5

−1

−0.5

0

0.5

1

1.5

Time

y(
t)

Figure 3. Control result

describe this system by the following two rules:

Rule 1 : if x1(t) is about 0, then ẋ(t) = A1x(t) +B1u(t),
Rule 2 : if x1(t) is about ± pi/2(|x1| < π/2), then ẋ(t) = A2x(t) + B2u(t),

(30)

where

A1 =

[
0 1
g

4l/3−aml
0

]
, B1 =

[
0

− a
4l/3−aml

]
,

A2 =

[
0 1
2g

π(4l/3−amlθ2)
0

]
, B2 =

[
0

− aθ
4l/3−amlθ2

]
,

(31)

and θ = cos(88 deg). The membership functions for Rules 1 and 2 are shown in Figure 4.

Figure 4. Membership functions the inverted pendulum
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Using Algorithm 2 for (31), the following controller matrices are obtained after only 1
iteration, executed in 0.6 sec, using LMITools running on a Pentium IV computer:

P1 =

[
0.9852 −0.1752
−0.1752 1.0469

]
, P2 =

[
0.9854 −0.1753
−0.1753 1.0469

]
,

K1 = [100 6.62× 105], K2 = [20 2.35× 106].
(32)

Figure 5 illustrates some simulations of the closed-loop behavior of the system with the
developed TS controller, from the initial conditions x1 = 65 deg, 75 deg, 85 deg, always
with x2 = 0, that correspond to the pendulum starting at rest from different angles. It
can be seen that, effectively, the system is stabilized by the proposed controller.
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Figure 5. Evolution of the angle using the proposed controller design,
starting from rest at different positions

4. Conclusions. This article has proposed a new methodology for stability analysis and
controller design for continuous-time Takagi-Sugeno systems. The proposed approach
gives LMI-based algorithms for checking stability and designing stabilizing controllers,
following a Non-PDC structure. These algorithms are based on conditions less conserva-
tive than those in previous works. Indeed, the provided result is derived without fixing in
advance the bounds on the time-derivatives of the Membership Functions. The efficiency
of the proposed approach is shown through two examples from the literature.
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systems, International Journal of Innovative Computing, Information and Control, vol.5, no.10(A),
pp.3141-3155, 2009.

[7] X. Ban, X. Z. Gao, X. Huang and H. Yin, Stability analysis of the simplest Takagi-Sugeno fuzzy
control system using popov criterion, International Journal of Innovative Computing, Information
and Control, vol.3, no.5, pp.1087-1096, 2007.

[8] M. Nachidi, A. Benzaouia, F. Tadeo and M. A. Rami, LMI-based approach for output-feedback
stabilization for discrete time Takagi-Sugeno systems, IEEE Transactions on Fuzzy Systems, vol.16,
no.5, pp.1188-1196, 2008.

[9] L. Wang and X. Liu, New relaxed stabilization conditions for fuzzy control systems, International
Journal of Innovative Computing, Information and Control, vol.5, no.5, pp.1451-1460, 2009.

[10] A. Jadbabaie, A reduction in conservatism in stability and l2 gain analysis of Takagi-Sugeno fuzzy
systems via linear matrix inequalities, Proc. of the 14th IFAC World Congress, Beijing, China,
pp.285-289, 1999.

[11] K. Tanaka, T. Hori and H. O. Wang, A multiple Lyapunov approach to stabilization of fuzzy control
systems, IEEE Transactions on Fuzzy Systems, vol.11, no.4, pp.582-589, 2003.

[12] B.-J. Rhee and S. Won, A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control
system design, Fuzzy Sets and Systems, vol.157, no.9, pp.1211-1228, 2006.

[13] T. M. Guerra, A. Kruszewski and J. Lauber, Discrete Tagaki-Sugeno models for control: Where are
we? Annual Reviews in Control, vol.33, no.1, pp.37-47, 2009.

[14] M. Bernal, T. M. Guerra and A. Kruszewski, A memebership-fucnction-dependent approach for
stability analysis and controller synthesis of Takagi-Sugeno models, Fuzzy Sets and Systems, vol.160,
no.19, pp.2776-2795, 2009.

[15] T. M. Guerra and M. Bernal, A way to escape from the quadratic framework, Fuzz-IEEE, 2009.
[16] D. H. Lee, J. B. Park and Y. H. Joo, A new fuzzy Lyapunov function for relaxed stability condition

of continuous-time Takagi-Sugeno fuzzy systems, IEEE Transactions on Fuzzy Systems, vol.19, no.4,
pp.785-791, 2011.

[17] H. Zhang and X. Xie, Relaxed stability conditions for continuous-time ts fuzzy-control systems
via augmented multi-indexed matrix approach, IEEE Transactions on Fuzzy Systems, vol.19, no.3,
pp.478-492, 2011.

[18] J. Cai, S. Hu and H. Tao, Fuzzy static output feedback guaranteed cost reliable control for uncertain
nonlinear systems with time-delay, International Journal of Innovative Computing, Information and
Control, vol.4, no.12, pp.3409-3420, 2009.

[19] P. Apkarian and P. Gahinet, A convex characterization of gain-scheduling H∞ controllers, IEEE
Transactions on Automatic Control, vol.40, no.5, pp.853-864, 1995.

[20] H. Khalil, Nonlinear Systems, Prentice Hall, New Jersey, USA, 2002.
[21] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality

Approach, Wiley, New York, 2001.


