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Abstract. In this paper, a general method for model order reduction of discrete-time
switched linear systems is presented. The proposed technique uses switching generalized
gramians. It is shown that several classical reduction methods can be developed into the
generalized gramian framework for the model reduction of linear systems and for the re-
duction of switched systems. Discrete-time balanced reduction within a specified frequency
interval is taken as an example within this framework. To avoid numerical instability
and to increase the numerical efficiency, a generalized gramian-based Petrov-Galerkin
projection is constructed instead of the similarity transform approach for reduction. It
is proven that the proposed reduction framework preserves the stability of the original
switched system. The performance of the method is illustrated by numerical examples.
Keywords: Model reduction, Switched systems, Gramian and stability

1. Introduction. The complexity of models is increasing in response to the ever-increasi-
ng need for the accurate mathematical modeling of physical as well as artificial processes
for simulation and control. To maintain tractability, efficient computational prototyp-
ing tools are required to replace such complex models by simpler models that capture
their dominant characteristics. Due to this fact, model reduction methods have become
increasingly popular over the last two decades [1-3,40]. Such methods are designed to
extract a reduced order state space model that adequately describes the behavior of the
system in question.

Most of the studies on model order reduction to date have been devoted to linear
systems. The few methods proposed for nonlinear systems are not strong compared with
linear reduction methods.

On the other hand, most of the methods that have been proposed to date for the con-
trol and analysis of hybrid systems suffer from high computational burden when dealing
with large-scale dynamical systems. This has motivated the study of model reduction
for hybrid systems [4-17]. The model reduction problem for Markovian switched systems
was studied in [16]. In Markov jump systems, the transition probabilities of the jumping
process are important, and to date, almost all of the issues with Markov jump systems
have been investigated assuming the knowledge of transition probabilities. However, the
likelihood of obtaining complete knowledge on the transition probabilities is questionable,
and the cost of doing so is likely high [17]. The method presented in [4] deals with the
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abstraction of both the continuous and discrete parts of hybrid dynamical systems and
uses balanced residualization for the reduction of the continuous part. Application of the
method to switched systems may not preserve stability, and non-elegant behavior may
arise for general hybrid systems because of approximation error and possible guard/reset
map overlap. It was shown in [5] that the dimension of the state space can be affinely
reduced due to non-observability if and only if a subspace of the classical unobservable
subspace, characterized using the normal vectors of the exit facets, is nontrivial. This re-
sult does not indicate that the method is a strong tool for the reduction of affine systems
because it is an exact reduction. While exact reduction is very elegant, the class of systems
for which this procedure applies is quite small. This method only considers observabil-
ity for investigating the importance of states to discard. The improvements and more
details on these are available in [11]. The problem of model reduction for discrete-time
switched systems is addressed in several papers [6,13-15]. In [6], two different approaches
are proposed to solve this problem. The first approach casts the model reduction problem
as a convex optimization problem, which solves the model reduction problem by using
a linearization procedure. The second one, based on cone complementarity lineariza-
tion, casts the model reduction problem as a sequential minimization problem subject
to linear matrix inequality constraints. Both approaches have their own advantages and
disadvantages concerning conservatism and computational complexity. These optimiza-
tion problems will be very hard (if not infeasible) to solve for a large-scale system. Not
only is this method restricted to discrete-time switched systems, but it also does not pro-
vide any hints about the number of states that are suitable to retain before reduction.
Similar methods have been developed for more general classes of discrete-time switched
systems in [12,15]. In [13,14], this problem is investigated for discrete-time switched sys-
tems under average dwell time switching. Stability conditions based on dwell time and
the average dwell time are among the stability problems of switched systems with respect
to the restricted switching signal [31].
In [7,9], we proposed the generalized gramian framework for the model reduction of

switched systems based on the common generalized gramians of the subsystems. This
framework has been developed for controller reduction in [8,9]. The framework is shown
to provide satisfactory approximations, and it preserves the stability of the original sys-
tem under arbitrary switching signal but is over conservative. The method reported in
[10] is based on the convex generalized gramian concept. Although this method is less
conservative than its counterpart in [7,9], and by choosing suitable tuning parameters in
the algorithm can be more accurate, the stability preservation is not guaranteed for all
switching sequences in this method.
In this paper, we propose a framework for the model reduction of a switched system

based on switching generalized gramians. This general framework can be categorized as
gramian-based model reduction method. The balanced model reduction introduced in
[18] is one of the most common gramian-based model reduction schemes.
To apply a balanced reduction, the system is first represented in a basis in which the

states that are difficult to reach are simultaneously difficult to observe. This is achieved by
simultaneously diagonalizing the reachability and the observability gramians, which are
solutions to the reachability and the observability Lyapunov equations. Then, the reduced
model is obtained by truncating the states that have this property. The balanced model
reduction method is modified and developed from different point of view [1,2]. One of
the methods that are presented based on balanced model reduction is the method making
use of the generalized gramian [19]. In this method, Lyapunov inequalities (rather than
Lyapunov equations) are solved to compute generalized gramians. The physical interpre-
tations of generalized gramians are similar to those of ordinary gramians. Generalized
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gramians are used to devise a technique for structure preserving model reduction methods
in [20].

In this paper, we first show that the generalized method in [19] can be extended to var-
ious gramian-based reduction methods. We also modified the method in [19] to avoid nu-
merical instability and to achieve higher numerical efficiency by building Petrov-Galerkin
projection based on generalized gramians. We propose a method based on the balanced
model reduction within a specific frequency bound in this framework. We generalized
the framework to model reduction of switched system to determine the switching Petrov-
Galerkin projection based on switching generalized gramians. This framework was devel-
oped in such a way that it preserves the stability of the original switched system for the
arbitrary switching signal. Furthermore, it is a general method in the sense that different
classical gramian-based methods can be developed for the reduction of switched systems
within this framework. The feasibility of and the preservation of stability afforded by this
algorithm was studied. It is shown that the proposed framework is less conservative than
its preceding counterparts.

The paper is organized as follows. In the next section, we review the balanced reduction
method and the balanced reduction technique based on the generalized gramian. Sec-
tion 3 presents how different gramian-based methods can be approximated as generalized
gramian based techniques. The balanced reduction within a specific frequency interval
based on the generalized gramian is also presented in this section. This section ends with
some remarks on the numerical implementation of the algorithm, and using projection
for generalized gramian-based reduction methods is suggested instead of balancing and
truncation. Section 4 is devoted to developing the switching generalized gramian-based
reduction method for the model reduction of switched systems, followed by discussions on
stability, feasibility, the algorithm parameters and error bounds. Section 5 presents our
numerical results, and Section 6 concludes the paper.

The notation used in this paper is as follows: M∗ denotes the transpose of matrix if
M ∈ Rn×m and the complex conjugate transpose if M ∈ Cn×m. The norm ‖ . ‖∞ denotes
the H∞ norm of a rational transfer function. The standard notation >, ≥ (<, ≤) is used
to denote the positive (negative) definite and semi-definite ordering of matrices.

2. Balanced Truncation and Generalized Gramian. Balanced truncation is a well-
known method used for the model reduction of dynamical systems (see for example [1,2]).
The basic approach relies on balancing the gramians of the systems. For dynamical
systems with minimal realization:

G := (A,B,C,D) (1)

where G is the transfer matrix with associated state-space representation,{
ηx(t) = Ax(t) +Bu(t), x(t) ∈ Rn

y(t) = Cx(t) +Du(t)
(2)

where η is either the derivative operator ηf(t) = df(t)
dt

, t ∈ R or the shift ηf(t) = f(t+1),
t ∈ Z.

Gramians for continuous time systems are given by the solutions to the Lyapunov
equations:

AP + PA∗ +BB∗ = 0

A∗Q+QA+ C∗C = 0
(3)
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and for discrete-time systems by

APA∗ − P +BB∗ = 0

A∗QA−Q+ C∗C = 0
(4)

For stable A, the equations produce unique positive definite solutions P and Q, called
the controllability and observability gramians. In balanced reduction, the system is first
transformed into a balanced structure in which gramians are equal and diagonal:

P = Q = diag(σ1Ik1 , . . . , σqIkq)
q∑

j=1

kj = n
(5)

where σi > σi+1; here, σi’s are called Hankel singular values.
The reduced model can be easily obtained by truncating the states that are associated

with the set of the lowest Hankel singular values. Applying the method to a stable,
minimal G, if we keep all of the states associated to σm (1 ≤ m ≤ r) and truncate the
rest the reduced model, Gr will be minimal and stable and satisfies the following [1,2]:

‖G−Gr‖∞ ≤ 2

q∑
j=r+1

σj (6)

A closely related model reduction method is that presented in [19]. This method is based
on generalized gramians. In this method, instead of Lyapunov Equations (3), the following
Lyapunov inequalities are solved:

APg + PgA
∗ +BB∗ ≤ 0

A∗Qg +QgA+ C∗C ≤ 0
(7)

For stable A, there are positive definite solutions Pg and Qg called the generalized con-
trollability and observability gramians. It should be noted that these gramians are not
unique. The rest of this model reduction method is the same as the aforementioned bal-
anced truncation method; the only difference is that in this algorithm the balancing and
truncation are based on the generalized gramian instead of ordinary gramians. In this
method, we have generalized Hankel singular values (γi), which are the diagonal elements
of balanced generalized gramians instead of Hankel singular values σi, which are the diag-
onal elements of balanced standard gramians. The error bound (6) holds in terms of the
generalized Hankel singular values (γi) instead of Hankel singular values (σi). It should
be noted that γi ≥ σi [19]. Therefore the error in balanced reduction based on the gener-
alized gramian is lower bounded by the error of ordinary balanced model reduction. To
achieve more accurate results, we can find Pg and Qg in (7), such that, tr(Qg) and tr(Pg)
are minimized.

3. Generalized Gramian Framework for Gramian-Based Model Reduction Me-
thods. In this section, we first present a general framework to build generalized gramian-
based reduction methods analogous to those created using gramians. Subsequently, we
present generalized balanced reduction within a specific frequency bound within this
framework, followed by a discussion on the numerical implementation of the algorithm
based on projection.
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3.1. Lyapunov equations, Lyapunov inequalities and reduction.

Lemma 3.1. Suppose A is stable, Y is symmetric and

A∗Y A− Y ≤ 0

A, Y ∈ Rn×n
(8)

holds. Then Y ≥ 0, i.e., Y is positive semi-definite.

Proof: If A∗Y A− Y ≤ 0, there exists M ≥ 0 such that:

A∗Y A− Y +M = 0

On the other hand, for any stable A, the unique solution to the preceding is

Y =
∞∑
k=0

(A∗)kMAk

In the above structure, M ≥ 0; hence,

Y ≥ 0

This lemma leads to the following proposition that makes the relation between Lya-
punov equations and Lyapunov inequalities evident. Let Γ : Rn×n → Rn×n be an operator
that is defined as:

ΓA,R(X) := A∗XA−X +R (9)

Proposition 3.1. Suppose A is stable and X is the solution of the Lyapunov equation

ΓA,Q(X) = A∗XA−X +Q = 0 (10)

where Q ≥ 0. If a symmetric Xg satisfies

ΓA,Q(X) = A∗XgA−Xg +Q ≤ 0 (11)

then Xg ≥ X.

Proof: Subtract (11)-(10) and apply Lemma 3.1 with Y = Xg −X.
Proposition 3.1 is a direct consequence of Lemma 3.1, which shows how ordinary grami-

ans can be approximated by the generalized gramians. Balanced reduction based on gen-
eralized gramians, which we reviewed in the last section, is based on Proposition 3.1.
While this method might be less accurate than its gramian based counterpart, the ap-
proximation error is still bounded.

By deriving the associated Lyapunov equations and relaxing them to inequalities, we
can readily generalize other gramian-based reduction methods in this framework. In
the following, we propose a generalized version of balanced reduction within a frequency
bound.

3.2. Generalized balanced reduction within frequency bound. Over the past two
decades, much attention has been devoted to balanced model reduction, which has been
developed and improved from several points of view. The frequency-weighted balanced
reduction method is one of the devised gramian-based techniques based on ordinary bal-
anced truncation [1,2,21-23]. In this method, the model reduction is biased by frequency-
dependent input/output weights. In many cases the input and output weights are not
given; instead, the problem is to reduce the model over a given frequency range [1,2]. This
problem can be addressed directly by balanced reduction within the frequency bound,
which was first proposed in [24] and then modified in [2] to preserve the stability of
the original system and to provide an error bound for approximation. In [25], a similar
method is proposed for discrete-time systems and further improved in [26] to preserve
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stability and to provide a computable error bound. In this method, for a discrete-time
dynamical system (1) the controllability gramian P (ω1, ω2) and observability gramians
Q(ω1, ω2) within frequency range of operation [ω1, ω2] are defined as follows:

P (ω1, ω2) :=
1

2π

∫ ω2

ω1
(I − Ae−jω)−1BB∗(I − A∗ejω)−1dω

Q(ω1, ω2) :=
1

2π

∫ ω2

ω1
(I − A∗ejω)−1C∗C(I − Ae−jω)−1dω

(12)

where 0 ≤ ω1 < ω2 ≤ π.
Due to the symmetry of the Fourier transform, the integration is carried out over [ω1, ω2]

and [−ω2,−ω1], therefore, the gramians are always real.
To show the associated Lyapunov equations, we need to introduce more notations

F (ω1, ω2) := −ω2 − ω1

4π
I +

1

2π

∫ ω2

ω1

(I − Ae−jω)−1dω (13)

X(ω1, ω2) = F (ω1, ω2)BB∗ +BB∗F (ω1, ω2)
∗ (14)

Y (ω1, ω2) = C∗CF (ω1, ω2) + F (ω1, ω2)
∗C∗C (15)

The gramians satisfy the following Lyapunov equations [25,26]:

AP (ω1, ω2)A
∗ − P (ω1, ω2) +X(ω1, ω2) = 0

A∗Q(ω1, ω2)A−Q(ω1, ω2) + Y (ω1, ω2) = 0
(16)

This method is modified in [26] to guarantee the stability and to provide a simple error
bound. The modified version starts with the Schur decomposition of X and Y :

X(ω1, ω2) = UΛU∗ = U diag(λ1, . . . , λn)U
∗

Y (ω1, ω2) = V∆V ∗ = V diag(δ1, . . . , δn)V
∗ (17)

where UU∗ = V V ∗ = In, |λi| ≥ |λi+1| ≥ 0, |δi| ≥ |δi+1| ≥ 0.
It should be noted that since X(ω1, ω2) and Y (ω1, ω2) are real and symmetric, decom-

positions in the form (17) exist. Let

B̂ := U diag
(
|λ1|1/2 , . . . , |λn|1/2

)
Ĉ := diag

(
|δ1|1/2 , . . . , |δn|1/2

)
V ∗

(18)

The modified gramians satisfy the following Lyapunov equations instead of (16):

AP̂ (ω1, ω2)A
∗ − P̂ (ω1, ω2) + B̂B̂∗ = 0

A∗Q̂(ω1, ω2)A− Q̂(ω1, ω2) + Ĉ∗Ĉ = 0
(19)

For the generalization, we have the following inequalities:

AP̂ (ω1, ω2)A
∗ − P̂ (ω1, ω2) + B̂B̂∗ ≤ 0

A∗Q̂(ω1, ω2)A− Q̂(ω1, ω2) + Ĉ∗Ĉ ≤ 0
(20)

Then, the generalized modified balanced reduction within frequency bound can be ob-
tained by simultaneously diagonalizing P̂g(ω1, ω2) and Q̂g(ω1, ω2) and then by truncating
the states associated with the set of the least generalized Hankel singular values.
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3.3. Numerical issues. Balanced transformation can be numerically ill-conditioned wh-
en dealing with systems with some nearly uncontrollable modes or some nearly unobserv-
able modes. The difficulties associated with the computation of the required balanced
transformation in [27] draw some attention to alternative numerical methods [28]. Bal-
ancing can be badly conditioned even when some states are much more controllable than
observable or vice versa. It is advisable then to reduce the system in the gramian-based
framework without balancing at all. The Schur method and square-root algorithms pro-
vide projection matrices to apply balanced reduction without balanced transformation
[1,28]. This method can be easily applied to other gramian-based methods. In our gener-
alized method, we can use the same algorithm by plugging generalized gramians into the
algorithm instead of ordinary gramians.

4. Model Reduction of Switched Systems.

4.1. Model reduction of switched systems based on switching generalized gram-
ians. One of the most important subclasses of hybrid systems is linear switched systems
[29]. A linear switched system is a dynamical system specified by the following equations:∑

:

{
ηx(t) = Aσ(t)x(t) +Bσ(t)u(t)

y(t) = Cσ(t)x(t) +Dσ(t)u(t)
(21)

where x(t) ∈ Rn is the state, y(t) ∈ Rp is the output, u(t) ∈ Rm is the input and
σ : R≥0 → K ⊂ N is the switching signal that is a piecewise constant map. K is the set
of discrete modes which is assumed to be finite. For each i ∈ K, Ai, Bi, Ci and Di are
matrices of appropriate dimensions. The indicator function is defined as:

ζi(t) =

 1, when the switched system is described
by the ith mode matrices (Ai, Bi, Ci, Di)

0, otherwise
(22)

The switched system (21) can also be written as the following using indicator function:

∑
:


ηx(t) =

|K|∑
i=1

ζi(Aix(t) + Biu(t))

y(t) =
|K|∑
i=1

ζi(Cix(t) +Diu(t))

(23)

In this section, we present a framework for the model reduction of the switched system
described by (21). The aim is to find a projection that maps the state-space of a switched
system to a lower dimensional subspace. Definition 4.1 describes the general definition of
a Petrov-Galerkin projection.

Definition 4.1. The Petrov-Galerkin projection for a dynamical system:{
ηx(t) = f(x(t), u(t)), x ∈ Rn

y(t) = g(x(t), u(t))
(24)

is defined as a projection Π = VW ∗, where W ∗V = Ik, V,W ∈ Rn×k, k < n [1].

The reduced order model produced using this projection is{
ηx̂(t) = W ∗f(V x̂(t), u(t)), x̂ ∈ Rk

y(t) = g (V x̂(t), u(t))
(25)

In our framework, we construct the aforementioned projection based on the switching
generalized gramian that is defined as follows:
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Definition 4.2. Switching controllability (observability) generalized gramian for the dy-
namical system (21) is defined as:

Ψg(t) =

|K|∑
i=1

ζi(t)Pg,i (26)

Pg,i is the controllability (observability) generalized gramian associated with the ith mode
of (21).

To develop a generalized gramian framework for the model reduction of switched linear
systems, the generalized gramian reduction framework can be applied locally to reduce
each subsystem independently. Unlike ordinary gramians, the generalized gramians are
not unique; therefore, we can choose the generalized gramians for subsystems such that
the reduction framework preserves important properties of the original system such as
stability.
At this point, it is possible to integrate different gramian-based reduction methods

into this framework for the reduction of switched systems by finding the generalized
controllability/observability gramian for each subsystem and constructing switching con-
trollability/observability generalized gramians. The next step can be the simultaneous
diagonalization of the switching generalized gramian and balancing and reduction of all
subsystems based on Hankel singular values of the switching generalized gramian in each
mode. To avoid numerical bad conditioning and to increase the efficiency of the method,
we use the Schur or square-root algorithm instead of balancing; thus, direct Petrov-
Galerkin projection matrices can be computed. This procedure is less conservative and
provides more accurate results.
In the method that we proposed in [7,9], the stability of the original switched systems

under arbitrary switching signal is guaranteed to be preserved due to the existence of a
common quadratic Lyapunov function. This was the main cause of the conservatism. In
our new framework, the generalized gramians are computed such that the existence of
a piecewise quadratic Lyapunov function for the switched system is guaranteed, and the
stability of the reduced switched system is consequently guaranteed. In the following, we
first propose our general framework for the model reduction of a switched system.
Let the observability gramian Qi and the controllability gramian Pi corresponding to

a general gramian-based method for each subsystem be derived as the solutions to the
following Lyapunov equations:

ΓAi,Mi
(Qi) = 0 (27)

ΓA∗
i ,Ni

(Pi) = 0 (28)

where Mi, Ni are positive semi-definite.
To develop the gramian based reduction method for switched systems which preserves

the stability of the original system, the switching controllability generalized gramian Ψcg(t)
and switching observability generalized gramian Ψog(t) are obtained:

Ψcg(t) =

|K|∑
i=1

ζi(t)Pg,i (29)

Ψog(t) =

|K|∑
i=1

ζi(t)Qg,i (30)
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where the generalized observability gramian Qg,i and the generalized controllability grami-
an Pg,i are the solutions to:

ΓA∗
i ,Ni

(Pg,i) < 0

ΓAi,Mi
(Qg,i) < 0

A∗
iQg,jAi −Qg,i < 0

(31)

for all i ∈ K.
The next step is to simply construct a Petrov-Galerkin projection for each subsystem

based on the switching gramians in each mode.
In the following, to clarify the proposed general framework we extend the generalized

balanced reduction within a given frequency interval that was presented in previous section
for model reduction of a switched linear system.

First, we must find the generalized controllability gramian P̂g,i (ω1, ω2) and the gener-

alized observability gramian Q̂g,i (ω1, ω2) for each subsystem within a frequency domain
satisfying (29)-(31) for all i, j ∈ K. In other words, the following LMI need to be solved:

AiP̂g,i(ω1, ω2)A
∗
i − P̂g,i(ω1, ω2) + B̂iB̂

∗
i < 0 (32)

A∗
i Q̂g,i(ω1, ω2)Ai − Q̂g,i(ω1, ω2) + Ĉ∗

i Ĉi < 0 (33)

A∗
i Q̂g,j(ω1, ω2)Ai − Q̂g,i(ω1, ω2) < 0 (34)

The switching generalized gramians are:

Ψcg(t) =

|K|∑
i=1

ζi(t)(Pg,i(ω1, ω2)) (35)

Ψog(t) =

|K|∑
i=1

ζi(t)(Qg,i(ω1, ω2)) (36)

If we substitute Ψcg(t) and Ψog(t) into the square-root algorithm we can directly obtain
projectors associated with all subsystems for reduction. It should be noted that the results
are the same as those of the balancing algorithm. A merit of the square-root method is
that the method relies on the Cholesky factors of the gramians rather than the gramians
themselves, which has advantages in terms of numerical stability.

4.2. Stability and feasibility. One of the important issues in model reduction is the
preservation of the stability which needs to be studied. In other words, the question
is whether the reduction technique can preserve the stability of the original model in
approximation. In our proposed framework the stability of the original switched system
is guaranteed to be preserved. To prove the stability preservation, we first need to recall
a theorem on the stability of discrete time switched system from [30,31].

Theorem 4.1. If there exist |K| symmetric matrices S1, S2, . . . , S|K| for a discrete-time
dynamical system (21), satisfying:[

Si A∗
iSj

SjAi Sj

]
> 0 ∀(i, j) ∈ K ×K (37)

then the switched system is asymptotic stable, and the associated Lyapunov function is
given by

V (t, x(t)) = x(t)∗

 |K|∑
i=1

ζi(t)Si

x(t). (38)
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This theorem proposes a sufficient condition for the stability of a switched system based
on the existence of a piecewise quadratic Lyapunov function, which is less conservative
than the condition for stability based on a common Lyapunov function (see [30,31] for
more details and proofs).
In the following proposition, we show that our framework for the reduction of switched

system preserves stability.

Proposition 4.1. If the discrete-time switched system described in (21) is stable, the
generalized gramian based reduced order model is asymptotic stable.

Proof: In the proposed method, we have

W ∗
i Vi = Ik, Vi,Wi ∈ Rn×k, k < n

Âi = W ∗
i AiVi

B̂i = W ∗
i Bi

Ĉi = CiV

D̂i = Di

(39)

which is a projected system matrices associated with the reduced order switched model.

∑̂
:


ηx̂(t) =

|K|∑
i=1

ζi

(
Âix̂(t) + B̂iu(t)

)
y(t) =

|K|∑
i=1

ζi

(
Ĉix̂(t) + D̂iu(t)

) (40)

We know that Qg,i is the generalized observability gramian and that the original switched
system satisfy (30) and (31); therefore ∀(i, j) ∈ K ×K,

A∗
iQg,iAi −Qg,i +Mi < 0, Qg,i > 0 (41)

A∗
iQg,jAi −Qg,i < 0 (42)

which is equivalent to [
Qg,i A∗

iQg,j

Qg,jAi Qg,j

]
> 0 ∀(i, j) ∈ K ×K (43)

based on the Schur complement inequality. The original system is asymptotic stable
according to Theorem 4.1 and if we find |K| symmetric matrices that satisfy (37) for the
reduced order switched system, the reduced order switched model will be stable as well.
From (41) and (42) we have

V ∗
i (A∗

iQg,iA−Qg,i +Mi)Vi < 0 (44)

V ∗
i (A∗

iQg,jAi −Qg,i)Vi < 0 (45)

On the other hand, the outcome of the square-root algorithm for projection is [1]:
Pg,iWi = Vi

∑
i and Qg,iVi = Wi

∑
i, where

∑
i ∈ Rk×k is diagonal and positive definite,

and we have
V ∗
i (A

∗
iQg,iA−Qg,i +Mi)Vi

= V ∗
i A

∗
iQg,iAVi − V ∗

i Qg,iVi + V ∗
i MiVi

= V ∗
i A

∗
iWi

∑
iW

∗
i AVi − V ∗

i Wi

∑
i +V ∗

i MiVi

= (W ∗
i AVi)

∗ ∑
i(W

∗
i AV )−

∑
i +V ∗

i MiVi

Hence
Â∗

i

∑
i
Âi −

∑
i
+V ∗

i MiVi < 0
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and consequently,

Â∗
i

∑
i
Âi −

∑
i
< 0 (46)

Let Φij := V ∗
i Qg,jVi; therefore, Qg,j = WiΦijW

∗
i . We have from (40):

V ∗
i (A

∗
iQg,jAi −Qg,i)Vi

= V ∗
i A

∗
iQg,jAiVi − V ∗

i Qg,iVi

= V ∗
i A

∗
iWiΦijW

∗
i AiVi − V ∗

i Qg,iVi

= Â∗
iΦijÂi −

∑
i

Hence,

Â∗
iΦijÂi −

∑
i
< 0 (47)

Note that Φij = Φ∗
ij > 0 and Φii =

∑
i.

Let Sj = Φij and Si =
∑

i according to Theorem 4.1. The reduced order switched
model (40) is stable for an arbitrary switching sequence.

Our framework is said to be feasible if (41) and (42) are satisfied. These cannot be
always satisfied. However, the framework is much less conservative compared to its coun-
terparts in [7,9]. One way to improve the feasibility of the proposed model reduction
method is to use the recently proposed extended notion of generalized gramians which
are called extended gramians [32].

4.3. Discussion on the method, features and restrictions. The main feature of
the proposed model reduction framework is the generality of the framework. In general,
gramian-based model reduction algorithms for linear systems can be generalized for the
model reduction of switched systems within this framework. This is demonstrated by the
generalization of balanced reduction within a frequency interval for the model reduction
of switched systems. One can extend other methods such as balanced reduction within a
certain time interval in a similar way for the model reduction of switched system following
the proposed framework. The structure of the reduction algorithm is such that it can
easily be extended for switched controller reduction. This has already been done for the
reduction framework based on common generalized gramians [8,9].

The advantage of the proposed method over those discussed in [4,10,11] is that it pre-
serves stability for all switching signals, and the advantage of the presented method over
those based on common generalized gramians lies in its conservatism. The proposed
method is less conservative than the methods based on common generalized gramians.
One unique feature of the proposed method with respect to the other LMI based model
reduction methods for switched systems is that the Hankel singular values or more pre-
cisely in this case generalized Hankel singular values are computed and are available in
the reduction procedure. This in particular is useful in design problems to tune the design
parameters. A detailed example of such an application can be found in [42].

One of the drawbacks of the method is that it is not always feasible, and as it was
suggested earlier one way to improve the feasibility of the proposed model reduction
method is to use the recently proposed extended notion of generalized gramians which
are called extended gramians [32]. Another drawback of the method is its computational
complexity, which is the common problem in most LMI-based model reduction methods
for switched systems. One way to improve the computational efficiency is to reduce the
number of subsystems (discrete modes) before applying the method. To this end, discrete
abstraction via pseudo-equivalence can be used [4].

One restriction of the proposed method is that the subsystems need to be stable for the
method to be successfully applied. To overcome this restriction the generalized gramians
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for unstable systems need to be defined. This can be done in the manner similar to the
method in [43], by solving two Riccati equations followed by two Lyapunov inequalities.
It should be noted that in our method we must solve Lyapunov inequalities instead of
Lyapunov equations because we are looking for generalized gramian instead of gramians.

5. Numerical Example. In this section, we first apply the proposed method for the
reduction of two bimodal switched linear systems to illustrate the proposed method. The
first example is of order 7, and the second is of order 25. The practical application of the
method for fault-tolerant control and plug-and-play control is discussed. The proposed
technique is applied for the model reduction of practical CD player example.

5.1. Illustrative examples.

Example 5.1. 7th-Order switched linear system: consider a single-input-single output
switched linear of the form (21):

A1 =



−0.334 0.3046 −0.03543 −0.07088 0.1474 −0.2414 −0.07635
0.1292 −0.05956 −0.03945 0.2164 −0.3475 −0.1074 −0.2008
−0.1205 −0.02622 −0.115 −0.1031 −0.05692 −0.1377 0.02162
−0.1308 0.01855 −0.1999 −0.6649 −0.1376 −0.0985 −0.072
−0.09125 −0.3183 −0.04991 0.1481 −0.2894 −0.1928 0.02208
−0.3358 0.08599 −0.05365 0.08062 0.07906 −0.3054 0.01544
−0.1247 −0.1874 0.0197 −0.01706 0.02899 −0.01897 0.1089



A2 =



0.02764 0.2331 −0.3819 0.1918 0.1083 −0.0531 0.412
0.2406 −0.5743 0.06595 0.275 −0.1156 0.3873 0.3771
−0.3711 0.07406 −0.3554 0.09365 0.2317 0.02326 0.3513
0.129 0.2794 0.1674 0.3015 0.1313 0.09701 −0.05687
0.1283 −0.1153 0.2107 0.1169 0.2967 0.3146 −0.2963

−0.01531 0.385 −0.02076 0.09491 0.3066 0.2628 −0.2449
0.4385 0.3797 0.3264 −0.09338 −0.2908 −0.2239 0.3117



B1 =



0
0
0

−0.07866
−0.6817
−1.025
−1.234


, B2 =



−0.1497
0
0

1.535
0

−1.347
0.4694


C1 = [ 0 0 0.0558 0 −0.465 0.371 0.7283 ]

C2 = [ −0.9036 0 −0.6275 0.5354 0.5529 −0.2037 −2.054 ]

D1 = 0, D2 = 0.1326

To reduce the switched system we solve LMI’s (32)-(34) to compute the switching
gramians over the frequency domain [ω1, ω2] = [0.0001, 1]. The switching observability
generalized gramian is computed by solving (33) and (34):

Ψog(t) =
2∑

i=1

ζi(t)(Qg,i(ω1, ω2))
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where

Q̂g,1(ω1, ω2)

=



432.3740 −2.0884 36.5183 22.1324 −26.9003 27.7670 5.6355
−2.0884 474.9520 −15.9972 0.2649 32.5495 −23.7194 2.1711
36.5183 −15.9972 426.6650 3.4264 −9.5463 7.0706 −19.7154
22.1324 0.2649 3.4264 462.4184 8.0981 20.2084 9.2145
−26.9003 32.5495 −9.5463 8.0981 425.7597 29.0492 −0.5272
27.7670 −23.7194 7.0706 20.2084 29.0492 424.6442 −4.5798
5.6355 2.1711 −19.7154 9.2145 −0.5272 −4.5798 437.7793


Q̂g,2(ω1, ω2)

=



438.1188 −1.8337 37.8168 18.3223 −32.8578 25.2266 14.1855
−1.8337 474.0864 −15.9894 2.5844 29.8504 −25.6838 7.0294
37.8168 −15.9894 427.4084 5.2123 −10.4245 6.8873 −20.0638
18.3223 2.5844 5.2123 457.5497 15.1847 24.8077 9.0909
−32.8578 29.8504 −10.4245 15.1847 434.9824 34.4873 −14.7420
25.2266 −25.6838 6.8873 24.8077 34.4873 431.6313 −16.5326
14.1855 7.0294 −20.0638 9.0909 −14.7420 −16.5326 456.5890


The switching controllability generalized gramian Ψcg(t) is computed similarly by solv-

ing (32). The resulting fourth-order switched linear model obtained by applying the
presented method is

A1r =


−0.7885 0.03459 −0.1212 −0.1066
0.1418 −0.5086 −0.3072 −0.1373

−0.008041 0.2888 −0.5294 −0.04207
−0.05953 −0.07607 −0.1193 0.2978



A2r =


−0.9483 0.01865 −0.01575 −0.02349
0.01436 0.9308 0.04869 −0.005533
0.01945 0.04652 −0.9376 0.04768
−0.03012 0.03389 −0.03229 0.7319



B1r =


0.4763
−1.272
−0.6668
−2.061

 , B2r =


0.2252
0.3751
0.26
0.5943


C2r =

[
0.9824 −2.738 −0.5533 −0.9583

]
C1r =

[
−0.155 −0.072 0.01531 0.1706

]
D1r = 0, D2r = 0.1326

Figure 1 shows the generalized Hankel singular values of the first subsystem, and Figure
2 shows the generalized Hankel singular values of the second subsystem. The step response
of the original and reduced order switched systems associated to the switching signal of
Figure 3 is presented in Figure 4.

Figure 1 and Figure 2 show that most of the input/output information is in the four
states of the original systems. The proposed method provides accurate results after re-
duction of 3 states of the original system (42.8 % of the states).

Example 5.2. Bimodal Switched linear System of order 25: Consider a bimodal switched
linear system of order 25. The original system is SISO and is reduced to order 17 using
the proposed reduction method over [ω1, ω2] = [0.001, 1000].
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Figure 1. Generalized Hankel singular values (γi) of the first subsystem

Figure 2. Generalized Hankel singular values (γi) of the second subsystem

The generalized Hankel singular values are shown in Figure 5 and Figure 6.
The step responses of the original and reduced order switched systems associated with

the switching signal shown in Figure 7 is shown in Figure 8.

5.2. Practical applications. The focus of this section is on the applications of model
reduction of switched systems. Methods for the model reduction of switched systems
reduce the significant computational burden and complexity associated with the process
of fault-tolerant control and plug-and-play control of large-scale systems. The objective
of methods within the framework of plug-and-play process control and particularly fault-
tolerant control is to establish control techniques which guarantee a certain performance
through control reconfiguration upon the occurrence of faults or changes [33,34,41]. For
this purpose, one natural way to model the system is to use a hybrid/switched systems
framework. The procedure involves the assignment of one subsystem describing the sys-
tem without fault and for each fault scenario a subsystem that models the faulty system.
In this way, we obtain a switched system, and by designing a suitable controller we devise
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Figure 3. Randomly generated switching signal

Figure 4. Step response of original switched linear system (solid line) and
the reduced order model (dotted)

a fault-tolerant control. If the switched system is of high order, the design, computations
and implementation of such controllers are complex. However, to maintain tractability
model reduction of a switched system is required before designing a fault tolerant con-
troller or plug-and-play controller. In the following, the model reduction of switched
systems is applied in the reduction of a practical CD player model. This system is mod-
eled as a bimodal switched system. One subsystem describes the system without fault,
and the other describes the system with a sensor fault.

Example 5.3. CD player example.

The control of a CD player system is one of the well-known practical applications of
model order reduction. The pattern of the CD player mechanism is shown in Figure 9.
The control task is to achieve track following, which basically amounts to pointing the
laser spot to the track of pits on a rotating CD. This mechanism involves a swing arm
on which a lens is mounted by means of two horizontal leaf springs. The rotation of the



5040 H. R. SHAKER AND R. WISNIEWSKI

Figure 5. Generalized Hankel singular values (γi) of the first subsystem

Figure 6. Generalized Hankel singular values (γi) of the second subsystem

arm in the horizontal plane enables the system to read the spiral-shaped disc-tracks, and
the suspended lens is used to focus the laser spot on the disc. Due to the disc not being
perfectly flat, and irregularities in the spiral shape of pits on the disc, a feedback system is
needed. The higher the disc rate becomes, the stronger are the demands on the feedback
controller. It is also required that the feedback system withstand some level of external
shock. The challenge is to find a low-cost controller that can make the servo system faster
and less sensitive to external shocks. In addition, it is required that all CD-players of a
production set be equipped with the same type of controller.
From a practical point of view, a high-order model is needed to describe the vibra-

tional behavior of an electro-mechanical system over a large frequency range to anticipate
the interaction with a controller of a possibly high-bandwidth. In many examples, the
behavior of electrodynamics is predicted by means of finite-element and sub-structuring
methods [35].
First, the mechanism is divided into structural parts, which are modeled by finite-

element discretization. The resulting model contains 60 vibration modes. In other words,
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Figure 7. Switching signal

Figure 8. Step response of original switched linear system (solid line) and
the reduced order model which is of order 17 (dotted)

Figure 9. CD player [35]

the model is a continuous model of order 120 [36-39]. The model is converted to a discrete
model using FOH (first-order hold) sampling with a sampling time of 0.1. Due to a sensor



5042 H. R. SHAKER AND R. WISNIEWSKI

Figure 10. Switching signal

Figure 11. Step response of original switched linear system (solid line)
and the reduced order model which is of order 30 (dotted)

fault, the sensor gain falls to 40% of the actual gain. The model describing the system
with this fault scenario is extracted and converted into a discrete model using FOH with
a sample time of 0.1. The overall system is a bimodal switched system of order 120, which
is then reduced within [ω1, ω2] = [0.001, 10].
The step responses of the original and reduced order switched systems associated with

the switching signal shown in Figure 10 are shown in Figure 8. The reduced order switched
system is of order 30. In other words, 75% of the states are reduced. Nonetheless,
apart from around the switching instant that we have some bounded transient error the
approximation is fairly accurate.

6. Conclusions. A general framework for the model order reduction of switched linear
dynamical systems has been presented. In this paper we have reformulated the frequency-
domain balanced reduction method within the generalized gramian framework; generally,
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however, various gramian based reduction methods can be reformulated within the pro-
posed framework easily and can be applied for the reduction of switched systems. It has
been shown that the proposed framework preserves the stability of the original system.
The method is much less conservative than previous methods based on common gen-
eralized gramians. The method can be further extended for the reduction of switching
controllers and for closed-loop model reduction with embedded switching which will be
addressed in future studies.
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