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Abstract. The processes involved in local scour at culverts are so complex that make
it difficult to establish a general empirical (regression) model to provide accurate estima-
tion for scour. This study presents Gene-Expression Programming (GEP), which is an
extension to Genetic Programming (GP), as an alternative approach to estimating the
scour depth at culvert outlets. The data sets of laboratory measurements of scour depths
at culverts were compiled from published literature and used to train the GEP network
or evolve the program. The developed network and evolved programs were validated using
a random subset of the scour observations that were not used in GEP training. The
GEP was found to be more effective in predicting the scour depth at culvert outlets (R2

= 0.989, RMSE = 0.0678), compared with the regression equations and artificial neural
networks (ANN) modelling.
Keywords: Local scour, Genetic programming, Gene-expression programming, Artifi-
cial neural networks, Radial basis function, Culverts

1. Introduction. Design of flow capacity is an essential feature in terms of designing
drainage crossing over hydraulic structures such as culverts or storm drains [1]. Design
flow and stagnation of eddy around the foundation of crossing over a structure are prime
causing to failure of structure due to potential scouring. Accurate prediction of the
dimensions of scour downstream from hydraulic structures is required to ensure that
foundations are properly designed to minimize the structural damage due to undermining
[2]. The estimation of scour characteristics at culvert outlets continues to be a concern
for hydraulic engineers [3].

In order to estimate the equilibrium scour depth at culvert outlets, various empirical
correlations have been developed by the previous researchers [1,4-11], as summarized in
Table 1. A centre-line bed profiles downstream from a circular culvert at equilibrium scour
condition is illustrated in Figure 1. However, these empirical relations did not model the
actual scour processes, and were applicable only to a limited range of field conditions.
Regression relations are commonly used to predict the culvert outlet scour; however,
regression analysis has major drawbacks pertaining to idealization of the complex scour
process, approximation and averaging the widely varying prototype conditions. Thus, the
estimated scour depths using regression equations can have large uncertainties which can
contribute to costly culvert failures. Apart from the complexity of the scour phenomenon
involved, the limitations of regression analysis are (1) irrespective of the nature of the
problem, it is difficult to model by a predefined equation, either linear or nonlinear and
(2) the assumption of normality of residuals.
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Table 1. Empirical formulae for estimating culvert scour depth [with per-
mission from ASCE]

Author Equation
Lim [1] dse/do = 0.45Fo

Liriano et al. [2] dse/do = a ln(Fo) + b
where a = 0.877(H/do)

−0.37 and
b = 0.20 ln(H/do)− 0.24

Chiew and Lim [11] dse/do = 0.21Fo

Abt et al. [31] dse/do = −3.67(F 0.57
o d0.450 σ

−0.4
g )

Figure 1. Typical centre-line bed profiles downstream from a circular cul-
vert at equilibrium scour condition (after Lim [1]) [with permission from
ASCE]

The recent research initiatives on culvert scour modeling have been exploring ways to
enhance the data collection efforts by collecting reliable field and laboratory data sets,
and/or to improve the modeling tools used to fit empirical models to the available data
sets. In particular, the development of modern data-driven modeling techniques such
as those based on artificial intelligence (AI) techniques, is quite promising. Predictive
approaches such as artificial neural networks (ANNs) [12-14] and adaptive neuro-fuzzy
inference systems (ANFISs) [15] have been recently shown to yield effective estimates of
scour around hydraulic structures. ANNs have been reported to provide reasonably good
solutions for hydraulic-engineering problems, particularly for conditions having highly
nonlinear and complex relationship among the input-output pairs in the corresponding
data [16,17]. Recently, Weinert and Lopes [18] developed parallel rule induction system
using Gene-Expression Programming (GEP) and Tsai [19] designed an intelligent novelty
detection application for practical situations.
However, a model for the prediction of scour downstream from culverts that is gener-

ally applicable to all circumstances is not currently available. Accordingly an improved
predictive model for estimating scour depth using GEP has been developed in the present
study. The performance of the proposed model was compared with a standard Radial
Basis Function (RBF) Neural Network and conventional regression-based equations. The
explicit formulation of the GEP model is also presented.

2. Analysis of Local Scour at Culvert Outlets. The primary (or main) variables
influencing the equilibrium scour depth (ds) at culvert outlets are listed below [2].

dse = f(ρ, µ0, u0, d0, H,W0, g, ρ
′
s, d50, σg) (1)

where dse is the equilibrium depth of scour, ρ is the density of water, µ0 is the dynamic
viscosity of water, u0 is the mean velocity at the outlet, d0 is the pipe diameter for
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circular outlets and the outlet height for non-circular outlets, H is the depth of water
in the downstream receiving channel (tail-water depth), W0 is the width of the outlet,
g is the acceleration due to gravity, ρs is the density of the sediment bed material, d50
is the median sediment size, Ks is a shape factor of a culvert, and σg is the geometric
standard deviation of the sediment bed material and describes the gradation of sediments
downstream from the culvert. Assuming that the viscous effect is not important and that
the bed material consists of sand and gravel with constant ρs, a dimensional analysis of
Equation (1) can yield a set of five non-dimensional parameters:

ds
d0

= f

(
F0,

H

d0
,
W0

d0
,
d50
d0

, σg

)
(2)

where F0 is the densimetric Froude number = u0/[(S − 1)gd50]
0.5, and S is the specific

gravity of the sediment = ρs/ρ. Experimental data containing 202 data sets were compiled
from multiple sources [1,7,10,20-23].

During last two decades, researchers have noticed that the use of soft-computing tech-
niques as alternative to conventional statistical (regression) methods based on controlled
laboratory or field data yielded significantly better results. The ANN and Genetic Pro-
gramming (GP) are the most widely used branches of soft computing in hydraulic engi-
neering. Within the larger field of hydraulics, few researchers have dealt with the scour
around and downstream of hydraulic structures using ANN [14-16].

3. Overview of the Gene-Expression Programming. Most recently a new technique
called Gene-Expression Programming (GEP) was developed which is an extension of GP
[24]. The GEP is a search technique that evolves computer programs (mathematical
expressions, decision trees, and logical expressions). Recently this technique was found to
give reasonably good prediction for sediment load [26]. Therefore, GEP has attracted the
attention of researchers in the prediction of hydraulic characteristics. This study presents
ANN and GEP as alternative tools in the prediction of scour depth downstream from a
culvert. The computer programs of GEP are encoded in linear chromosomes, which are
then expressed or translated into expression trees (ETs). ETs are sophisticated computer
programs that are usually evolved to solve a particular problem, and are selected according
to their fitness at solving that problem. From these trees, the corresponding empirical
expressions can be derived. A population of ETs will discover traits, and therefore will
adapt to the particular problem they are employed to solve. This means that, given enough
time and setting the stage correctly, a good solution to the problem will be discovered
[26,27].

The GEP is a full-fledged genotype/phenotype system, with the genotype totally sepa-
rated from the phenotype, while in GP, genotype and phenotype are one entangled mess
or more formally, a simple-replicator system. As a consequence of this, the full-fledged
genotype/phenotype system of GEP surpasses the old GP system by a factor of 100-60,000
[26,27]. The functionality of each genetic operator included in GEP system was explained
by Ferreira [26-28], and Guven and Aytek [29]; the latter provided an application for
improving stage-discharge relationships.

4. Development of the Neural Network Model. The ANN provides a random map-
ping between an input and an output vector, and typically consists of three layers of neuron
namely, input, hidden and output, with each neuron acting as an independent computa-
tional element. Neural networks derive their strengths from the high degree of freedom
associated with their architecture. Prior to application, the network is trained to the
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observed data sets. This feeds the network with input and output pairs and determines
the values of connection weights, bias or centers (Figure 2).

Figure 2. RBF neural network architecture

The training may require many epochs (presentation of complete data sets once to the
network) being carried out until the training sum of squares error reaches a specified
error goal. Concepts involved in these training schemes are outlined in the ASCE Task
Committee [30]. A neural network toolbox contained within the MATLAB package was
used in this study. The usual feed-forward type of network was trained using radial basis
function (RBF). Out of the total of 202 input-output pairs, about 85% of data sets (151
sets) were selected randomly, and were used for model training, whereas the remaining
15% of data sets (31 sets) were employed for testing (model validation). As dictated by
the use of a Gaussian function, all patterns were normalized within the range of (0.0, 1.0)
before their use. The RBF network architecture (5 inputs, 36 hidden neurons and 1 output
as in Equation (2) was trained by using various values of spread (α) between 0 and 1.
A spread constant α for the radial-basis layer, and returns a network with weights and
biases such that the outputs are exactly for given targets. The value of 0.01 was identified
as providing the best performance for the training data.

5. Development of the GEP Model. The GEP model was developed using the same
input variables used with the ANN-RBF model. Initially, the “training set” was selected
from the whole data and the remaining data was used as the “testing set”. Once the
training set is selected, one could say that the learning environment of the system is
defined. The next part of modeling consisted of five major steps. The first is to choose
the fitness function. For scour downstream from a culvert, the fitness, fi, of an individual
program, i, was measured by

fi =
Ct∑
j=1

(
M −

∣∣C(i,j) − Tj

∣∣) (3)

whereM is the range of selection, C(i,j) is the value returned by the individual chromosome
i for fitness case j (out of Ct fitness cases) and Tj is the target value for fitness case j.
If |C(i,j) − Tj| (the precision) is less than or equal to 0.01, then the precision is equal to
zero, and fi = fmax = CtM . In this case, M = 100 was used; therefore, fmax = 1000. The
advantage of this fitness function is that the system identifies the optimal solution.
Secondly, the set of terminals T and the set of functions F were chosen to create the

chromosomes. In this problem, the terminal set consists obviously of five independent
variables, i.e., T = F0,

H
d0
, W0

d0
, d50

d0
, σg. The choice of the appropriate function set is not

so obvious; however, a hydraulic background and experience is helpful for indentifying
all the necessary functions. In this study, four basic arithmetic operators (+,−, ∗, /) and
some basic mathematical functions (

√
, power) were utilized.
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The third major step was to choose the chromosomal architecture, i.e., the length of the
head and the number of genes. Initially a single gene and 2 lengths of heads were used,
and the number of genes and heads was increased one after another during each run, and
the training and testing performance of each model was monitored. The number of genes
more than 2 and length of heads more than 8 did not significantly increase the training and
testing performance of the GEP models. Thus, length of the head, lh = 8, and two genes
per chromosome were employed for each GEP model in this study. The fourth step was to
choose the linking function. In this study, we tried addition and multiplication as linking
functions and observed that linking the sub-ETs by addition gave better fitness (Equation
(3)) values. In the fifth step, the set of genetic operators that cause variation and their
rates was chosen. A combination of all genetic operators (mutation, transposition and
crossover) was used for this purpose.

The best generation individual had 30 chromosomes and a fitness of 840.94. The explicit
and analytical form of the GEP for relative scour depth is given by:

dse
d0

=

 −6.62 + F0(√
Fo/

H
do

)
+ 9.65

σg

+

〈
d50
do

− H/do

e(2.34+
d50
do

) + eσg

〉
+

{
Fo

√
σg

H

do

}1/2

(4)

Figure 3 shows the expression trees of the above formulation. Table 2 shows the range
of the compiled culvert-scour data and its parameters. Table 3 shows the training and
testing data set. The functional set and operational parameters used in the present GEP
modeling are summarized in Table 4. The sample computation is given in Appendix I.

Table 2. Range of data used [with permission from ASCE]

Variable Range of data
Outlet shape
Culvert Shape

Circular and box
Rectangular
Circular
Square

Outlet diameter, d0 (m) 0.0254-0.146
σg geometric standard deviation
of the sediment bed material

0.97-4.78

Sediment size, d50/d0 0.00082-1.35
W0/d0 5.0-66.7
Relative tail-water depth, H/d0 0.5-25
Exit velocity, uo (m/s) 0.747-11.176
F0 1.04-29.34
dse/d0 0.81-24.2

6. Results and Discussion.

6.1. Training and testing results. The performance of GEP in training and testing
sets was evaluated and compared in terms of four common statistical measures R2 (co-
efficient of determination), RMSE (root mean square error), MAE (mean average error),
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Figure 3. Expression tree (ET) for GEP formulation for culvert scour
depth (where d50/d0 = d1; F0 = d2; H/d0 = d3, σg = d4; W0/d0 = d5)

Table 3. The minimum and maximum values of the training and testing
data parameters

Parameters
Training Data Set Testing Data Set

Minimum Maximum Minimum Maximum
Fo 1.32 29.34 6.19 17.29

d50/do 0.00082 1.3500 0.11 0.99
H/do 0.3 60.0 0.55 21.47
Wo/do 5 66.7 9.4 22.85
σg 0.97 4.78 1.25 2.02

dse/do 0.81 24.2 3.2 11.85

and δ (average absolute deviation). These four performance statistics are listed below:

R2 = 1−
∑N

i=1 (oi − ti)
2∑N

i=1 (oi − ōi)2
(5)

RMSE =

√∑N
i=1 (oi−ti)2

N
(6)
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MAE =
1

N

∑N

i=1
|oi − ti| (7)

δ =

∑
|(oi − ti)|∑

oi
∗ 100 (8)

where ti denotes the target values of relative scour depth, oi and ōi denote the observed
and average observed values of relative scour depth, respectively, and N is the number
of data points. First, an attempt was made to assess the significance or influence of each
input parameter on the estimated dse/do values.

Table 4. Genetic operators used in GEP modeling

Parameter Definition Value
p1 Mutation rate 0.044
p2 Inversion rate 0.1
p3 One-point recombination rate 30%
p4 Two-point recombination rate 30%
p5 Gene recombination rate 0.1
p6 Gene transposition rate 0.1

Table 5. Sensitivity analysis for independent parameters for the testing

Set Model RMSE MAE R2

dse/d0 = f(F0,
H
d0
, Wo

d0
, d50

d0
, σg) 0.087 0.68 0.9721

dse/d0 = f(F0,
H
d0
, Wo

d0
, d50

d0
) 0.097 0.89 0.86

dse/d0 = f(F0,
H
d0
, Wo

d0
, σg) 0.094 0.96 0.79

dse/d0 = f(F0,
H
d0
, d50

d0
, σg) 0.109 0.89 0.76

dse/d0 = f(F0,
Wo

d0
, d50

d0
, σg) 0.342 0.93 0.78

Table 5 compares the GEP models, with one of the independent parameters removed
in each case, and deleting any independent parameter from the input set that yielded
larger RMSE and lower R2 values. These five independent parameters have influence
on dse/do; so the functional relationship given in Equation (2) was used in this study.
The GEP model resulted in a highly nonlinear relationship between dse/do and the input
parameters, and showed the highest accuracy and lowest error (Table 5). The testing
performance of the proposed GEP model revealed a high generalization capacity with R2

= 0.97, RMSE = 0.87, MAE = 0.68%, and δ = 9.9.

6.2. Performance and validation. In this culvert scour study, grouped variables (non-
dimensional data) of input data were explored to assess their influence on scour-depth
processes (Table 5). The GEP model was developed and tested for predicting scour depth
at culvert outlets. Dimensional analysis was used to determine the parameters for scour at
culvert outlets. The sensitivity analysis of a non-dimensional parameter in Equation (2)
shows that the dimensionless values of σg and d50/d0, have the most and the least effects
respectively, on the normalized scour depth, dse/do. The observed equilibrium scour depth
values were plotted against the predicted ones and the robustness of the proposed GEP
model is demonstrated well. The capability of GEP in estimation of scour depth values
is evaluated based on the observed scour depth values.

Figure 4 illustrates the results with the performance indices between predicted and
observed data for the validating (testing) data sets using dimensional parameters. Tradi-
tional scour-depth predictors such as Chiew and Lim’s [11] equation, Lim’s [1] equation
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Figure 4. Observed versus predicted scour depth-validation (testing)

and the equation of Abt et al. [31] yielded low values for the coefficient of determina-
tion (R2 = 0.112, 0.3102 and 0.1723 respectively), for the testing data set. However the
proposed GEP model shows a high R2 (= 0.989) and low RMSE (= 0.0678), and the
ANN-RBF has R2 = 0.946 and RMSE = 0.988 in training (Table 6).

Table 6. Comparison of the GEP and ANN-RBF models

Model
R2 RMSE MAE δ

Training Validation Training Validation Training Validation Training Validation

GEP 0.989 0.972 0.0678 0.87 0.516 0.68 4.78 9.56

ANN-RBF 0.946 0.883 0.988 1.27 0.956 1.065 12.76 14.23

Chiew and Lim’s [11] 0.112 0.099 25.567 28.888 30.23 34.54 50.67 65.34

Lim [1] 0.3102 0.267 16.78 19.84 22.36 26.94 35.67 40.23

Abt et al. [31] 0.1723 0.245 23.45 26.34 28.67 31.23 45.36 61.23

The ANN-RBF model yields biased results (underestimating at lower relative scour
depths and overestimating at higher values of relative scour depth). The results of the
ANN based approach for prediction of scour depth reported by Liriano and Day [2],
Azamathulla and Ghani’s [17] ANFIS scour model, were also interesting, but they could
not produce any general purpose expression like Equation (4). All these findings exhibit
a successful performance of the GEP models for estimating scour depth, both in training
and testing stages. The ANN-RBF network was trained in a significantly less number of
epochs and in a fraction of the time compared with GEP.

7. Conclusion. The application of relatively new soft-computing approach of genetic
programming to predict the local scour depth at culvert outlets was demonstrated. GEP
and ANN-RBF models were developed to predict the values of relative scour depth from
laboratory culvert-scour measurements. This new approach was developed to estimate
the equilibrium depth scour at a culvert outlet from optimum data sets by using the
GEP and ANNs modelling techniques. The application of the GEP in this study is an
important contribution to scour-depth estimation methodologies downstream culverts.
The dimensionless values of σg and d50/d0, were found to have the most and the least
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effects respectively, on the normalized scour depth. The present study indicated that
employing the original data set yielded a network that could predict measured depth
scour at culvert outlets more accurately than standard regression analysis. The overall
performance of GEP model was superior to the ANN model. Development of the general
purpose equation like Equation (4), for the prediction of scour depth was also unique in
the current study. The largest culvert diameter available in the database from Opie’s
(1967) work could be deemed closest to the filed condition. Further work is required to
provide a complete data set to train the network and validate its usefulness.
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Notation
d50 = particle mean diameter, dse = equilibrium scour depth,
ġ = gravitational acceleration, F0 = the densimetric Froude number,
u0 = mean flow velocity, R2 = coefficient of determination,
RMSE = root mean squared error, MAE = mean average error,
ρ = fluid density, ρ′s= buoyant sediment density,
µ = fluid dynamic viscosity, α = spread,
δ = average absolute deviation.
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Appendix I. Estimating Scour at Culvert Outlets
Fo = 1.32; d50/do = 0.00082; H/do = 0.3; Wo/do = 5; σg = 0.97 and dse/do = 0.41.
Substituted in Equation (4)

dse
d0

=

 −6.62 + F0(√
Fo

/
H
do

)
+ 9.65

σg

+

〈
d50
do

− H/do

e(2.34+
d50
do

) + eσg

〉
+

{
Fo

√
σg

H

do

}1/2

dse
d0

=

(
−6.62 + 1.32(√
1.32/0.3

)
+ 9.65

0.97

)
+

〈
0.00082− 0.3

e(2.34+0.00082) + e0.97

〉
+
{
1.32

√
0.97 ∗ 0.3

}1/2

dse
d0

=

(
−5.01

(13.77)

)
+

〈
0.00082− 0.3

13.027

〉
+ {0.8438}

the relative equilibrium scour depth, dse
d0

= 0.802.


